钢筋锈蚀对混凝土的影响
混凝土中钢筋锈蚀对性能的影响研究

混凝土中钢筋锈蚀对性能的影响研究一、前言混凝土是一种广泛应用于建筑、道路、桥梁等工程领域的材料,其主要成分为水泥、骨料、砂浆和水。
而在混凝土的生产和使用过程中,钢筋的使用也是不可或缺的一部分。
然而,在钢筋长时间暴露于潮湿或潮湿和盐分共同作用的环境中,钢筋就会出现锈蚀现象,这不仅会破坏钢筋的力学性能,还会对混凝土的性能产生一定的影响。
因此,本文旨在探究钢筋锈蚀对混凝土性能的影响。
二、钢筋锈蚀的原因和形式钢筋锈蚀是指钢筋表面的铁与环境中水和氧气反应生成了铁锈,导致钢筋表面发生腐蚀的过程。
其主要原因包括水分、氧气和盐分的共同作用。
其中,水分会使钢筋表面形成一层电解质液体,进而使钢筋表面产生电化学反应,形成氧化物;而氧气则是钢筋表面氧化反应的主要原料。
同时,当钢筋表面存在盐分时,钢筋表面的腐蚀速度会加快。
钢筋锈蚀的形式多种多样,常见的有以下几种:1.普通锈蚀:钢筋表面出现一层棕黑色的铁锈,但不会对钢筋的力学性能产生明显的影响。
2.局部剥落:钢筋表面铁锈层过厚,导致钢筋表面出现局部剥落现象。
3.严重腐蚀:钢筋表面的铁锈层已经脱落,导致钢筋表面明显凹陷,且钢筋的力学性能开始受到影响。
三、钢筋锈蚀对混凝土性能的影响钢筋锈蚀不仅会影响钢筋的力学性能,还会对混凝土的性能产生影响。
下面从混凝土的强度、耐久性、变形和裂缝控制四个方面具体阐述。
1.混凝土强度的影响混凝土通常是由水泥、骨料、砂浆和水等材料组成的。
当钢筋锈蚀时,钢筋表面的腐蚀物会对混凝土中的水泥和骨料产生腐蚀作用,导致混凝土中的钙离子和氧化物离子溶解,从而影响混凝土的强度。
研究表明,当钢筋锈蚀严重时,混凝土的强度会降低30%以上。
2.混凝土耐久性的影响混凝土的耐久性指的是混凝土在长期使用过程中的抗氧化性、耐磨性、耐久性等性能。
钢筋锈蚀会使混凝土中的氧化物离子和钙离子溶解,导致混凝土表面的腐蚀,使其耐久性下降。
3.混凝土变形的影响钢筋锈蚀还会影响混凝土的变形。
混凝土中钢筋锈蚀对强度影响的研究

混凝土中钢筋锈蚀对强度影响的研究一、研究背景钢筋锈蚀是混凝土结构中常见的问题,它会导致钢筋断裂、混凝土表面爆裂、裂缝增多等问题,进而削弱混凝土结构的承载力和耐久性。
因此,研究钢筋锈蚀对混凝土强度的影响,可以为混凝土结构的设计和维护提供科学依据。
二、钢筋锈蚀的成因及影响因素1. 成因钢筋锈蚀的成因主要是由于钢筋表面受到氧气、水份、二氧化碳等物质的影响,形成铁锈。
铁锈的体积比原来的钢筋大,会导致钢筋周围的混凝土受到挤压,造成混凝土开裂,从而导致混凝土结构的强度下降。
2. 影响因素钢筋锈蚀的影响因素主要有以下几个方面:(1)混凝土表面的pH值和含盐量。
(2)钢筋的表面处理方式和保护层的厚度。
(3)混凝土中氯离子、硫酸盐等离子的含量。
(4)混凝土的抗压强度和抗拉强度。
三、钢筋锈蚀对混凝土强度的影响机理1. 钢筋断裂钢筋锈蚀会导致钢筋的截面积减小,从而降低了钢筋的抗拉强度。
当钢筋的抗拉强度降至混凝土的抗拉强度以下时,钢筋就会发生断裂,从而导致混凝土结构的强度下降。
2. 混凝土开裂钢筋锈蚀会导致钢筋周围的混凝土受到挤压,从而造成混凝土开裂。
混凝土开裂会导致混凝土的抗压强度和抗拉强度下降,从而降低混凝土结构的承载力。
3. 钢筋与混凝土之间的黏结力下降钢筋与混凝土之间的黏结力会受到钢筋锈蚀的影响而下降。
黏结力的下降会导致钢筋与混凝土之间的力传递受到影响,从而使混凝土结构的强度下降。
四、混凝土中钢筋锈蚀对强度影响的实验研究1. 实验设计为了研究钢筋锈蚀对混凝土强度的影响,可以进行以下实验:(1)制备不同浓度的氯离子、硫酸盐溶液,并将钢筋浸泡在其中,使其发生锈蚀。
(2)制备不同强度的混凝土试件,并将锈蚀的钢筋埋入其中。
(3)在不同时间点对混凝土试件进行力学性能测试,如抗压强度、抗拉强度等。
2. 实验结果分析通过实验可以得到以下结果:(1)随着锈蚀时间的延长,混凝土试件的强度逐渐下降。
(2)锈蚀浓度越高,混凝土试件的强度下降越明显。
钢筋锈蚀钢筋锈蚀是影响钢筋混凝土结构耐久性的最关键问题

◆ 这是由于钢筋锈蚀是一个电化学过程,因此锈蚀主要取决于氧气通过混凝土保护层向钢筋表面的阴极的扩散速度,而这种扩散速度
密实度。 主要取决于混凝土的密实度。
◆ 钢筋锈蚀产生的铁锈(氢氧化亚铁Fe(OH)3),体积比铁增加2~6倍,保护层被挤裂,使空气中的水份更易进入,促使锈蚀加快发 展。
◆ 当构件使用环境很干燥(湿度<40%),或完全处于水中,钢筋的锈蚀极慢,几乎不发生锈蚀。
的密实性和混凝土的保护层厚度。 ◆ 裂缝的出现仅是使裂缝处钢筋局部脱钝,使锈蚀过程得以开始,但它对锈蚀速度不起控制作用。
◆ 当混凝土未碳化时,由于水泥的高碱性,钢筋表面形成一层致密的氧化膜,阻止了钢筋锈蚀电化学过程。
◆ 主要取决于混凝土的密实度。
◆ 当构件使用环境很干燥(湿度<40%),或完全处于水中,钢筋的锈蚀极慢,几乎不发生锈蚀。
裂缝宽度无明显关系,在一般大气环境下,裂缝宽 ◆ 而裂缝的发生为氧气和水份的浸入创造了条件,同时也使混凝土的碳化形成立体发展。
◆ 但近年来的研究发现,锈蚀程度与荷载产生的横向裂缝宽度无明显关系,在一般大气环境下,裂缝宽度即便达到0. ◆ 这是由于钢筋锈蚀是一个电化学过程,因此锈蚀主要取决于氧气通过混凝土保护层向钢筋表面的阴极的扩散速度,而这种扩散速度
5、钢筋锈蚀
钢筋锈蚀是影响钢筋混凝土结构耐久性的最关键问题。
◆ 当混凝土未碳化时,由于水泥的高碱性,钢筋表面形成一层 致密的氧化膜,阻止了钢筋锈蚀电化学过程。
◆ 当混凝土被碳化,钢筋表面的氧化膜被破坏,在有水份和氧 气的条件下,就会发生锈蚀的电化学反应。
钢筋锈蚀对混凝土结构的影响

钢筋锈蚀对混凝土结构的影响在建筑领域,混凝土结构被广泛应用于各类建筑物和基础设施中。
然而,钢筋锈蚀这一问题却给混凝土结构的安全性和耐久性带来了巨大的挑战。
钢筋锈蚀不仅会削弱结构的承载能力,还可能导致结构的过早破坏,给人们的生命和财产安全带来严重威胁。
接下来,让我们深入探讨一下钢筋锈蚀对混凝土结构的具体影响。
首先,钢筋锈蚀会导致其截面积减小。
想象一下,原本粗壮的钢筋由于锈蚀逐渐被侵蚀,其有效承载面积不断缩小。
这就如同原本能承受重物的梁柱,因为内部的支撑被削弱,承受能力自然大打折扣。
当锈蚀发展到一定程度时,钢筋所能提供的抗拉强度大幅降低,无法有效地抵抗外部荷载,从而影响整个结构的稳定性和安全性。
其次,钢筋锈蚀会改变其力学性能。
锈蚀后的钢筋,其延性和韧性都会下降。
原本具有一定弹性和变形能力的钢筋,在锈蚀后变得更加脆硬。
这意味着在受到突发的外力作用时,钢筋可能无法像正常情况下那样发生一定的变形来吸收能量,而是更容易发生突然的断裂,进而引发结构的局部甚至整体破坏。
再者,钢筋锈蚀产物的体积膨胀会对周围的混凝土产生压力。
铁锈的体积通常比原本的钢筋体积大得多,这种膨胀会在混凝土内部产生拉应力。
当这种拉应力超过混凝土的抗拉强度时,混凝土就会开裂。
这些裂缝不仅破坏了混凝土的整体性,还为外界有害物质的侵入提供了通道,进一步加速了钢筋的锈蚀和混凝土结构的劣化。
从结构的耐久性角度来看,钢筋锈蚀引起的混凝土开裂和剥落,使得结构暴露在更恶劣的环境中。
水分、氧气和其他腐蚀性物质更容易渗透到结构内部,加剧钢筋的锈蚀和混凝土的破坏。
长期下去,结构的使用寿命将大大缩短,需要频繁的维修和加固,增加了维护成本。
此外,钢筋锈蚀还会影响混凝土结构的粘结性能。
钢筋与混凝土之间的粘结力是保证结构协同工作的关键。
然而,锈蚀会在钢筋表面形成一层疏松的锈层,降低了钢筋与混凝土之间的摩擦力和机械咬合力,使得两者之间的粘结性能变差。
这将导致钢筋与混凝土无法有效地共同承受荷载,影响结构的整体性能。
混凝土结构中钢筋锈蚀对力学性能的影响研究

混凝土结构中钢筋锈蚀对力学性能的影响研究一、前言混凝土结构是现代建筑中最常见的结构类型之一,其主要承受结构的重量和荷载,同时也起到保护和维护钢筋的作用。
然而,钢筋锈蚀是影响混凝土结构力学性能的主要因素之一,因此,对于混凝土结构中钢筋锈蚀对力学性能的影响进行研究具有重要的意义。
二、钢筋锈蚀的原因及危害钢筋锈蚀是钢筋表面发生的化学反应,主要原因是钢筋表面的氧化物与水蒸气及二氧化碳等物质反应,形成氧化物和碳酸盐等化合物,导致钢筋表面出现锈蚀现象。
钢筋锈蚀会导致钢筋截面积减小、钢筋与混凝土的粘结力下降、混凝土的强度减弱、抗震性能下降等危害。
三、钢筋锈蚀对混凝土结构力学性能的影响1. 钢筋截面积减小:钢筋锈蚀会导致钢筋表面的钢材截面积减小,从而减小钢筋的承载能力,影响混凝土结构的整体承载能力。
2. 钢筋与混凝土的粘结力下降:钢筋锈蚀会破坏钢筋与混凝土之间的粘结性能,从而减小混凝土结构的整体强度和韧性。
3. 混凝土的强度减弱:钢筋锈蚀会导致混凝土结构中的钢筋锈蚀部位受到额外的应力,从而导致混凝土的强度减弱,影响混凝土结构的整体抗压性能。
4. 抗震性能下降:钢筋锈蚀会导致混凝土结构的整体刚度和韧性下降,从而影响混凝土结构的整体抗震性能。
四、钢筋锈蚀的检测方法1. 目视检测法:通过目视检查钢筋表面是否出现锈斑、锈蚀、剥落等现象,判断钢筋是否发生锈蚀。
2. 手感检测法:通过手感检测钢筋表面是否光滑、是否有凹凸感,判断钢筋表面是否出现锈蚀现象。
3. 声波检测法:通过声波检测钢筋表面的声音,判断钢筋内部是否发生锈蚀。
4. X射线检测法:通过X射线检测钢筋的内部结构,判断钢筋是否发生锈蚀。
五、钢筋锈蚀的防治措施1. 选用耐锈蚀性能好的钢材:选用耐锈蚀性能好的钢材可以有效地减少钢筋锈蚀的发生。
2. 做好混凝土保护工作:在混凝土浇筑前,应该先做好钢筋的防锈处理,并在混凝土表面涂刷防水材料,以减少混凝土结构中钢筋锈蚀的发生。
混凝土中钢筋锈蚀的原因及危害和预防措施

混凝土中钢筋锈蚀的原因及危害和预防措施1.碳化:碳化是钢筋在碳酸盐离子的作用下发生的一种腐蚀现象。
当混凝土表面被碳酸气体侵蚀时,混凝土中的碳酸盐会与钢筋表面的氧化物反应生成可溶于水的碳酸亚铁,导致钢筋锈蚀。
2.氯离子侵入:氯离子是混凝土中最常见的腐蚀源之一、氯离子可通过氯化盐、海水等方式进入混凝土中,进而使混凝土中钢筋发生腐蚀。
氯化物进入混凝土后会与钢筋表面的氧化物反应生成可溶于水的氯化亚铁,引起钢筋锈蚀。
3.氧解作用:钢筋表面产生氧化膜可以保护钢筋不受腐蚀,但若混凝土内部存在大量的氧分子,容易进一步氧化钢筋表面,导致钢筋锈蚀。
因此,混凝土中氧分子含量的增加会加速钢筋的氧化过程。
1.强度减弱:钢筋锈蚀后物理性能下降,削弱了钢筋的受力能力,影响混凝土结构的整体强度和承载能力。
2.腐蚀膨胀:钢筋锈蚀会引起钢筋表面体积增大,产生较大的腐蚀膨胀力,导致混凝土产生开裂或脱落。
3.破坏结构:钢筋的锈蚀不仅可能损坏混凝土本身,还会导致结构失去稳定性,增加结构崩溃的风险。
4.影响美观:钢筋锈蚀会使混凝土表面出现锈迹,影响建筑物的美观度。
针对混凝土中钢筋锈蚀的危害,我们可以采取以下预防措施:1.控制混凝土材料质量:选择合适的水泥、骨料等混凝土材料,确保混凝土的密实性和均匀性,减少表面孔隙的形成,降低钢筋暴露和腐蚀的风险。
2.正确设计:在混凝土结构设计时,根据环境条件和使用要求,合理选择混凝土覆盖层的厚度,保证钢筋能够得到有效的保护。
3.防水措施:采取有效的防水措施,减少混凝土暴露在潮湿环境中的时间和程度,降低钢筋腐蚀的可能性。
4.防止氯离子侵入:加强混凝土中氯离子的阻隔,可以采用减少混凝土中的氯离子含量、加入阻隔氯化物的抗腐蚀剂或使用防腐蚀涂层等方法。
5.确保质量检测:对于混凝土的施工过程,进行质量检测,及时了解混凝土结构中的钢筋腐蚀情况,以便于及时采取措施修复和预防。
总之,混凝土中钢筋锈蚀会对建筑物的使用寿命和结构稳定性造成重大影响,因此,在混凝土的设计、施工和维护过程中应采取有效的预防措施,以延长建筑物的使用寿命和保障建筑结构的安全性。
钢筋锈蚀的危害及防护

钢筋锈蚀的危害及防护一、钢筋锈蚀的危害钢筋锈蚀是混凝土结构中的常见病害,它会对混凝土结构的强度和耐久性造成严重影响。
下面列举了钢筋锈蚀的一些危害。
1. 减小混凝土结构的承载力钢筋的锈蚀会使其断面积减小,进而减小其承载能力。
锈蚀后的钢筋在受到荷载时容易出现局部软化,导致混凝土结构的破坏。
2. 影响混凝土结构的使用寿命钢筋的锈蚀会导致混凝土表面酸碱值发生变化,从而破坏混凝土中的水泥石体,加快混凝土的老化进程。
3. 对人身及财产安全造成威胁钢筋锈蚀严重时,钢筋的截面积会明显减小,导致混凝土结构的稳定性降低,对人身及财产安全造成威胁。
二、防止钢筋锈蚀的措施提高混凝土结构的耐久性是防止钢筋锈蚀的根本措施。
下面我们介绍几种常见的防止钢筋锈蚀的措施。
1. 破碎伤口钢筋处理破碎伤口钢筋处理是指对锈蚀较轻的钢筋表面进行清理处理,然后喷涂防锈涂料。
钢筋表面的锈蚀比较轻时,采用此种方法可以使钢筋表面得到很好的保护。
2. 端头钢筋处理采用光化学法处理端头钢筋是目前广泛采用的钢筋防锈措施,该方法使用化学药剂,在钢筋表面上形成一层保护膜。
这种处理方法能够有效地保护钢筋。
3. 预埋防锈钢筋在混凝土浇筑前,将钢筋浸泡在一种特殊的防锈液中,控制液中防锈剂的含量,使钢筋表面形成一层抗锈蚀的保护膜。
这种钢筋具有较好的抗锈蚀性能,可延长混凝土结构的使用寿命。
4. 混凝土保护层在混凝土浇筑时,在钢筋周围留有一定厚度的混凝土保护层。
该层混凝土中含有足够的水泥、细集料和粗集料,能够形成一层强硬的保护层。
保护层的厚度应不小于混凝土基底的直径。
三、钢筋锈蚀是混凝土结构中常见的病害,它严重影响着混凝土结构的使用寿命和安全性。
因此,我们应该采取有效的措施预防和治理钢筋锈蚀,比如破碎伤口钢筋处理、端头钢筋处理、预埋防锈钢筋,以及混凝土保护层等。
这些措施可以有效地降低钢筋锈蚀对混凝土结构的危害,延长混凝土结构的使用寿命。
混凝土板中钢筋锈蚀对力学性能的影响研究

混凝土板中钢筋锈蚀对力学性能的影响研究混凝土结构中的钢筋是承担主要荷载的组成部分,而钢筋的锈蚀会对混凝土结构的力学性能产生严重的影响。
本文将对混凝土板中钢筋锈蚀对力学性能的影响进行详细研究,探讨其原因和解决方法。
一、钢筋锈蚀的原因钢筋锈蚀的主要原因是混凝土中的水分和氧气与钢筋表面的铁发生反应,形成氧化铁,导致钢筋表面产生锈蚀。
此外,混凝土中的化学物质、温度、湿度等环境因素也会影响钢筋的锈蚀情况。
二、钢筋锈蚀对力学性能的影响1. 钢筋的强度下降锈蚀会破坏钢筋表面的保护层,使钢筋暴露在空气中,导致钢筋表面积减小,钢筋的强度下降,从而影响混凝土结构的承载能力。
2. 混凝土的强度下降钢筋锈蚀会导致混凝土表面产生龟裂、剥落等现象,从而使混凝土的强度下降。
3. 混凝土结构的耐久性下降钢筋锈蚀会导致混凝土结构的耐久性下降,使混凝土结构易受到外部因素的破坏,从而缩短混凝土结构的使用寿命。
三、钢筋锈蚀的解决方法1. 加强混凝土表面的保护措施可以在混凝土表面涂刷一层防水涂料,以防止混凝土中的水分侵入钢筋表面,从而减缓钢筋锈蚀的速度。
2. 增加钢筋的保护层厚度增加钢筋的保护层厚度可以延缓钢筋锈蚀的速度,从而提高混凝土结构的耐久性。
3. 选用抗锈蚀性能好的钢筋选择抗锈蚀性能好的钢筋可以有效地减少钢筋的锈蚀速度,提高混凝土结构的使用寿命。
四、结论本文针对混凝土板中钢筋锈蚀对力学性能的影响进行了详细的研究,发现钢筋锈蚀会对混凝土结构的强度、耐久性等产生严重的影响。
为了减少钢筋锈蚀的影响,可以加强混凝土表面的保护措施、增加钢筋的保护层厚度、选择抗锈蚀性能好的钢筋等方法。
这些解决方法可以有效地延缓钢筋的锈蚀速度,提高混凝土结构的使用寿命,有助于保障混凝土结构的安全和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土中钢筋腐蚀与防护技术(1)——钢筋腐蚀危害与对混凝土的破坏作用混凝土中钢筋锈蚀已成为世界关注的大问题,被认为是当今影响混凝土结构耐久性的首要原因。
钢筋锈蚀已经或正在给国民经济带来巨大经济损失。
基于此,美国总结正反两个方面的经验教训,提出了“立足前期措施,着眼长远效益”,并强行实施基建工程管理中的“全寿命经济分析法”(LCCA)。
目前,我国正处于基本建设**时期,国内外的经验教训应认真吸取,这已不是单纯技术问题。
本讲座结合大量国内外新近资料与工程实例,以知识性和使用性为主分5讲系统介绍了钢筋腐蚀危害及对混凝土的破坏作用、钢筋锈蚀的电化学过程及混凝土对钢筋的保护、氯盐对钢筋的腐蚀、中性化的影响、钢筋防腐蚀技术、钢筋锈蚀的检测与判定技术等,供业内人士参考。
——编者STEEL CORROSION AND PROTECTIVE TECHNOLOGY IN CONCRETE(1) ——DAMAGE OF STEEL CORROSION AND FAILURE EFFECT ON CONCRETEHong Naifeng(Central Research Institute of Building & Construction,MMIBeijing 10 0088)1 钢筋锈蚀危害与经济损失世界一些国家的腐蚀损失,平均可占国民经济总产值的2%~4%;其中,被认为与钢筋腐蚀有关者可占40%(至今我国尚无确切统计数据)。
美国1984年报道,仅就桥梁而言,57.5万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏,4 0%承载力不足和必须修复与加固处理,当年的修复费为54亿美元;1998年报道钢筋混凝土腐蚀破坏的修复费,一年要2?500亿美元,其中桥梁修复费为1?550亿美元(是这些桥初建费用的4倍 );还有报道说,到本世纪末,美国要花4?000亿美元用于修复和重建钢筋腐蚀破坏的工程。
如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破坏的发生和挽回部分经济损失。
加拿大早期大量使用“防冰盐”,使钢筋混凝土桥梁等破坏严重。
欧洲、英国、澳大利亚、海湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题(英国修复费为每年50亿英镑)。
韩国曾发生一系列建筑物破坏、倒塌事件,其中也与“盐害”有关。
我国台湾重修澎湖大桥和不断发生的“海砂屋”事件,也是氯盐腐蚀钢筋所造成的。
混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出:“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用”。
他明确将“钢筋锈蚀”排在影响混凝土耐久性因素的首位。
而来自海洋环境和使用“防冰盐”中的氯盐,又是造成钢筋锈蚀的主要原因。
当然,混凝土中性化、冻融等也促进钢筋腐蚀破坏。
此外,“碱集料反应”也在钢筋混凝土破坏中占一定的比例(本文暂不讨论)。
我国海港码头不能耐久,北方使用化冰盐,桥梁道路遭破坏。
以北京立交桥为例,仅使用19 年的西直门立交桥(已重修),钢筋锈蚀破坏十分明显与严重。
我国存在着广泛的腐蚀环境,北方地区使用化冰盐有增无减,而桥梁道路却未采取应有的防护措施(甚至“规范”中无防盐腐蚀要求);我国海岸线很长,而大规模的基本建设大都集中于沿海地区,以往的海港码头等工程,多数达不到设计寿命要求;特别是沿海一带河砂已呈短缺现象,滥用海砂则其害无穷;我国还有广泛的盐碱地(石油基地),其腐蚀条件更为苛刻;特别应该指出的是,我国工业环境中的建筑物,其钢筋锈蚀破坏十分普遍与严重,有调查报告表明,大多数工业建筑达不到设计寿命的年限,目前正在进入大规模修复的时期。
因此,我国钢筋锈蚀破坏的形势是严峻的。
“立足前期措施、着眼长远效益”,这是美国经过正反两个方面的经验教训所得出的可贵结论。
美国正在强行实施基建工程管理中的“全寿命经济分析法”(LCCA),其基本思想是,在设计施工阶段,不论是事先采取防护措施还是以后“坏了再修”,都要做出经济预算和比较,承建者要对工程的“全寿命”负责到底,这样可避免“短期行为”给后人带来的麻烦与巨大经济损失。
“全寿命经济分析法”中曾有以下例举:工程处在氯盐腐蚀环境中,钢筋混凝土结构物设计寿命为40年,前期实施措施(采用钢筋阻锈剂),附加费用为0.85美元/m2(混凝土面板);若前期无措施,则15~20年开始修复,40年内累积费用为4.8美元/ m2(5倍于前者)。
可见,推行“全寿命经济分析法”和倡导工程前期(设计、施工阶段)采取防钢筋腐蚀的措施,已经不是单纯的技术问题,其重大意义和长远经济效益是不可低估的。
2 钢筋腐蚀破坏的主要表征混凝土中的钢筋一旦具备了腐蚀条件,锈蚀便会发生和发展。
钢筋锈蚀是一个电化学过程,由铁变成氧化铁,其体积发生膨胀,根据最终产物的不同,可膨胀2~7倍。
钢筋锈蚀破坏的主要破坏特征可归纳为:(1)混凝土顺钢筋开裂混凝土具有较好的抗压性能,但其抗折、抗裂性差,尤其钢筋表面混凝土缺乏足够的厚度时,钢筋锈蚀产物体积发生膨胀,足以使钢筋表面发生混凝土顺钢筋开裂。
大量试验研究和工程实践表明,钢筋表面锈层厚度很薄时(如20~40μm),便可导致混凝土顺钢筋开裂。
换言之,钢筋锈蚀导致混凝土开裂是容易发生的。
设计、施工、使用、管理及维护人员,认识到这一点十分重要。
欲使混凝土不发生顺钢筋开裂,提高结构物的耐久性,其着眼点就是要最大限度地阻止钢筋生锈,而不应立足于锈蚀发生后再采取补救措施。
混凝土一旦发生顺钢筋开裂,腐蚀介质更容易到达钢筋表面,钢筋锈蚀的速度将会大大加快。
研究和工程实践表明,这时钢筋锈蚀的速度,有可能快于裸露于大气中的钢筋。
这是由于裂缝处更易促成电化学腐蚀的发生和发展。
由此引出两个重要观念:一是要阻止钢筋生锈,二是钢筋锈蚀一旦发生或初见混凝土顺钢筋开裂时,就立即采取防护措施。
这是被提高了的新认识,对于防钢筋锈蚀破坏、提高结构物的耐久性具有重要指导意义,更具有巨大经济价值。
(2)“握裹力”下降与丧失初见混凝土发生顺钢筋开裂时,结构物物理力学性能、承载能力等,可能还没有发生明显变化(这是人们不重视初始顺钢筋开裂的重要原因之一)。
然而,随着裂缝的不断加宽,混凝土与钢筋之间的粘结力(握裹力)也随之下降(下降速度取决于钢筋锈蚀速度),滑移增大,构件变形。
当“握裹力”丧失到一定限度时,局部或整体失效便会发生。
这时的钢筋锈蚀程度也并不一定十分严重。
那些对“握裹力”敏感的构件,更具重要性。
(3)钢筋断面损失混凝土中钢筋锈蚀,一般分为局部腐蚀(如坑蚀)和全面腐蚀(均匀腐蚀),常常是局部腐蚀为主而造成钢筋断面损失,其损失率达到极限时,构件便会发生破坏。
应该说明的是,从钢筋锈蚀、混凝土顺钢筋开裂到构件破坏,是一个复杂的演变过程,不仅取决于钢筋锈蚀的发展速度,也取决于构件的承载能力及钢筋的受力状态等。
故有时钢筋锈蚀并不十分严重,构件就破坏了,而有时钢筋出现明显的断面损失,构件却还在支撑着(有些人认为“钢筋锈蚀无大妨害”就是依此为证)。
对于钢筋断面损失与构件承载能力之间的关系,尚待进一步研究。
(4)钢筋应力腐蚀断裂处在应力状态下的钢筋(包括预应力),在遭受腐蚀时有可能发生突然断裂。
世界上曾发生过此类事故,如钢筋混凝土桥梁突然倒塌,建筑物突然断裂等。
柏林议会大厦屋顶突然塌落,即与钢筋应力腐蚀断裂有关。
应力腐蚀断裂可在钢筋未见明显锈蚀的情况下发生,断裂时钢筋属于脆断。
这是“腐蚀”与“应力”相互促进的结果:应力可使钢筋表面产生微裂纹、腐蚀沿裂纹深入、应力再促裂纹开展。
如此周而复始,直到突然断裂。
这是一种危险的形式,应引起重视。
此外,应力腐蚀断裂与环境介质有关。
3 混凝土质量与钢筋锈蚀应该指出,钢筋混凝土过早破坏(或称耐久性不足)多半是综合因素造成的,在任何情况下工程质量都是首要的。
而工程质量又取决于正确设计、良好施工、精心管理与维护等。
在腐蚀环境中,不采取防护措施或措施不当,更是导致钢筋腐蚀破坏过早出现的原因。
而混凝土工程质量不佳,则防护措施也难以奏效。
钢筋首先是受混凝土保护的,因此,混凝土质量对防止钢筋腐蚀是至关重要的。
3.1 设计与规范我国相关设计规范,多以混凝土“抗压强度”为主要甚至唯一标准,而混凝土对钢筋的保护能力,主要取决于“密实性”和钢筋表面混凝土层的厚度。
实践中“抗压强度”与“密实性”并不是同步关系,在一定条件下,甚至“超强设计”也未必能实现对钢筋的良好保护。
新近修订的相关设计规范中,已引入“耐久性设计”的观念(与国际接轨),这是提高混凝土对钢筋保护能力的重要方面。
设计者除了强化“耐久性设计”的观念外,还要根据结构所处的腐蚀环境的严酷程度,采取相应的防钢筋锈蚀的技术措施,才可实现结构耐久的目的。
以往,人们对于钢筋锈蚀危害及混凝土耐久性认识不足、相关规范的欠完善和“修标”滞后,在一定条件下没有采取相应的防钢筋锈蚀的技术措施等,是造成已有结构物过早出现钢筋锈蚀的原因之一。
3.2 施工质量钢筋混凝土工程施工质量的重要性是不言而喻的,已有工程的实践表明,钢筋过早的出现腐蚀破坏,大多与混凝土质量欠佳有关。
工程施工质量与众多人为因素密不可分(这里暂不讨论)也有一些技术问题没有得到很好的解决。
如微裂纹与宏观缺陷,似在施工过程中是很难完全避免,这就对钢筋保护不利;又如,目前特别强调建设速度,设法使混凝土“早强”,其结果使“密实性”得不到保证,长期强度与耐久性受到不良影响。
总之,施工质量对于保护钢筋、保证结构物的耐久性,在任何情况下都起着关键作用。
3.3 原材料3.3.1 水泥水泥水化的高碱度,使钢筋表面形成钝化膜,这是混凝土之所以能保护钢筋的主要依据与基本条件。
任何削弱或丧失这个条件的因素,都将促进钢筋锈蚀、影响混凝土的耐久性。
混凝土的高碱度,主要来源于水泥水化产物中的氢氧化钙和少量氢氧化钠、氢氧化钾(pH>12.6 )。
钾、钠离子含量高时,能刺激“碱集料反应”,因此,限制其含量十分必要。
然而,认为“水泥碱度越低越好”的看法,也是十分有害的。
在为避免“碱集料反应”而寻求“低碱度水泥”的同时,切莫忘记,长期保持混凝土的高碱度(至少pH>11.5),是钢筋得到保护的起码条件,也是保证混凝土耐久性的关键问题之一。
碱度过低的水泥,对于钢筋混凝土应限制使用,或使用时同时采取防腐蚀技术措施(如用耐腐蚀钢筋、涂层钢筋、掺钢筋阻锈剂等)。
3.3.2 海砂由于海砂含有不等量的氯离子,能够刺激钢筋锈蚀,我国相关规范不推荐或严格限制使用海砂。
这是完全必要的,国内外滥用海砂造成的危害不乏实例。
从另一个角度讲,海砂也是可利用资源,日本即是成功开发利用海砂的国家之一,主要是同时采取防氯离子腐蚀的技术措施(如掺加钢筋阻锈剂等)。
在我国,如日本那样严格而合理地开发利用海砂资源已提到日程上来(据悉宁波地区已经发布文件,采取加钢筋阻锈剂等措施后开放使用海砂)。