高三数学选修三知识点归纳
高三数学选修知识点归纳

高三数学选修知识点归纳数学作为一门科学,对于学生而言常常被认为是一门有难度的学科之一。
而在高三阶段,数学选修课更是让人感到头疼。
为了帮助高三学生更好地掌握数学选修知识点,在本文中,将对一些常见的高三数学选修知识点进行归纳和总结。
一、概率与统计1. 随机事件与概率- 事件及其运算规则:包括事件的和、差、积、商等- 概率的定义与计算:基本概率公式、条件概率公式- 相互独立事件、互斥事件的概率计算2. 统计与数据分析- 数据收集与整理:抽样、数据整理与清洗- 数据的呈现方式:频数分布表、频率分布直方图、累计频数表- 描述统计指标:均值、中位数、众数- 抽样调查与估计:样本容量、置信区间二、数列与数列极限1. 等差数列与等差数列极限- 等差数列的通项公式与求和公式- 等差数列的性质与应用- 等差数列极限的求解与判定2. 等比数列与等比数列极限- 等比数列的通项公式与求和公式- 等比数列的性质与应用- 等比数列极限的求解与判定三、数学函数与导数1. 常用函数与函数的性质- 一次函数、二次函数、指数函数、对数函数、幂函数 - 函数的定义域、值域、单调性、奇偶性、周期性等性质2. 函数图像与函数的变化- 函数图像的基本性质和绘制方法- 函数的平移、翻折、缩放等变化3. 导数与求导法则- 导数的概念与几何意义- 基本导数法则及常见函数的导数求解- 导数在函数图像上的应用四、微分与积分1. 微分与微分中值定理- 微分的定义与基本性质- 平均变化率与瞬时变化率的关系- 微分中值定理的应用2. 定积分与不定积分- 定积分的概念与计算- 不定积分与原函数的概念- 积分与几何应用、物理应用、求解定积分问题以上仅为高三数学选修知识点的简要归纳,具体内容较为复杂繁多。
在学习这些知识点时,同学们应注重理解概念,掌握运算方法,并能够灵活应用于解决实际问题。
梳理知识点,合理安排学习时间,并结合习题进行巩固练习,将有助于提高数学学习效果。
高三数学选修2-3(B版)_专题提升:概率与统计

概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。
新课标人教A版高中数学全部知识点归纳总结

高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
2020届高中数学分册同步讲义(选修2-3) 第1章 1.2.1 第1课时 排列与排列数公式

§1.2排列与组合1.2.1排列第1课时排列与排列数公式学习目标1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列数的定义及公式1.排列数的定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?可以得到多少个焦点在x轴上的双曲线方程x2a2-y2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x2a2+y2b2=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线x2a2-y2b2=1中,不管a>b还是a<b,方程x2a2-y2b2=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、排列数公式的应用命题角度1 利用排列数公式求值例2-1 计算A 315和A 66.解 A 315=15×14×13=2 730, A 66=6×5×4×3×2×1=720. 命题角度2 利用排列数公式化简例2-2 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55); (2)化简n (n +1)(n +2)(n +3)…(n +m ).解 (1)∵55-n ,56-n ,…,69-n 中的最大数为69-n ,且共有(69-n )-(55-n )+1=15(个)数, ∴(55-n )(56-n )…(69-n )=A 1569-n .(2)由排列数公式可知n (n +1)(n +2)(n +3)…(n +m )=A m +1n +m .命题角度3 利用排列数公式证明例2-3 求证A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n, ∴A m n +1-A m n =m A m -1n. 反思感悟 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练2 不等式A x 8<6A x -28的解集为( )A .[2,8]B .[2,6]C .(7,12)D .{8} 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,② 由①②及x ∈N *,得x =8.三、排列的简单应用例3 用排列数表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名新员工,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其排列数为A 2100. (2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其排列数为A 33.(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,其排列数为A 45. 反思感悟 首先分析问题是不是排列问题,若是排列问题,则利用定义解题.跟踪训练3 京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解 对于两个火车站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A 221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.1.下面问题中,是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 A解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.A39等于()A.9×3 B.93C.9×8×7 D.9×8×7×6×5×4×3答案 C3.若A m10=10×9×…×5,则m=________.答案 64.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.答案245.从n个不同的元素中取出m个(m≤n)元素排成一列,不同排法有________种.答案n(n-1)(n-2)…(n-m+1)一、选择题1.4·5·6·…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n答案 D解析因为A m n=n(n-1)(n-2)…(n-m+1).所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n·(n-1)·(n-2)·…·6·5·4.2.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90答案 C解析5本书进行全排列,A55=120.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种答案 B解析∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.下列各式中与排列数A m n相等的是()A.n!(n-m+1)!B.n(n-1)(n-2)…(n-m)C.n A m n -1n -m +1 D .A 1n ·A m -1n -1答案 D 解析∵A m n =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A m n =A 1n ·A m -1n -1.5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A 25=20(种)排法, 因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.6.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( ) A .54B .45C .5×4×3×2D .5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种. 二、填空题7.若A 42x +1=140·A 3x ,则x =________. 答案 3解析 根据原方程,知x 应满足⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,解得x ≥3,x ∈N *.由排列数公式,得(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2),所以x =3.8.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析 根据题意,得A 240=1 560,故全班共写了1 560条毕业留言.9.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法. 答案 3 600解析 不同排法的种数为A 55A 26=3 600(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有________种. 答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的, 则其不同的排列有12×A 44=12种, 而正确的排列只有1种, 则可能出现的错误共有11种.11.5名同学排成一列,甲同学不排排头的排法种数为________.(用数字作答) 答案 96解析 可分两步:第一步,甲同学不排排头,故排头的位置可以从余下的四个同学中选一个排,有A 14种方法;第二步,余下的四个同学全排列,有A 44种不同的排法,根据分步乘法计数原理,所求的排法种数为A 14A 44=96.故填96.12.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有______种不同的招聘方案.(用数字作答) 答案 60解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有A 35=5×4×3=60(种). 三、解答题13.A ,B ,C ,D 四人站成一排,其中A 不站排头,写出所有的站法. 解 作出“树形图”如下:故所有的站法:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.14.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.15.一条铁路有n个车站,为适应客运需要,新增了m个车站,且m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解 由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,∴A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62.∴m (2n +m -1)=62=2×31,∵m <2n +m -1,且n ≥2,m ,n ∈N *,∴⎩⎪⎨⎪⎧ m =2,2n +m -1=31,解得m =2,n =15, 故原有15个车站,现有17个车站.。
高三知识点总结选修三数学

高三知识点总结选修三数学一、函数与导数选修三数学的第一个重点是函数与导数。
函数是数学中一个重要的概念,我们可以通过函数来描述一种关系。
在高中数学中,我们主要学习了一次函数、二次函数和指数函数等多种函数类型。
这些函数在现实生活中有着广泛的应用,我们需要掌握它们的性质、图像和变化规律。
导数是函数与变化的关系密切相关的概念。
通过计算函数的导数,我们可以研究函数的变化趋势、极值点以及曲线的凹凸性等问题。
对于一次函数、二次函数和指数函数等常见函数,我们需要熟练地计算它们的导数,并灵活运用导数来解决实际问题。
二、平面向量与立体几何选修三数学的第二个重点是平面向量与立体几何。
平面向量是一个重要的工具,可以用来描述平面上的运动和方向。
我们需要了解向量的基本概念、性质和运算规则,能够进行向量的加减、数量积和向量积等运算。
此外,还需要掌握向量与线段、角度以及平面等几何对象的关系。
立体几何是研究空间中图形和物体的形状、位置和运动的一门学科。
我们需要学习空间向量的基本性质和计算方法,能够确定空间中点、直线和平面的位置和相互关系。
同时,还需了解立体几何中的投影、平行线、距离和角等概念,能够解决与实际问题相关的几何计算题目。
三、概率与统计选修三数学的第三个重点是概率与统计。
概率是研究随机事件发生可能性的数学分支,也是现实生活中常用的一种描述方式。
我们需要了解概率的基本概念和计算方法,能够根据事件的特点进行概率计算,并理解概率模型和概率分布的应用。
统计是对大量数据进行系统收集、整理和分析的过程,以便得到有关群体特征和规律的结论。
我们需要学习统计中的样本调查、数据整理和图表制作等方法,能够熟练地运用统计方法进行数据分析,并对结果进行合理的解释和推断。
四、数学建模选修三数学的最后一个重点是数学建模。
数学建模是将实际问题抽象为数学模型,并运用数学方法来求解和评估的过程。
我们需要了解数学建模的基本思路和方法,能够通过建模分析问题,并运用相关的数学知识进行求解和验证。
高三数学选修2-3知识点

高三数学选修2-3知识点高三数学选修2-3是高中数学课程中的一部分,主要讲解了数学中的一些应用问题和数学建模的技巧。
这一部分的内容比较具体,其中包括了概率统计、三角函数、向量和解析几何等知识点。
下面我将分别介绍这些知识点的重点内容和应用。
一、概率统计概率统计是实际生活中常常用到的一门数学知识。
它主要研究随机事件的发生概率及其统计规律。
在概率统计中,最常见的一种问题是求解事件发生的概率。
为了求解概率,我们需要掌握一些基本概念和方法。
首先,我们需要了解事件的概念以及事件之间的关系。
事件通常用一个大写字母表示,而事件之间的关系通过并、或等运算来描述。
例如,如果事件A和事件B是互不相容的,那么它们的并就是两事件之和;如果它们是相容的,那么它们的并就是两事件的交集。
其次,我们需要学会如何计算概率。
概率有两种计算方法,一种是几何概率,一种是统计概率。
几何概率常用来解决几何问题,并通过实验次数的频率来估计概率。
统计概率则是通过一系列试验结果的频率来估计概率,常用于描述随机事件在长期实验中出现的可能性。
在实际生活中,概率统计可以应用于很多领域,例如金融、保险、科学实验等。
它可以帮助我们评估风险、预测趋势,对决策和规划起到重要的指导作用。
二、三角函数三角函数是数学中的一类特殊函数,它们描述的是角度和长度之间的关系。
在高三数学选修2-3中,我们主要学习了正弦函数、余弦函数和正切函数。
正弦函数描述的是一个角对应的直角三角形中,斜边与对边的比值。
余弦函数描述的是一个角对应的直角三角形中,斜边与邻边的比值。
正切函数则描述的是一个角对应的直角三角形中,对边与邻边的比值。
三角函数的应用广泛,包括工程、物理、天文等多个领域。
例如在三角测量中,可以利用三角函数计算出不可达区域的高度和距离;在物理中,三角函数可以用于描述波动、振动等现象。
三、向量和解析几何向量和解析几何是高三数学选修2-3中比较抽象和复杂的一部分。
它们主要研究的是空间中的点和直线的性质以及它们之间的关系。
高三选修三数学知识点总结

高三选修三数学知识点总结在高三的学习中,选修三数学是非常重要的一门学科。
它不仅涵盖了许多基础知识,还与实际应用有着密切的关联。
本文将对高三选修三数学的几个重要知识点进行总结。
一、向量与坐标向量与坐标是选修三数学的基础内容。
向量是有大小和方向的量,常用于表示物体的位移、速度和加速度等。
而坐标是表示点在坐标系中位置的一种方式。
通过坐标系可以方便地描述平面上的几何图形和问题,而向量则能够更加直观地表示物体的运动和力的作用。
二、三角函数三角函数是选修三数学中的核心概念之一。
三角函数包括正弦、余弦和正切等常见函数,它们在几何图形和周期性变化等方面有着广泛的应用。
三角函数的理解和运用对解决几何问题和物理问题等都非常重要。
三、概率与统计概率与统计是数学中非常实用的一门学科。
在高三选修三数学中,我们将接触到一些基本的概率和统计知识。
通过概率与统计的学习,我们可以了解到如何进行数据的收集、整理和分析,以及如何对事件的发生概率进行估计和预测。
四、导数与微分导数与微分是选修三数学的进阶内容。
导数是函数在某一点的变化率,微分是导数的几何意义。
导数与微分的学习可以使我们更好地理解函数的变化规律和图像特征,还可以应用于最优化问题和物理问题等方面。
五、数列与数列极限数列与数列极限是选修三数学中的重要内容。
数列是按照特定规律排列的一系列数的集合,而数列极限则是数列中的元素逐渐趋近的某个值。
通过数列与数列极限的学习,我们可以了解到数列的性质和特征,并能够应用数列解决实际问题。
六、复数与复变函数复数与复变函数是选修三数学的拓展内容。
复数是由实部和虚部组成的数,它在数学和物理等领域有着广泛的应用。
复变函数是自变量和函数值都可以是复数的函数,它在解析几何和电路等方面有着重要的作用。
通过对高三选修三数学知识点的总结,我们可以发现这些知识点在数学学科和实际应用中都有着重要的地位和作用。
它们不仅可以帮助我们更好地理解数学问题,还能够应用于解决实际生活和工作中的各种情况。
高三数学考前必预习的知识点(推荐4篇)

高三数学考前必预习的知识点(推荐4篇)篇1:高考数学考前必背知识点2023选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。
高考必考,10分2、随机变量及其分布:不单独命题3、统计:高考的知识板块集合与简单逻辑:5分或不考函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)平面向量与解三角形立体几何:22分左右不等式:(线性规则)5分必考数列:17分(一道大题+一道选择或填空)易和函数结合命题平面解析几何:(30分左右)计算原理:10分左右概率统计:12分----17分复数:5分理科生如何在最后阶段提高数学成绩一、科目复习方法复习思路要很清楚,分成两条线:一条,跟紧老师的复习进度,及时巩固,这一条其实上课认真听,作业质量高再加上自己练习一些就能保证,说起来简单的几个字,可是它要求你能坚持,一次认真听课不难,难的是次次认真,无论你觉得老师讲的这些内容你觉得你掌握的有多好,认真听绝对是有必要的,养成习惯,不认真也难了,现在我大一,目前为止因为有重要的事只翘过一次课,还是没有老师的那种英语听力课,不是学霸也没有多刻苦,仅仅是因为习惯。
听课重要,作业重要,做题重要。
关于听课不在这里赘述。
作业,刚开始复习一天半张卷子,后来一天一张卷子的量,再后来一天两张卷子也能很快写完而且保证质量,你看到了,循序渐进,提高速度,这对高考帮助很大,高考数学卷我记得我都写完了还有时间翻过去把所有选择填空再算一遍。
每次做题都当成最后一遍,因为你不知道有没有时间来返工,所以这样的作业完成量,当时觉得好多,现在看来真的有用。
晚自习数学课代表经常报来一堆卷子,发下来,十分钟后收上去,十分钟内你要写完选择题前六道填空题前两道正确率达100%不然惩罚做同类型的题一种十道,我们先不说这种惩罚的好坏毕竟当时“残害”了一堆同学,就练习本身是很好的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学选修三知识点归纳
在高三数学选修三中,我们将进一步学习数学的深入内容,扩
展我们的数学知识。
本文将对高三数学选修三的知识点进行归纳,以帮助同学们更好地理解和掌握这些知识。
一、向量与坐标
1. 向量的概念:向量是有方向和大小的量,常用箭头表示。
向
量的起点和终点确定了向量的方向,而向量的长度表示了向量的
大小。
2. 向量的表示方法:向量可以用坐标表示,也可以用字母表示。
用坐标表示时,向量通常以坐标的差值表示其方向和大小。
3. 向量的运算:向量可以进行加法、减法和数量乘法。
4. 坐标系和坐标变换:我们可以通过坐标系来描述向量所在的
位置。
坐标变换可以将向量从一个坐标系转换到另一个坐标系。
二、空间解析几何
1. 空间坐标系:我们通常将空间中的点用三个坐标表示,构成空间坐标系。
空间坐标系常见的有直角坐标系和柱面坐标系。
2. 空间直线和平面:空间中的直线可以用两个不在同一平面上的向量表示;空间中的平面可以用三个不共线的向量表示。
3. 空间曲线和曲面:空间中的曲线可以通过参数方程来表示;空间中的曲面可以通过方程或参数方程来表示。
4. 空间距离和倾斜角:空间中两点的距离可以通过向量的模长计算;空间中两直线的倾斜角可以通过向量的夹角计算。
三、数列与级数
1. 数列的定义:数列由一系列按照一定规律排列的数构成。
数列的第n项用an表示。
2. 等差数列:等差数列中,相邻两项之差是常数d。
等差数列的通项公式是an=a1+(n-1)d。
3. 等比数列:等比数列中,相邻两项之比是常数q,且q≠0。
等比数列的通项公式是an=a1*q^(n-1)。
4. 级数的概念:级数是数列的和,通常用S表示。
级数分为有限级数和无限级数两种。
5. 等比级数:等比级数是等比数列的和。
等比级数的求和公式是S=a1/(1-q),其中|q|<1。
四、概率与统计
1. 随机事件:随机事件是在相同条件下具有不确定性的一次试验的结果。
2. 概率的定义:概率是事件发生的可能性大小。
概率的取值范围是0到1之间。
3. 条件概率:条件概率是一个事件在另一个事件已经发生的条件下发生的概率。
4. 事件的独立性:如果两个事件发生与否互不影响,那么它们是独立事件。
5. 统计分布与统计参数:统计分布是指随机变量各取值的分布情况;统计参数是用来描述总体特征的数值。
综上所述,高三数学选修三主要包括向量与坐标、空间解析几何、数列与级数以及概率与统计等知识点。
这些知识点是数学学科的重要组成部分,对于我们进一步理解和应用数学具有重要意义。
希望同学们能够认真学习和掌握这些知识,提高数学素养,取得优异的成绩。