最新生理学细胞生物电现象课件ppt
合集下载
最新生理学细胞生物电现象教学讲义PPT课件

二、动作电位及其产生机制
(一)细胞的动作电位
动作电位(Action Potential, AP)——可兴奋细胞受阈(阈上)刺激 后,在静息电位基础上产生的短暂的、可扩布的膜电位波动。
动作电位是细胞兴奋的过程和标志。
动作电位的过程:
上升支(去极相)
锋电位
动作电位
下降支(复极相)
后电位(包括负后电位和正后电位)
*其中锋电位是动作电位的主要部分。
★(单一细胞)动作电位的特征:
(1)“全或无 (all or none) ”特性:动作电位要就不一点发生, 一旦发生即最大幅值。 如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细胞,动作 电位的幅度不会随传导距离增大而衰减。
或特性。 可兴奋细胞(组织)——受刺激后能爆发动作电位的组织细胞,包
括神经细胞、肌细胞和(一些)腺细胞。
五、组织的兴奋和兴奋性
(二)细胞兴奋过程兴奋性的变化 绝对不应期→相对不应期→超常期→低常期→完全恢复正常。
*绝对不应期(absolute refractory period, ARP) *定义:兴奋性消失或极低,无论受多强刺激,都不能使细胞兴奋。 *产生机制:大多数Na通道处于失活状态。 *意义:绝对不应期大致相当于锋电位发生的时间;使两次锋电 位不会叠加而分离。
生理学细胞生物电现象
一、静息电位及其产生机制
(一)细胞的静息电位 静息电位 (Resting Potential,RP)——细胞静息(未受
刺激)时存在于细胞膜两侧的电位差。 细胞静息电位的特征: (1)(动物细胞的静息电位)内负外正; (2)为一稳定的直流电位。
最新[医学]老师课件人体解剖生理学 细胞的生物电现象幻灯片课件
![最新[医学]老师课件人体解剖生理学 细胞的生物电现象幻灯片课件](https://img.taocdn.com/s3/m/986fbeaabe23482fb5da4ca2.png)
28
五、组织的兴奋和兴奋性
兴奋性和可兴奋组织
兴奋 动作电位或动作电位的产生过程
兴奋性 受刺激后产生动作电位的能力
可兴奋细胞、可兴奋组织
29
刺激作用于细胞能否引起兴奋取决于细胞 本身的兴奋性和所给刺激的量
刺激量的要素:刺激强度、刺激持续的时间、 刺激强度变化的速率
阈强度可作为衡量细胞兴奋性的指标,两 者之间呈反变关系
一、细胞的生物电现象
临床的电生理检查项目: 心电图(ECG)、脑电图(EEG)、肌电 图(EMG)、视网膜电图、胃肠电图等。
人体整体、各器官的电现象是以细胞的生 物电为基础。
2
1 细胞生物电现象 2 静息电位及其产生机制 3 动作电位及其产生机制 4 局部反应或局部兴奋
3
生物电:指位于细胞膜两侧的电位差,又 称跨膜电位。
生物体内细胞跨膜电位的形成的两个条件:
细胞内外存在着带电离子的浓度梯度 细胞膜对某些带电离子有选择的通透性或电导
10
静息电位及其产生机制
细胞的静息电位
静息电位:指细胞在静息未受刺激时存在 于膜两侧的电位差
表现为膜内电绝对值代表电位差的大小。
(2)电紧张性扩布(electrotonic propagation)不能远 距扩布,只能在数十至数百微米扩布,产生紧张性电位
(3)总和反应 总和后→可以产生AP
①空间性总和(spatial summation) ②时间性总和(temporal summation)
神经元胞体和树突的功能活动中多见
26
局部反应或局部兴奋
阈刺激
使膜电位去极化达到阈电位引发动作电位的最小刺激 强度,是刺激的强度阈值
阈上刺激
产生动作电位
阈下刺激
五、组织的兴奋和兴奋性
兴奋性和可兴奋组织
兴奋 动作电位或动作电位的产生过程
兴奋性 受刺激后产生动作电位的能力
可兴奋细胞、可兴奋组织
29
刺激作用于细胞能否引起兴奋取决于细胞 本身的兴奋性和所给刺激的量
刺激量的要素:刺激强度、刺激持续的时间、 刺激强度变化的速率
阈强度可作为衡量细胞兴奋性的指标,两 者之间呈反变关系
一、细胞的生物电现象
临床的电生理检查项目: 心电图(ECG)、脑电图(EEG)、肌电 图(EMG)、视网膜电图、胃肠电图等。
人体整体、各器官的电现象是以细胞的生 物电为基础。
2
1 细胞生物电现象 2 静息电位及其产生机制 3 动作电位及其产生机制 4 局部反应或局部兴奋
3
生物电:指位于细胞膜两侧的电位差,又 称跨膜电位。
生物体内细胞跨膜电位的形成的两个条件:
细胞内外存在着带电离子的浓度梯度 细胞膜对某些带电离子有选择的通透性或电导
10
静息电位及其产生机制
细胞的静息电位
静息电位:指细胞在静息未受刺激时存在 于膜两侧的电位差
表现为膜内电绝对值代表电位差的大小。
(2)电紧张性扩布(electrotonic propagation)不能远 距扩布,只能在数十至数百微米扩布,产生紧张性电位
(3)总和反应 总和后→可以产生AP
①空间性总和(spatial summation) ②时间性总和(temporal summation)
神经元胞体和树突的功能活动中多见
26
局部反应或局部兴奋
阈刺激
使膜电位去极化达到阈电位引发动作电位的最小刺激 强度,是刺激的强度阈值
阈上刺激
产生动作电位
阈下刺激
细胞生物电现象ppt课件

2、刺激时间
基强度:在刺 激作用时间足够条 件下,引起兴奋的
最小刺激强度,
利用时:基强 度条件下引起细 胞兴奋所需要的 最短作用时间。
时 值:二 倍基强度条件下 的利用时。
可兴奋组织的强度-时间曲线
3、刺激时间—强度变化率
变化率快:以最短时间达到阈值。 (AP容易发生)
变化率慢:以缓慢速度达到阈值。 (AP不容易发生)
二、兴奋的引起和兴奋在同一细胞上的传导
(一)刺激引起兴奋的条件
◎刺激强度。 ◎刺激持续时间。 ◎刺激的时间-强度变化率。
1、刺激强度
阈 值:引起组织与细胞兴奋的最小刺激强度。 阈刺激:=阈值的刺激强度
阈上刺激:>阈刺激(阈值) 阈下刺激:<阈刺激(阈值)
意义:是衡量某一 组织与细胞兴奋性高低的 客观指标。
形成局部电流
膜内:兴奋部位相邻的静息部位的电位上升 膜外:兴奋部位相邻的静息部位的电位下降
去极化达到阈电位,触发邻近静息部位膜爆发AP
无髓鞘神经纤维
近距离局部电流,动作电位沿膜依次产生。
2、有髓鞘神经纤维 跳跃式局部电流(跳跃传导),动作电位只在朗
飞氏结处产生。
第三节 骨骼肌的收缩功能
骨骼肌的收缩是神经冲 动传到末梢时,兴奋经神 经-骨骼肌接头传递给肌 肉,引起肌肉的兴奋和收 缩。
后电位:AP复极到RP水平前呈 现时间较长、波动较小
的 电位变化过程。
包 括:负后电位和正后电位。
锋电位:特指神经纤维AP波形。
(二)生物电现象的产生机制(掌握)
1、静息电位 1)产生条件:
静息状态下膜内外离子分布不同 ——构成离子扩散动力
静息状态下膜对离子通透性不同 ——决定何种离子扩散
细胞生物电现象课件

液隔开,类似于平行板电容器。 2.细胞膜电学特性:细胞膜具有 ①膜电容Cm : 较大,约1µF/cm2 ②膜电阻Rm: 可变,与通道及转运体数目有关; Rm倒数即膜电导Gm=带电离子通透性 ③细胞膜通道开放→带电离子跨膜移动→相 当于电容器充电或放电→可产生电位差即 跨膜电位
3.电紧张电位electrotonic potential 随距刺激原点距离的增加而膜电 位呈指数衰减的电位变化称电紧张电 位。 该电位是由膜的固有电学特性决 定的,其产生过程中没有离子通道的 激活,也无膜电导的改变。
2.兴奋性 excitability:
可兴奋组织、细胞对刺激发生反应(即产生 动作电位)的能力。 衡量兴奋性高低的指标——阈值 阈上刺激 supraliminal stimulus 阈下刺激 subthreshold stimulus
二、细胞膜cell membrane 被动电学特性 1.平行板电容器Байду номын сангаас细胞膜脂质双层将细胞内外
Na+通道 去极化 ↓ 激活 ↓ 失活 ↓ 恢复
Na+通道激活开放,Na+内流形成AP上升支
Na+=-130mV
2.动作电位期间Gm的变化
用电压钳(voltage clamp,固定膜电位,测量 膜电流)技术的研究结果表明: 动作电位期间,膜GNa首先增加,随即又衰减, 在其衰减的同时GK增大。
3.Gm变化的机制是离子通道的活动 膜片钳(patch clamp):钳制一小片膜, 记录单个通道离子电流的技术。
Action Potential:
刺激后,膜对Na+通透 ↓ 膜内外Na+势能贮备 ↓ Na+经通道易化扩散 ↓ 扩散的Na+抵消膜内 负电位,形成正电位 ↓ 直至正电位增加到足以 对抗由浓度差所致的 Na+内流
3.电紧张电位electrotonic potential 随距刺激原点距离的增加而膜电 位呈指数衰减的电位变化称电紧张电 位。 该电位是由膜的固有电学特性决 定的,其产生过程中没有离子通道的 激活,也无膜电导的改变。
2.兴奋性 excitability:
可兴奋组织、细胞对刺激发生反应(即产生 动作电位)的能力。 衡量兴奋性高低的指标——阈值 阈上刺激 supraliminal stimulus 阈下刺激 subthreshold stimulus
二、细胞膜cell membrane 被动电学特性 1.平行板电容器Байду номын сангаас细胞膜脂质双层将细胞内外
Na+通道 去极化 ↓ 激活 ↓ 失活 ↓ 恢复
Na+通道激活开放,Na+内流形成AP上升支
Na+=-130mV
2.动作电位期间Gm的变化
用电压钳(voltage clamp,固定膜电位,测量 膜电流)技术的研究结果表明: 动作电位期间,膜GNa首先增加,随即又衰减, 在其衰减的同时GK增大。
3.Gm变化的机制是离子通道的活动 膜片钳(patch clamp):钳制一小片膜, 记录单个通道离子电流的技术。
Action Potential:
刺激后,膜对Na+通透 ↓ 膜内外Na+势能贮备 ↓ Na+经通道易化扩散 ↓ 扩散的Na+抵消膜内 负电位,形成正电位 ↓ 直至正电位增加到足以 对抗由浓度差所致的 Na+内流
第二章第三节 细胞的生物电现象PPT课件

22
23
24
25
3.离子通道的活动
The activity of ion channel:(H-H model)
resting state : m gate is close and h gate is open; active state: bother all open; inactive state: m gate is open and h gate is close. Recovery:the process of ion channel change
(负后电位)
后电位
➢ 超极化后电位
(正后电位)
16
(二) 动作电位形成机制
17
18
1.电化学驱动力
膜对Na+、K+的驱动力: Em-ENa= -70mV- (+60mV)=-130mV Em-EK= -70mV-(-90mV)=+20mV 膜对Na+的驱动力>K+ 负号表示驱动力的方向是向内,正号
Na+通道失活: 在去极化开始后的几个毫秒内 开放(激活), 随后就失活。
K+通道的开放: 膜去极化时被激活, 在Na+ 通道失活 时开放,K+外流,膜电位复极
Na+通道的失活和K+通道的激活构成锋电位的 下降支
29
后电位的形成机制: Na+-K+泵的主动转运
30
(三)动作电位的特点
1、不衰减性传导 2 、“全或无”现象 3 、存在不应期 (绝对不应期和相对不应期)
13
二、动作电位及其产生机制
(一)动作电位(action potential) 细胞受到一个适当的刺激, 在原
23
24
25
3.离子通道的活动
The activity of ion channel:(H-H model)
resting state : m gate is close and h gate is open; active state: bother all open; inactive state: m gate is open and h gate is close. Recovery:the process of ion channel change
(负后电位)
后电位
➢ 超极化后电位
(正后电位)
16
(二) 动作电位形成机制
17
18
1.电化学驱动力
膜对Na+、K+的驱动力: Em-ENa= -70mV- (+60mV)=-130mV Em-EK= -70mV-(-90mV)=+20mV 膜对Na+的驱动力>K+ 负号表示驱动力的方向是向内,正号
Na+通道失活: 在去极化开始后的几个毫秒内 开放(激活), 随后就失活。
K+通道的开放: 膜去极化时被激活, 在Na+ 通道失活 时开放,K+外流,膜电位复极
Na+通道的失活和K+通道的激活构成锋电位的 下降支
29
后电位的形成机制: Na+-K+泵的主动转运
30
(三)动作电位的特点
1、不衰减性传导 2 、“全或无”现象 3 、存在不应期 (绝对不应期和相对不应期)
13
二、动作电位及其产生机制
(一)动作电位(action potential) 细胞受到一个适当的刺激, 在原
细胞的生物电现象(精)PPT课件

(mV)
————————————————————————
Na+
145
12
+67
K+
4
155
-98
Cl-
120
4
-90
有机负离子
155
___________________________________________
6
离子跨膜移动的驱动力:
1.浓度梯度——化学驱动力 顺浓度梯度:易化扩散
2.电位梯度——电场驱动力 顺电场力: 正离子:正电场→负电场 负离子:负电场→正电场
20
AP的过程
锋电位
AP 后电位
+35
上升支(-70mV→+35mV)
下降支(+35mV→-70mV)
锋电位
0
-55 -70
刺激
负后电位 正后电位
21
★单一细胞动作电位的特点:
(1)具“全或无(all-or-none)”性质: 阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP一产生即达最大.
(实测值:-90mV)
17
细胞静息时的其他跨膜离子流:
① 一恒定的Na+内流(小于K+外流): 作用:中和一部分膜内的负电荷,而使膜 内电位负值减小, 静息电位的值小 于Ek (即去极化)。
② 钠泵的活动: 钠泵的生电性作用 作用:增大膜两侧电位差(超极化)
18
影响静息电位水平的因素:
① 膜两侧的[K+]差值: 正相关; 例如, [K+]o升高时,RP值减小.
(1)如膜电位由-70mV变为-80mV, 称为: 膜电位的绝对值增大, 膜内负值增大, 膜两侧的电位差增大, 膜电位增大。
细胞的基本功能—细胞的生物电现象(正常人体机能课件)
细胞处于相对安静状态时细胞膜内外两侧的电位差
①有电位差 ②外高内低 ③保持不变
静息电位的数值:骨骼肌 细胞约-90mV;神经细胞 约-70mV;平滑肌细胞约 -55mV;红细胞约为10mV
2.极化及相关概念
极化: 安静时膜外为正膜内为负,数值稳定的状态
去极化 膜内电位向负值减小的方向变化(-90mV变化为(除极化): 70mV) 超极化: 膜内电位向负值增大的方向变化(-90mV变化为-100mV )
(2)静息状态下细胞膜对离子的通
透性具有选择性
通透性:K+ > Cl- > Na+ > A-
细胞外
细胞内 Na
+
K+
20~40倍
N7~a1+2倍
K+
静息电位产生原理
细胞外
细胞内 A- K+
安静时
Na+Cl-
+ + + + +
A-
K+ K+
Na+Cl-
安静时:K+ 通道开放
+ +
K+ K+
+ K+
+ +
2.阈电位与动作电位间的关系
(1)各种不同膜的阈电位水平不同 神经细胞:-55mv 骨骼肌细胞:-70mv 窦房结起搏细胞:-40mv
(2)细胞由静息电位水平去极化达到阈电位是产生动作电位的必要条件
细胞接受刺激→ Na+通道少量开放→达到阈电位→ Na+通道大 量开放
1 静息电位与阈电位的距离∝
兴奋性 差值大,膜电位难达到阈电位水平,因此难产生动作电位,兴奋性低
AP的上升支是Na+快速内流造成的,接近于Na+的电化学平衡电 位
(2)动作电位的形成过程 动作电位的下降支: Na+通道失活→Na+内流停止,同时K+通道开放→K+迅速外流,膜内电
①有电位差 ②外高内低 ③保持不变
静息电位的数值:骨骼肌 细胞约-90mV;神经细胞 约-70mV;平滑肌细胞约 -55mV;红细胞约为10mV
2.极化及相关概念
极化: 安静时膜外为正膜内为负,数值稳定的状态
去极化 膜内电位向负值减小的方向变化(-90mV变化为(除极化): 70mV) 超极化: 膜内电位向负值增大的方向变化(-90mV变化为-100mV )
(2)静息状态下细胞膜对离子的通
透性具有选择性
通透性:K+ > Cl- > Na+ > A-
细胞外
细胞内 Na
+
K+
20~40倍
N7~a1+2倍
K+
静息电位产生原理
细胞外
细胞内 A- K+
安静时
Na+Cl-
+ + + + +
A-
K+ K+
Na+Cl-
安静时:K+ 通道开放
+ +
K+ K+
+ K+
+ +
2.阈电位与动作电位间的关系
(1)各种不同膜的阈电位水平不同 神经细胞:-55mv 骨骼肌细胞:-70mv 窦房结起搏细胞:-40mv
(2)细胞由静息电位水平去极化达到阈电位是产生动作电位的必要条件
细胞接受刺激→ Na+通道少量开放→达到阈电位→ Na+通道大 量开放
1 静息电位与阈电位的距离∝
兴奋性 差值大,膜电位难达到阈电位水平,因此难产生动作电位,兴奋性低
AP的上升支是Na+快速内流造成的,接近于Na+的电化学平衡电 位
(2)动作电位的形成过程 动作电位的下降支: Na+通道失活→Na+内流停止,同时K+通道开放→K+迅速外流,膜内电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、阈下刺激与局部兴奋(local excitation)
局部兴奋——阈下刺激引起受刺激局部膜的不达阈电位的微弱 去极化。
局部兴奋的特性: (具电紧张电位的特征) (1)刺激依赖性:非“全或无”,随阈下刺激的增强而增大; (2)电紧张性扩布:仅衰减性波及局部膜; (3)可总和:发生空间总和或时间总和。
(2)下降支: K+快速外流, Na+内流停止。 钠通道具有时间依赖性,开放瞬间后即失活关闭; 因去极化而使膜电位变为内正外负,阻碍K+外流的力量
减小,K+外流增强。
相关链接: 细胞内外的主要离子浓度
2.动作电位的产生过程
当刺激强度等于或大于阈强度时,引起细胞膜去极化 达阈电位水平,此时细胞膜上较多钠通道开放,较多Na+内 流,大于同时发生的K+外流而膜去极化,膜的去极化能进 一步加大膜中Na+通道开放的概率,结果使更多Na+通道开 放,更多Na+内流而造成膜进一步去极化,如此反复促进, 出现一个使膜上钠通道开放、Na+快速内流与膜去极化之间 的正反馈过程(Na+内流的再生性循环),直至接近Na+平衡 电位,形成动作电位的上升支。
(3)具有不应期:此期内不会发生新的动作电位,因此动作电 位总是保持(二)动作电位的产生机制
1. 锋电位产生的主要机制 (1)上升支: 细胞膜对Na+通透性(钠电导) 增大,Na+迅速内
流,接近Na+平衡电位值。 相关基础:细胞静息时,Na+具有很强的内向驱动力。 ① 细胞膜两侧Na+的浓度梯度(细胞外K+浓度高于胞质); ② 静息电位时,膜外正电场驱使Na+内流。
ACh发挥作用后立即被接头间隙中和终板膜上的胆碱酯 酶水解而迅速清除。
相关链接: 肌肉松弛剂
有机磷对肌肉收缩的影响
(二)骨骼肌的收缩机制
滑行学说 ( sliding theory)——肌肉的缩短是通过肌小节中 细肌丝与粗肌丝相互滑行的结果 (其间肌丝本身的长度不变)。
粗肌丝 由肌球蛋白组成,上 有横桥 细肌丝 由原肌球蛋白、肌动 蛋白、肌钙蛋白组成
动作电位与局部兴奋的主要区别
动作电位
局部兴奋
所受刺激
阈或阈上刺激
阈下刺激
膜去极化程度 达阈电位
不达阈电位
与刺激强度关系 全或无
正比
传播范围
不衰减性, 可远距传导 衰减性扩布局部膜
可否叠加总和 否,总保持分离
可空间/时间总和
五、组织的兴奋和兴奋性
(一)兴奋性和可兴奋组织 兴奋性——可兴奋细胞对刺激发生兴奋 (即产生动作电位)的能力
第四节 肌细胞的收缩功能
学习要求: 1.掌握神经-肌接头的兴奋传递过程; 2.熟悉骨骼肌收缩机制及兴奋-收缩耦联; 3.熟悉骨骼肌收缩形式及影响收缩的因素。
骨骼肌的神经-肌接头
相关链接: 骨骼肌的神经-肌接头的结构
(一)神经-肌接头处的兴奋传递
动作电位传到轴突末梢─→轴突膜上钙通道开放,Ca2+进入轴 突末梢─→轴突末梢内乙酰胆碱(ACh)囊泡向接头前膜靠 近─→通过出胞释放入接头间隙─→ACh通过接头间隙与终板 膜上的N-型ACh门控通道结合─→该门控通道开放─→Na+内 流(为主)和(少量)K+外流─→终板膜去极化,形成终板电位─→ 扩布形式使邻接的肌细胞膜去极化达阈电位水平─→引发肌 细胞爆发动作电位。
阈电位(threshold potential)——能诱发膜去极化和钠通 道开放之间出现再生性循环,导致Na+大量迅速内流而爆发 AP的膜电位临界值。
(三)动作电位的传导
*细胞任一部位膜产生的AP,都将沿细胞膜不衰减地传导至整 个细胞。传导机制为“局部电流(local current)”。
*兴奋传导过程:已兴奋部位膜与未兴奋部位膜之间出现电 位差,引起电荷流动而形成局部电流, 结果造成未兴奋段膜去 极化,当膜去极化达到阈电位水平时,大量激活该处的钠通 道而导致动作电位爆发。这样的过程在膜表面连续进行下去, 导致兴奋在整个细胞的传导。
生理学细胞生物电现象
一、静息电位及其产生机制
(一)细胞的静息电位 静息电位 (Resting Potential,RP)——细胞静息(未受
刺激)时存在于细胞膜两侧的电位差。 细胞静息电位的特征: (1)(动物细胞的静息电位)内负外正; (2)为一稳定的直流电位。
相关链接: 膜电位的记录
直流电位
与膜电位变化相关的生理学术语
二、动作电位及其产生机制
(一)细胞的动作电位
动作电位(Action Potential, AP)——可兴奋细胞受阈(阈上)刺激 后,在静息电位基础上产生的短暂的、可扩布的膜电位波动。
动作电位是细胞兴奋的过程和标志。
动作电位的过程:
上升支(去极相)
锋电位
动作电位
下降支(复极相)
后电位(包括负后电位和正后电位)
(1)极化(polarization)状态 ——细胞静息时细胞膜两侧电荷的分极(内负外正)状态。 (2)去极化 (除极化) (de-) ——膜电位向减小方向变化。 (3)反极化(reverse-) ——膜电位变为内正外负状态。 (4)超极化(hyper-) ——在静息电位基础上,膜电位向增大方向变化。 (5)复极化(re-): ——膜电位发生去极化后,再向静息电位恢复的过程。
*其中锋电位是动作电位的主要部分。
★(单一细胞)动作电位的特征:
(1)“全或无 (all or none) ”特性:动作电位要就不一点发生, 一旦发生即最大幅值。 如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细胞,动作 电位的幅度不会随传导距离增大而衰减。
或特性。 可兴奋细胞(组织)——受刺激后能爆发动作电位的组织细胞,包
括神经细胞、肌细胞和(一些)腺细胞。
五、组织的兴奋和兴奋性
(二)细胞兴奋过程兴奋性的变化 绝对不应期→相对不应期→超常期→低常期→完全恢复正常。
*绝对不应期(absolute refractory period, ARP) *定义:兴奋性消失或极低,无论受多强刺激,都不能使细胞兴奋。 *产生机制:大多数Na通道处于失活状态。 *意义:绝对不应期大致相当于锋电位发生的时间;使两次锋电 位不会叠加而分离。