1.2 无线射频基础知识介绍

合集下载

射频和无线电的知识点总结

射频和无线电的知识点总结

射频和无线电的知识点总结一、基本概念1. 射频信号:射频信号是指频率在几十千赫兹到几千兆赫兹之间的电磁波信号,是一种无线通信中常用的信号类型。

射频信号可以通过调制解调技术传输数据和声音等信息。

2. 无线电信号:无线电信号是指通过无线电波传播的电信号,在通信、广播、遥控等方面有着广泛的应用。

无线电信号可以分为射频信号和微波信号两种类型。

3. 射频技术:射频技术是指在射频范围内进行信号处理和传输的技术,包括调制解调、频谱分析、功率放大等方面。

4. 无线电技术:无线电技术涉及到无线电信号的发射、接收、解调、解调等方面,是现代通信领域中的重要组成部分。

二、常用技术1. 调制解调技术:调制技术是指将数字信号或模拟信号转换成适合无线传输的射频信号的过程,而解调技术则是指将这些射频信号还原成原始信号的过程。

2. 天线设计:天线是用来发送和接收射频信号的设备,天线的设计可以影响信号的发送和接收效果,包括指向性天线、全向天线、定向天线等多种类型。

3. 频谱分析:频谱分析是对射频信号进行频率分析和功率分析的过程,用来确定信号的频率、占用带宽和信号强度等参数。

4. 功率放大:功率放大是指通过将信号经过放大器放大来增加信号的功率,常用于提高信号的传输距离和覆盖范围。

5. 射频链路设计:射频链路设计涉及到传输介质、信号传输距离、覆盖范围、抗干扰能力等多个方面,是无线通信系统设计中重要的一环。

6. 无线电频谱管理:无线电频谱管理是指对无线电频谱的合理规划、分配和监管,以确保不同无线设备之间的信号不干扰以及频谱资源的有效利用。

三、应用1. 无线通信系统:无线通信系统是利用无线电波进行通信的系统,包括蜂窝网络、无线局域网、蓝牙、Zigbee等多种技术。

2. 无线电广播:无线电广播是利用无线电波进行广播传输的技术,包括调频广播、中波广播、短波广播等多种广播方式。

3. 无线电遥控:无线电遥控是通过无线电信号控制设备或机器的技术,包括无人机、遥控车、遥控船等多种应用场景。

无线射频识别(RFID)技术---第1章RFID概述选编

无线射频识别(RFID)技术---第1章RFID概述选编
2019/7/24
© willtg. All rights reserved.
1.3 射频识别技术的应用
1.2004年开始,全球最大零售商沃尔玛开始采 用RFID技术,每年可节省83.5亿美元。 2.2005年底美国国防部开始大规模应用RFID 技术。 3.飞利浦公司为2006年世界杯提供320万张 RFID门票。 4. SAP、英特尔共同开发RFID技术并大力推 广应用。
无线射频识别(RFID)
第1章 射频识别技术概论 本章重点:掌握射频识别技术的概念和基本原理;
了解射频识别技术的应用; 了解射频识别技术的现状和前景。 1.1 射频识别技术简介 1.2 射频识别技术的基本原理 1.3 射频识别技术的应用
2019/7/24
© willtg. All rights reserved.
2019/7/24
© willtg. All rights reserved.
RFID的分类
半有源RFID,结合有源RFID和无源RFID的优势, 在低频125KHZ频率的触发下,让微波2.45G发挥优 势。半有源RFID技术,也可以叫做低频激活触发技 术,利用低频近距离精确定位,微波远距离识别和上 传数据,来解决单纯的有源RFID和无源RFID没有办 法实现的功能。简单的说,就是近距离激活定位,远 距离识别及上传数据。
1.1 射频识别技术简介
RFID是Radio Frequency Identification的缩写,即射 频识别。 RFID是一种非接触式的自动识别技术,它通过射频信号 自动识别目标对象并获取相关数据。
射频识别系统的组成: – 电子标签(Tag) – 阅读器 (Reader) – 天线 (Antenna)
行李包裹自动识别 非接触电子钥匙 集装箱自动分类管理

射频知识点总结

射频知识点总结

射频知识点总结一、射频基本概念1. 电磁波电磁波是一种由电场和磁场相互作用而产生的波动现象,是一种在真空中传播的波动现象。

电磁波具有频率和波长两个基本特征,频率越高,波长越短。

常见的射频波段包括:HF(3-30MHz)、VHF(30-300MHz)、UHF(300-3000MHz)、SHF(3-30GHz)等。

2. 天线天线是射频系统中的重要组成部分,它用来接收和发射电磁波。

天线的工作原理是通过和周围的电磁场相互作用,将电磁波转换成电流或者将电流转换成电磁波。

天线的性能对系统的传输和接收性能有很大的影响,因此天线设计是射频系统中的重要环节。

3. 调制解调调制解调是射频系统中的重要技术,它利用调制信号将基带信号传输到射频信号中,然后再通过解调将射频信号转换成原来的基带信号。

调制技术有幅度调制、频率调制、相位调制等多种方式,不同的调制方式适用于不同的通信场景。

二、射频组件1. 射频放大器射频放大器是射频系统中的重要组件,它用来对射频信号进行放大。

射频放大器的主要参数包括增益、带宽、噪声系数、输出功率等,不同的应用场景需要不同参数的射频放大器。

2. 滤波器滤波器是用来对射频信号进行频率选择和抑制干扰的器件,它可以选择性地通过某个频率范围的信号,同时将其他频率范围的信号进行抑制。

滤波器的种类很多,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

3. 射频开关射频开关是用来控制射频信号的开关和切换的器件,它可以实现对射频信号的选择、分配和切换。

射频开关的性能包括插入损耗、隔离度、速度等多个方面。

4. 射频混频器射频混频器是用来将两个不同频率的射频信号混合到一起的器件,它可以实现频率的转换和信号的解调等功能。

射频混频器的工作原理是利用非线性元件将两个输入信号进行非线性混合,然后通过滤波将混频后的信号提取出来。

三、射频系统设计原则1. 抗干扰设计射频系统在使用过程中会受到各种干扰的影响,包括天线干扰、多路径干扰、热噪声干扰等,因此在射频系统设计中需要采取一系列抗干扰措施,以保证系统的可靠性和稳定性。

无线射频基础知识-无线传播原理与传播模型

无线射频基础知识-无线传播原理与传播模型


P波段:230~1000MHz; L波段:1000MHz~2000MHz;

大家熟知的GPS系统,其工作频率就在此波段(1575MHz左右);

S波段:2000MHz~4000MHz; C波段:4000MHz~8000MHz;目前主要用于卫星电视转播; X波段:8000MHz~12.5GHz;目前主要用于微波中继; Ku波段:12.5GHz~18GHz;目前主要用于微波中继和卫星电视转播; K波段:18GHz~26.5GHz; Ka波段:26.5GHz~40GHz; 频率越低,传播损耗越小,覆盖距离越远,绕射能力越强。但是,低频段频率 资源紧张,系统容量有限,因此主要应用于广播、电视、寻呼等系统。 高频段频率资源丰富,系统容量大;但是频率越高,传播损耗越大,覆盖距离 越近,绕射能力越弱。另外频率越高,技术难度越大,系统的成本也相应提高。
慢衰落损耗是由于在电波传播路径上受到建筑物及山丘等的阻挡所产生的阴影 效应而产生的损耗。它反映了中等范围内数百波长量级接收电平的均值变化而 产生的损耗,一般遵从对数正态分布。 快衰落损耗是由于多径传播而产生的损耗,它反映微观小范围内数十波长量级 接收电平的均值变化而产生的损耗,一般遵从瑞利分布或莱斯分布。快衰落又 可以细分为以下3类:
从公式可以推导出以下结论:


无线电波在地面传播时,在同样的传播距离上,其传播损耗比自由空间传播时 要大得多:当取值为4时,距离d加倍,传播损耗增加12dB,即:信号衰减16 倍; 增加天线高度,可以减少传播损耗。

华为技术有限公司 版权所有 未经许可不得扩散
无线射频基础知识-无线传播原理与传播模型

在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计 算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传 播特性的研究、了解和据此得到的传播模型进行场强预测。

wifi培训-射频基础知识(PPT 59页)

wifi培训-射频基础知识(PPT 59页)
F
课程内容
第一章 无线通信的基本概念 第一章 射频常用计算单位简介 第三章 射频常用概念辨析 第四章 WLAN AP常见故障
第三章 射频基本概念辨析
第一节 功率相关概念
第二节 噪声相关概念 第三节 线性相关概念 第四节 传输线相关概念 第五节 下行通道射频指标 第六节 上行通道射频指标
无线通信的电磁波传播
微波传播
微波是指波长小于1米(频率高于300MHz)的电磁波。目前又按其波长的不同, 分为分米波(特高频UHF)、厘米波(超高频SHF)、毫米波(极高频EHF)和亚 毫米波(至高频THF)。
微波的传播类似于光波的传播,是一种视距传播。其主要在对流层内进行。总 的说来,这种传播方式比较稳定,但其传播也受到大气折射和地面反射的影响。 另外,对流层中的大气湍流气团对微波有散射作用。
噪声相关概念
级联网络的噪声系数公式:
G 1 、 N F 1
G 2 、 N F 2
G n 、 N F n
1 2 1 1 . 1 2 n . 1 n 1 . .
第三章 射频基本概念辨析
第一节 功率相关概念 第二节 噪声相关概念
第三节 线性相关概念
第四节 传输线相关概念 第五节 下行通道射频指标 第六节 上行通道射频指标
课程目标
熟悉掌握一些射频基本概念和知识 了解WLAN AP一些故障及处理方法
课程内容
第一章 无线通信的基本概念 第二章 射频常用计算单位简介 第三章 射频常用概念辨析 第四章 WLAN AP常见故障

第一章 无线通信的基本概念
第一节 无线通信使用的频率和 波段
例如晶体的相位噪声可以这样描述:
噪声相关概念

射频电路基础知识RFCircuitBasicKnowledge

射频电路基础知识RFCircuitBasicKnowledge
▪ 考虑两种极限情况:输入端口阻抗为0或为无穷大时,端 口完全无法吸收功率,此时反射功率与入射功率相等,而 端口吸收为0;当端口的输入阻抗与传输线阻抗完全相 同时,输入功率完全被端口吸收,反射功率为0,此时我们 称之为匹配(Match),实际电路中,为了让RF信号沿着 设计的路径通过,所有端口间应尽可能匹配!
(其中A为对数功率,B为线性功率) 1. 线性功率为1W时, 对数功率为30dBm 2. 线性功率为1uW时,对数功率为-30dBm
▪ dBm为绝对功率,dB用来计算相对功率,主要 用来计算功率的改变量,如增益和损耗的单位.
第12页
2.3 RF功率定义和计算
dBi 和dBd dBi和dBd是表示天线功率增益的量,两者都是一个
第26页
3.3 RF衰减器(c)
步进衰减器和电可调衰减器
步进衰减器:如上图电路,将多个不同衰减器串连起来,通过开关有切换可 以得到不同的衰减值,这样的衰减器即为步进衰减器. 电可调衰减器:将上图的电路集成到芯片内部,再利用逻辑电路对和开关 进行控制,即可得到电可调衰减器,其衰减值可在线编程设定.
第27页
Digital Modulation
第17页
2.5 信号调制方法(c)
▪ 模拟调制:被调制信号为模拟信号. 分为: 幅度调制(AM),频率调制(FM)和相 位调制(PM)
▪ 数字调制:被调制信号为数字信号. 分为:振幅键控(ASK),频移键控(FSK),相 移键控(QSK),开关键控调制(OOK)以及 ASK与PSK的组合调制如 (DPSK,QPSK,8PSK等)
ρ =|U|MAX/|U|MIN=(1+ |Γz|)/(1-| Γz|)
▪ 当反射系数为0时,驻波比为1,当反射系数接近1(实际 情况下不可能为1)时,驻波比取值接近无穷大

射频基础知识资料课件

射频基础知识资料课件
WiFi技术实现
WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。

RFID培训

RFID培训
• RFID 的用度非常广泛,大体可分为以『人』所 持有的用途及附着于『物』上的用途
1.4 RFID的应用领域
人所持有的用途 • 门禁、安全;卡收费 • 在有关人的领域应用有着以下特点 • 操作性强、安全性强、通讯距离在几cm-十几 cm
1.4 RFID的应用领域
附着物品的用途 • 交通收费、生产线管理、仓储、防伪、物体识 别、运动计时 • 在有关物品的领域应用有着以下特点 • 适应多种环境、通信距离远、标签价格便宜
1.1 何谓RFID
以下哪些可以称之为RFID • 银行卡 • 磁卡 • 公交IC卡 • 门禁卡 • 超市的防盗标签
1.2 RFID分类
• 随着RFID被使用在各式各样的用途,有关于传 输方式、通讯距离、存储容量、形状、耐环境 性、价格等各种方式对RFI
1.1 何谓RFID
• 无线射频识别技术(RFID, Radio Frequency Identification)是一种非接触的自动识别技术, 其基本原理是利用射频信号和电磁耦合传输数 据,实现对被识别物体的自动识别。
1.1 何谓RFID
什么样的系统才能称为RFID系统? • RFID系统包含2个要素 • 一、数据存储在IC芯片上 • 二、利用非接触通讯方式交换数据
微波射频识别系统介绍
1 RFID基础知识
• 物流、资金流、知识流的信息建设,直接影响 着企业的发展。自动识别技术,就是在企业信 息化建设中根据现实数据,利用计算机系统, 进行信息化数据自动采集的一种信息技术。 • 无线射频识别技术(RFID)是自动识别技术的一 种高级形式,RFID自身独特的技术优势必将加 倍提升企业物流的流转速度。
1.3 RFID基本原理和特点
• 电磁传播,即雷达模型。发射电磁波碰到目标 后反射,同时携带回目标信息,主要工作频率 有 433MHz 、 915MHz 、 2.45GHz 和 5.8GHz 。典 型识别作用距离1-10m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●极低频 ELF (3Hz–30Hz) 极长波 100,000千米– 10,000千米潜艇通讯或直接转换成声音。

●超低频 SLF (30Hz–300Hz) 超长波 10,000千米– 1,000千米直接转换成声音或交流输电系
统(50-60赫兹)。

●特低频 ULF (300Hz–3KHz) 特长波 1,000千米– 100千米矿场通讯或直接转换成声音。

●甚低频 VLF (3KHz–30KHz) 甚长波 100千米– 10千米直接转换成声音、超声、地球物理
学研究。

●低频 LF (30KHz–300KHz) 长波 10千米– 1千米国际广播。

●中频 MF (300KHz–3MHz) 中波 1千米– 100米调幅(AM)广播、海事及航空通讯。

●高频 HF (3MHz–30MHz) 短波 100米– 10米短波、民用电台。

●甚高频 VHF (30MHz–300MHz) 米波 10米– 1米调频(FM)广播、电视广播、航空通讯。

●特高频 UHF (300MHz–3GHz) 分米波 1米– 100毫米电视广播、无线电话通讯、无线网络、
微波炉。

●超高频 SHF (3GHz–30GHz) 厘米波 100毫米– 10毫米无线网络、雷达、人造卫星接收。

●极高频 EHF (30GHz–300GHz) 毫米波 10毫米– 1毫米射电天文学、遥感、人体扫描安检
仪。

●300GHz以上 - 红外线、可见光、紫外线、射线等。

●构成数据的最小单位是比特,发射机采用某种方式发送0和1,以便在两地之间传输数
据。

交流或直流信号本身不具备传输数据的能力,不过如果信号发生哪怕是微小的波动或变化,发送端和接收端就可以将信号解析出来,从而成功地收发数据。

转换后的信号可以区分0和1,一般将其称为载波信号。

调整信号以产生载波信号的过程称为调制。

●载波是指被调制以传输信号的波形,一般为正弦波。

一般要求正弦载波的频率远远高于
调制信号的带宽,否则会发生混叠,使传输信号失真。

●可以这样理解,我们一般需要发送的数据的频率是低频的,如果按照本身的数据的频率
来传输,不利于接收和同步。

使用载波传输,我们可以将数据的信号加载到载波的信号上,接收方按照载波的频率来接收数据信号,有意义的信号波的波幅与无意义的信号的波幅是不同的,将这些信号提取出来就是我们需要的数据信号(调制与解调,后面内容有涉及)。

●可以对电波的3种分量进行调制以产生载波信号,这3种分量是振幅、频率和相位。

●射频通信的基本过程如下:射频发射机产生无线电信号,并被另一端的接收机拾取。


频波与海洋或湖波中的波浪类似。

波主要由波长和振幅两部分组成。

● 2.4GHz无线电波的波长是12.5厘米。

●5GHz无线电波的波长是6厘米。

● 5.8GHz无线电波波长是5.2厘米。

●振幅是波的高度、力度或能量。

当波浪从大海袭向岸边时,大波浪的力量要比小波浪的
力量强的多。

发射机的工作原理与其类似,不过发射机发射的是无线电波。

电波越小,越不易被接收天线识别。

电波越大,所产生的电信号越大,越容易被接收天线接收。

接收机根据振幅来区分波的大小。

●振幅单位用米(m)或厘米(cm)表示。

●振幅描述了物体振动幅度的大小和振动的强弱。

●在无线网络里,无线电波的振幅反映无线信号的强弱。

相位是一个相对术语,它描述了两个同频波之间的关系。

为测定相位,将波长划分为360份,每一份称为1°。

我们将度作为波传播的起始时间,如果一个波在0°点时开始
传播,另一个波在90°点时开始传播,就称二者90°异相。

两个频率相同的无线信号在到达接收端的时候彼此相位相同,则两个信号会叠加,信号
增强。

两个频率相同的无线信号在到达接收端的时候彼此相位相反,即相差180°,则两个信
号会衰减,信号减弱。

频率描述了波的行为。

波从产生它的原点处向外传播。

波传播速度的快慢称为频率,更
具体地说,频率是1秒钟内产生的波的数量。

●根据所控制的信号参量的不同,调制可分为:
☐调幅:调幅是使高频载波信号的振幅随调制信号的瞬时变化而变化。

也就是说,通过用调制信号来改变高频信号的幅度大小,使得调制信号的信息包含入高频
信号之中,通过天线把高频信号发射出去,然后就把调制信号也传播出去了。

这时候在接收端可以把调制信号解调出来,也就是把高频信号的幅度解读出来
就可以得到调制信号了。

☐调频:调频是使载波频率按照调制信号改变的调制方式。

已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。

已调波的振幅
保持不变。

调频波的波形,就像是个被压缩得不均匀的弹簧。

☐调相:载波的相位对其参考相位的偏离值随调制信号的瞬时值成比例变化的调制方式,称为相位调制,或称调相。

即载波的初始相位随着基带数字信号而变
化,例如数字信号1对应相位180°,数字信号0对应相位0°。

课程名称P-10
华为技术有限公司版权所有未经许可不得扩散。

相关文档
最新文档