旁路系统的作用

旁路系统的作用
旁路系统的作用

旁路系统的作用

1)保护再热器

正常工况时,汽轮机高压缸排汽通过再热器将蒸汽再热至额定温度,同时也使得再热器得以冷却保护。在锅炉点火、汽轮机冲转前及停机不停炉、电网事故或甩负荷等工况时,自动主汽门已全关,汽轮机高压缸没有排汽来冷却再热器,使再热器处于干烧状态。采用高压旁路引来新蒸汽经减压减温后,引入再热器使其起到冷却保护作用。

2)协调启动参数和流量,缩短起动时间,延长汽轮机寿命

①单元式机组多采用滑参数启动,先以低参数蒸汽冲转汽轮机,再随汽轮机升速、带负荷需要,不断提高锅炉出口汽压、汽温和流量,使锅炉产生的蒸汽参数与汽轮机的金属温度相适应,以控制各项温差在允许范围,保证均匀加热汽轮机。如只靠调整锅炉的燃料或蒸汽压力难以实现,热态启动尤为困难,设置了旁路系统就可满足上述要求。

②大机组新汽管道直径大、管壁厚、热容量大、需大量蒸汽来暖管,使新汽管道的壁温高于汽轮机冲转参数要求的温度值。如没有旁路系统而仅靠疏水管排放,要达到冲转参数要求可能需要几十小时。可见,采用了旁路系统可加快启动速度,缩短并网时间,节省运行费用。③我国中间再热式大机组必需承担高峰,启停变工况运行频繁。一般冷态启动一次汽轮机寿命损耗率约为0.1%,而热态启动约为0.01%,两者相差10倍左右。金属温度变化幅度和金属温升率越小,其寿命损耗率越小。采用旁路系统可满足机组启停时对汽温的要求,严格控制汽轮机的金属温升率,可减少汽轮机的寿命损耗,延长其寿命。

3)回收工质和热量、降低噪声

燃煤锅炉如投油助燃,其最低稳燃负荷,一般不低于锅炉额定蒸发量的50%,而汽轮机的空载汽耗量,一般仅为汽轮机额定汽耗量的5%~7%,单元式机组启停或甩负荷时,锅炉蒸发量与汽轮机所需蒸汽量两者不平衡时会有大量剩余蒸汽,如排入大气,将造成大量工质损失和严重的排汽噪音。设置了整机旁路或高低压两级串联旁路,即可回收这些大量剩余蒸汽到凝汽器中去,又可减少热损失,降低严重排汽噪音。

4)防止锅炉超压,兼有锅炉安全阀作用

机组故障锅炉紧急停炉时,旁路系统快速打开,将剩余蒸汽排出,防止锅炉超压,减少锅炉安全阀的起跳次数,保证安全阀的严密性。若高压旁路的容量为100%的锅炉最大容量,即可兼有锅炉过热器出口安全阀的作用。

5)电网故障或机组甩负荷人时,锅炉能维持热备用状态或带厂用电运行电网故障时,旁路系统快速投入,使锅炉维持在最低稳燃负荷下运行,或机组空负荷运行、带厂用电运行。汽轮机甩负荷时,可实现停机不停炉,争取时间让运行人员判断甩负荷原因,以决定锅炉是再降负荷,还是继续保持,需要时机组可迅速重新并网带负荷,恢复至正常状态,使重新启动时间大为缩短,因而能适应调峰运行的需要。常见的旁路系统形式

1 三级旁路系统

2 两级旁路串联系统

3 两级旁路并联系统

4 单级(整机)旁路系统

5 三用阀旁路系统

6 德国SIEMENS两级串联旁路系统

汽轮机旁路系统

汽轮机旁路系统文献综述 沈启杰3100103300 车伟阳3100103007 金涛3100102964 郑忻坝3100103419 摘要: 汽轮机旁路系统在汽轮机整个运行过程当中是比较重要的一个系统,除了高旁、低旁中的减温、减压作用外,还有其他很多重要的功能。本文通过明确汽轮机旁路系统的定义概述,并阐述旁路系统的具体功能。重点介绍高压旁路系统和低压旁路系统的结构、控制等。最后通过两个实例,汽轮机旁路自启动系统APS和FCB工况下的汽机旁路控制系统来进一步研究汽轮机旁路系统。 关键词:旁路系统功能自启动FCB 定义: 中间再热机组设置的与汽轮机并联的蒸汽减压、减温系统。 概述: 汽机旁路系统采用两级气动高、低压串联旁路,利用压缩空气做为执行器的动力源。可以实现空冷汽轮机的冷态启动、正常停机、最小阀位控制、阀位自动、流量控制以及高、低压旁路快开、快关保护功能。允许主蒸汽通过高压旁路,经再热冷段蒸汽管道进入锅炉再热器,再通过低压旁路而流入空冷凝汽器,满足空冷凝汽器冬季启动及低负荷时的防冻要求。通过DEH汽轮机可以实现不带旁路(旁路切除)启动,即高压缸启动方式,又可以实现带旁路(旁路投入)启动,即高、中压缸联合启动方式。 一、旁路系统的作用、功能以及构成 旁路系统的作用有加快启动速度,改善启动条件;保证锅炉最低设备的蒸发量;保护锅炉的再热器;回收工质与消除噪音等。 旁路系统的主要功能又可分为以下四点: 1、调整主蒸汽、再热蒸汽参数,协调蒸汽压力、温度与汽机金属温度的匹配,保证汽轮机各种工况下高中压缸启动方式的要求,缩短机组启动时间。 2、协调机炉间不平衡汽量,旁路调负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负

滤波电容、去耦电容、旁路电容的作用

滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL L a O(i_ P e 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。Digital IC Designer's forum:h X,t

py7A(r4QF 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,L x!H\D"P/} 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,:`&y"S$O(S9WV5s%^"L 阻抗Z=i*wL+R,线路的电感影响也会非常大,数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL2G K v{I;N,J(R x 会导致器件在需要电流的时候,不能被及时供给。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL1q Q&\6g i*V7o n O 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一

主再热蒸汽旁路系统介绍

主再热蒸汽及旁路系统介绍 本机组的主蒸汽系统采用双管一单管—双管布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。汽轮机高压缸两侧分别设一个主汽门。主汽门直接与汽轮机调速汽门蒸汽室相连接.主汽门的主要作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。汽轮机正常停机时,主汽门也用于切断主蒸汽,防止水或主蒸汽管道中其它杂物进入主汽门区域。一个主汽门对应两个调速汽门。调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的需要。汽轮机进口处的自动主汽门具有可靠的严密性,因此主蒸汽管道上不装设电动隔离门。这样,既减少了主蒸汽管道上的压损,又提高了可靠性,减少了运行维护费用。 在锅炉过热器的出口左右主蒸汽管上各设有一只弹簧安全阀,为过热器提供超压保护。该安全阀的整定值低于屏式过热器入口安全阀,以便超压时过热器出口安全阀的开启先于屏式过热器入口安全阀,保证安全阀动作时有足够的蒸汽通过过热器,防止过热器管束超温。所有安全阀装有消音器。在过热器出口主汽管上还装有两只电磁泄压阀,作为过热器超压保护的附加措施.设置电磁泄压阀的目的是为了避免弹簧安全阀过于频繁动作,所以电磁泄压阀的整定值低于弹簧安全阀的动作压力。运行人员还可以在控制室内对其进行操作。电磁泄压阀前装设一只隔离阀,以供泄压阀隔离检修。 主蒸汽管道上设有畅通的疏水系统,它有两个作用。其一是在停机后一段时间内,及时排除管道内的凝结水。另一个更重要的作用是在机组启动期间使蒸汽迅速流经主蒸汽管道,加快暖管升温,提高启动速度。疏水管的管径应作合适选择,以满足设计的机组启动时间要求。管径如果太小,会减慢主蒸汽管道的加热速度,延长启动时间,而如果太大,则有可能超过汽轮机的背包式疏水扩容器的承受能力。 本机组的冷再热蒸汽系统也采用双管一单管—双管布置。汽轮机高压缸两侧排汽口引出两根支管,汇集成一根单管,到再热器减温器前再分成双管,分别接到锅炉再热器入口集箱的两个接口。主管上装有气动逆止阀(高排逆止门)。其主要作用是防止高压排汽倒入汽机高压缸,引起汽机超速。气动控制能够保证该阀门动作可靠迅速。 冷再热蒸汽管道上装有水压试验堵板,以便在再热器水压试验时隔离汽轮机,防止汽轮机进水。冷再

汽轮机旁路系统存在问题及处理

汽轮机旁路系统存在问题及处理 北京京桥热电有限责任公司王永红 摘要:京桥热电二期燃气联合循环机组在启动过程中存在旁路装臵二次蒸汽超温情况,通过分析运行数据,找出了旁路装臵二次蒸汽超温的原因是减温水压力低和一次蒸汽压力高,最后确定通过更换减温水调节门套筒和弹簧喷嘴等办法避免旁路装臵二次蒸汽温度超温情况发生。 关键词: 旁路阀减温水超温 0 引言 北京京桥热电二期工程燃气联合循环机组的高、中、低压旁路系统采用德国宝马公司制造的旁路装臵,在机组调试过程中发现旁路装臵存在减温水量不足,二次蒸汽存在超温现象,影响了机组安全运行。 1、旁路阀超温原因 1.1减温水压力低 高压旁路装臵减温水取自高压给水泵中间抽头,满负荷运行时设计压力为7.88MPa.g、166℃;中、低压旁路装臵减温水取自凝结水,满负荷运行时设计压力压力为2.8 MPa.g。在调试过程中满负荷运行工况,高压给水泵中间抽头给水和凝结水的最高压力分别为 6.77 MPa.g、2.4MPa.g,分别比设计至低约1 MPa.g、0.4 MPa.g,即运行压力比设计压力低12%~14%。 旁路装臵由蒸汽控制阀、减温水调节门和弹簧喷嘴等组成,减温水量和压力由减温水调节门控制,当蒸汽控制阀后温度高于设定值时减温水调节门开大增加减温水量并提高减温水压力,减温水克服弹簧喷嘴阻力后减温水进入蒸汽控制阀从而达到降低蒸汽温度目的。由于旁路装臵减温水运行压力低于设计值,到达弹簧喷嘴的减温水压力也会降低,但是弹簧喷嘴的阻力恒定,这必然造成弹簧喷嘴的开度减少,即进入蒸汽控制阀内的减温水流量减少。当减温水调节门大开减温水流量仍然达不到需求时,蒸汽控制阀后蒸汽温度就会超温。 旁路装臵减温水压力 1.2极端工况旁路装臵一次蒸汽参数高于设计值 高、中、低压旁路装臵一次蒸汽设计压力分别为12.38 MPa 、3.12 MPa 、0.69 MPa, 旁路装臵超温大部分发生在锅炉主蒸汽安全门校验过程中和汽轮机甩负荷时,在此非正常工况,高、中、低压主蒸汽压力分别达到14.3Mpa、4.05Mpa、1.1MPa,远远高于旁路装臵一次蒸汽设计压力值,根据旁路装臵减温水喷嘴的工作原理可知,当进入旁路装臵内的蒸汽压

旁路电容使用和选择

简介 旁路电容常见于电子设备的每个工作部分。大多数工程师都知道要对系统、电路甚至每个芯片进行旁路。很多时候我们选择旁路电容是根据过往的设计经验而没有针对具体电路进行优化。本应用指南旨在对看似简单的旁路电容的设计思路进行探讨。在分析为什么要使用旁路电容之后,我们会介绍有关电容基础知识、等效电路、电介质所用材料和电容类型。 接下来对旁路电容的主要功能和使用场合进行区分。与仅工作在高频的电路不同,会产生大尖峰电流的电路有不同的旁路需求。另外还会讨论一些有针对性的问题,如,运用多个旁路电容以及电路板布局的重要性。 最后,我们给出了四个具体的示例。这四个例子涉及了高、低电流和高、低频率。 为什么要使用旁路电容 非常常见(和相当令人痛心)的是用面包板搭建一个理想配置电路时,经常会遇到电路运行不稳定或者根本就不能运行的情况(见图1)。来自电源、内部IC 电路或邻近IC 的噪声可能被耦合进电路。连接导线和电路连接起到了天线的作用而电源电压产生变化,电流随之不稳定。 图2所示为通过示波器所观察到的电源引脚上的信号波形。 . 图2. 示波器所观察到的同相放大器直流电源引脚的波形 我们可以看到,直流电压附近有很多高频噪音(约10mV P-P ) 。此外,还有之前提到的幅度超出50mVr 的周期性电压脉冲。因假定电源为稳定值(恒定为直流电压),那么任何干扰都将被直接耦合到电路并可能因此导致电路不稳定。 电源的第一道抗噪防线是旁路电容。通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。 要选择最合适的旁路电容,我们要先回答四个问题: 1、需要多大容值的旁路电容 2、如何放置旁路电容以使其产生最大功效 3、要使我们所设计的电路/系统要工作在最佳状态, 应选择何种类型的旁路电容? 4、隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。) 其中第二个问题最容易回答,旁边电容应尽可能靠近每个芯片电源引脚来放置。距离电源引脚越远就等同于增加串联电感,这样会降低旁路电容的自谐振频率(使有效带宽降低)。 图1. 同相放大器实验电路板(A V =2) 1 注:这类器件对静电放电比较敏感;请遵守正确的IC 操作规程。 1-888-INTERSIL 或1-888-468-3774|Intersil (和设计)是Intersil Americas Inc 的注册商标。 版权 ? Intersil Americas Inc . 2008,本公司保留一切权利。 文中提到的所有其它商标均归其持有者个人所有。

旁路控制系统说明

旁路控制系统说明 一.一期旁路系统液压油站 1、旁路系统液压油站组成(如图) 旁路系统液压站由2台主泵、充油阀、蓄能器、减压阀、释放阀、单向阀、P1、P2、P3取样口、循环过滤泵、风扇冷却器和过滤器组成。

2.热控测点、定值及作用 C P001:油压低低,120bar所有系统故障,闭锁阀闭锁,系统操作失 灵。 CP002:油压低,135bar,启备用泵,油压恢复正常后延时一分钟,停备用泵。如果在2分钟内,油压未能恢复正常,则二台泵全停。如果在15分钟内再次出现油压低,则改变运行方式,原来的备用泵变为主泵,主泵为备用泵。 CP003:250bar,压力高值,停泵。 CT001:温度高,50-55℃,启风扇FK,温度下降5℃左右时停风扇。 CT002:温度高高,65-70℃时停油泵。 CL001:油位低,停泵、停滤油泵。 CF001、CF002:流量开关,流量低时,停运行泵,启备用泵。 3、手动操作: 手动操作仅用于调试,不能在正常运行中长期使用。在手动操作情况下,所有设备(主油泵、滤油泵、风扇、加热器)能用手动单独地开启和停下,自动不起作用,当手/自动开关在手动位时,所有的设备将停下来,然后使用在控制柜门上的相应开关或按钮使其运行或停止。保护连锁在手动时也有效。 二.旁路系统的控制逻辑说明 旁路系统的启动运行方式:有冷态、热态和重启方式三种。旁路系统的冷态启动曲线图:(如下图)。启动方式的选择:启动方式的选择由锅炉的压力决定。当锅炉的压力小于最小压力Pmin(目前设定值为1MPa)时,为

冷态启动方式;当锅炉压力大于Pmin且小于冲转压力Psync(目前设定值为8.6MPa)时,为热态启动方式;当锅炉压力大于冲转压力Psync时为重启方式。

电容的作用

电容的作用 作为无源元件之一的电容,其作用不外乎以下几种: 1、应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之:1)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。 2)去藕 去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 3)滤波 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电

汽轮机旁路系统

第八章旁路系统 大型中间再热机组均为单元制布置,为了便于机组启停、事故处理及特殊要求的运行方式,解决低负荷运行时机炉特性不匹配的矛盾,基本上均设有旁路系统。所谓的旁路系统是指锅炉所产生的蒸汽部分或全部绕过汽轮机或再热器,通过减温减压设备(旁路阀)直接排入凝汽器的系统。 1.旁路系统的作用 1)缩短启动时间,改善启动条件,延长汽轮机寿命 2)溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停 和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内 3)保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用 4)回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作 2.机组旁路系统型式 1)两级串联旁路系统 由高压旁路和低压旁路组成,这种系统应用广泛,特点是高压旁路容量为锅炉额定蒸发量的30%~40%,对机组快速启动特别是热态启动更有利。 2)两级并联旁路系统 由高压旁路和整机旁路组成,高压旁路容量设计为10%~17%,其目的是机组启动时保护再热器,整机旁路容量设计为20%~30%,其目的是将各运行工况(启动、电网甩负荷、事故)多余蒸汽排入凝汽器,锅炉超压时可减少安全阀动作或不动作。 3)三级旁路系统 由高压旁路、低压旁路和整机旁路组成,其优点是能适应各种工况的调节,运行灵活性高,突降符合或甩负荷时,能将大量的蒸汽迅速排往凝汽器,以免锅炉超压,安全阀动作。但缺点是设备多、系统复杂、金属耗量大、布置困难等。 4)大旁路系统 锅炉来的新蒸汽绕过汽轮机高、中、低压缸经减温减压后排入凝汽器,其优点是系统简单、投资少、方便布置、便于操作;缺点是当机组启动或甩负荷时,再热器内没有新蒸汽通过,得不到冷却,处于干烧状态。 3.旁路容量选择 旁路系统容量是指额定参数时旁路系统的通流量与锅炉额定蒸发量的比值, 即:K=Do/Dn×100% 式中K-旁路容量 Do-额定参数时旁路系统的流量

汽轮机旁路系统的布置设计

汽轮机旁路系统的布置设计 发表时间:2019-05-17T09:36:47.053Z 来源:《电力设备》2018年第33期作者:黄晓琳 [导读] 摘要:就目前的情况来看,汽轮机路旁系统的设计具有非常重要的意义,不仅对旁路系统的功能产生影响,同时也会不适应正常发展需求,因此在实际应用中需要不断提高汽轮机工作状态下的安全性以及可靠性等。 (中国能源建设集团广西电力设计研究院有限公司) 摘要:就目前的情况来看,汽轮机路旁系统的设计具有非常重要的意义,不仅对旁路系统的功能产生影响,同时也会不适应正常发展需求,因此在实际应用中需要不断提高汽轮机工作状态下的安全性以及可靠性等。同时重点分析旁路系统中存在的问题,并针对问题采取有效针对性的措施进行优化,结合具体情况和经验进行分想,从而能够更好的保证合理性和高效性,更好的保证汽轮机的正常运行。基于此本文分析了汽轮机旁路系统的布置设计。 关键词:汽轮机;旁路系统;布置设计 1、旁路系统的组成及优点 旁路系统是指汽轮机并联形成的降温减压系统,最为主要的功能是能够进一步排放余热锅炉中所产生的温度压力,进一步对其进行冷却,这个过程中是不需要冷凝器进行做功的。旁路系统主要包括蒸汽旁通阀、旁通阀控制系统、液压执行器、旁通蒸汽管和喷水减温系统等部分。 在常规的燃气电厂中,为了适应汽轮机组频繁的启停,目前汽轮机旁路系统主要分为了3个系统,即高压、中压和低压旁路系统,而容量是达到了联合循环机组余热锅炉的最大蒸汽产量。M701F蒸汽机组高压旁路系统由高压旁路阀减压后的高压主蒸汽管道连接至再热冷段管道;中压旁路系统由再热冷段连接至减压后的冷凝器。低压旁路系统由低压旁路阀减压后由低压主蒸汽管路与冷凝器连接。旁通阀的工作由液压控制,高压给水泵中水龙头采用高压侧减温水,从冷凝水泵出口冷凝水系统获得中低压旁路减温水。燃气-蒸汽循环机组旁路控制系统具有很多优点,主要结果如下:1)在机组的整个启动过程中,不合格的蒸汽可以排放到凝汽器,使汽轮机的正常工作温度与余热锅炉的蒸汽温度一致,从而缩短了机组的启动时间,进一步控制工质的流体损失。2)采用旁路控制系统,可有效降低或减小机组启动过程中管路和转子的热应力,从而进一步控制设备损失,进一步降低工程造价。(3)在燃气轮机正常运行条件下,可以实现机组的自动调节功能,主蒸汽压力和主蒸汽压力可有效控制温度,提高机组运行效率。同时在不正常的工作条件下能够有效的保护自己,确保机组运行的安全性。 2、汽轮机旁路系统中的问题 2.1 旁路阀的布置位置不合理 如果没有合理的设置旁通阀的位置,可能会导致两个问题:1、阀与管道不能有效结合。高压旁通阀与冷顶之间的距离过长,导致它们难以有效结合。2、如果旁通阀与管道之间的距离较大,则旁通管在启动时很难使管充分加热,从而抑制了机组的启动速度。 2.2 旁路系统热备用中存在问题 在机组发生事故时,旁路系统的热备随时可以打开,并可以通过流量,提高了机组处理事故的能力,能够更好的确保整体的运行能力。但是需要注意的是如果是使用设备管理,会造成很大的问题,影响到整体的蒸汽,从而使得整体的负荷产生影响,影响到设备的运行。 2.3旁路系统泄漏 所谓“旁路系统泄漏”,即旁路系统内部泄漏,目前其也是非常常见的一种故障。如果阀体内有泄漏,会使得具有高品质的蒸汽不能进行正常工作,同时通过使用旁通阀的内泄漏点进入再热冷却段或冷凝器,从而会直接影响到整体机组的运行,影响整体的经济性和效率。 2.4喷水减温系统中存在问题 对于高压、中压、低压来说,旁路喷水减温系统的设计非常重要。高压旁路系统从高压泵中抽头减温水;中压和低压旁路水从冷凝水泵出口管道。在喷水灭火系统中,很容易出现管道设计流量和减温水调节门喷水不足的问题。如果冷却水不足,将导致旁通管路温度过高,导致管路破裂。 3、汽轮机旁路系统的布置设计 3.1增加启动及运行过程中自动控制功能 只要高、低压旁路线路的热备状态良好,机组才能够运行正常,机组在运行的过程中会使得低压旁路处于自动的状态,而如果主要蒸汽或者再热蒸汽发生一定的升高,就能使得低压旁路直接进入到运行状态,更好的确保整体安全运行。较为成熟的自动旁路控制逻辑是:在锅炉点火之前,高压旁路调节阀可以预设较低的开度,当主蒸汽压力低于Pmin时,主蒸汽压力被设置为Pmin。高侧调节阀的开启保持不变(最小开启模式)。当主蒸汽压力高于Pmin时,高侧调节阀的开启度增加,主蒸汽压力保持不变,这是最小压力控制方式。一旦预置阀达到预置的开口,阀位置将保持在预置位置或在预置位置之上,并且主蒸汽压力将被控制(压力上升模式)。当主蒸汽压力达到冲洗压力时,高压旁路保持主蒸汽压力不变,直到高压侧关闭。当高侧关闭时,旁路在滑动压力下运行。根据启动曲线,控制高压旁路。当主蒸汽压力达到额定压力时,获得高压旁路。变为恒压运行,控制压力为额定主蒸汽压力 P0+ΔP。低压旁路也可用于机组的启动类似控制。 3.2优化机组甩负荷有关旁路系统逻辑 机组甩负荷后,对低压旁路注水调节阀和蒸汽调节阀进行保护和实施。根据机组甩负荷后高压旁路开度和主蒸汽压力的变化,高压旁路可快速开启到50%左右,喷水阀可快速开启到100%左右,然后根据高温后温度的变化实现自动控制。为了防止阀门的异常运行,高低压旁通蒸汽调节阀应该在阀门后面增加高温保护。 3.3系统处理 (1)采取保护措施,确保系统线路清洁。(2)在具有节流孔的阀门中,在保持架底部开孔的方法可用于在密封表面的周边产生更多的空隙,并减少管道中的杂质,由固体颗粒、氧化物层等破坏密封表面。(3)蒸汽过滤器安装在旁路进气管道的适当位置。三通管件用蒸汽过滤器,进出口管焊接,配有过滤器可拆卸,可定期清洗。采用蒸汽过滤器可有效防止杂质和颗粒对密封面的损伤。(4)在一些发电机组的旁路设计中,为了改善旁通阀的工作环境,在旁通阀的前面安装隔离阀。(5)对高低压侧系统的控制参数进行了优化。(6)旁路阀修复。对缺陷进行了分析,并对阀内件密封面的表面质量、尺寸、硬度和表面粗糙度进行了校核。同时根据相关缺陷的特点进行修改或者

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容器主要的作用是隔离直流信号。电容的阻抗和信号的频率成反比,信号的频率越高,衰减越小。理论上,对于直流信号的阻抗是无穷大。很多场合需要放大的是交流信号,所以,会用耦合电容去掉信号中的直流部分。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地 2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量 。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用: 一是作为本集成电路的蓄能电容; 二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路; 三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 去耦 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

汽机旁路系统介绍

汽机旁路系统介绍 一,旁路系统的基本组成: 汽机旁路系统是以汽机高、低压旁路控制阀门为中心,为了实现阀门的控制动作而配置的包括阀门本体、液压系统和定位控制系统等组成的一套独立的系统。它主要由阀门本体、液压及液压控制系统和阀门定位控制系统三部分组成。1,阀门本体: 高压旁路系统中共有3个阀门,1个高旁压力控制阀,1个高旁减温水控制阀和1个高旁减温水隔离阀。 低压旁路系统中共有6个阀门,2个低旁压力控制阀,2个低旁减温水控制阀和2个低旁减温水隔离阀。 下图为高低压旁路阀门在系统中的示意图: 2,液压及液压控制系统: 液压系统由独立的液压供油油站、液压执行机构、液压执行元件以及油管路等组成;液压控制系统是用来控制液压油稳定在一定的压力范围,在故障状况下为液压系统提供保护,并给出报警信号的系统。液压和液压控制系统为阀门的控制动作提供稳定的液压动力,并且配合定位控制系统完成阀门的控制动作。 下图为高低压旁路系统液压系统图:

3, 定位控制系统: 根据DCS 给出的阀位指令信号,与位置反馈信号进行对比,通过液压执行元件(比例阀),对阀门实行定位控制。并且将阀门的实际阀位反馈及开关量信号反馈给DCS 。

二,液压及液压控制系统: 1, 油站: 油站主要由以下部件组成: 1)油箱,1a )液位计,1b )球阀,1c )空气过滤器,2.1) 2.2) 齿轮泵,3.1) 3.2) 泵支架,4.1)4.2)弹性联轴器,5.1) 5.2) 电机,6.1) 6.2) 止回阀,7.1) 7.2)高压软管,8,循环阀和压力释放阀,9)压力表,9a )压力表软管,11)电子压力开关,11a )压力表软管,12)皮囊式蓄能器,13)安全及关闭块,14)压力表,16)压力过滤器,19)双温度开关,27)液位开关

旁路电容和耦合电容详解讲解

关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰. 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定. 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别. 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF. 分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感. 分布电感是指在频率提高时,因导体自感而造成的阻抗增加.

旁路系统的作用培训资料

精品文档 汽轮机旁路系统的主要作用有: 1. 保护再热器。机组正常运行中,汽轮机高压缸排汽进入再热器,再热器可以得到充分冷却。但在启动过程中,汽轮机冲车前,或在机组甩负荷而高压缸无排汽时,再热器因无蒸汽流过或蒸汽流量不足,就有超温烧坏的危险。设置旁路系统,使蒸汽流过再热器,便达到冷却再热器的目的; 2. 改善启动条件,加快启动速度。单元机组普遍采用滑参数启动方式,为了适应汽轮机启动过程中在不同阶段(暖管、冲车、暖机、升速、带负荷)对蒸汽参数的要求,锅炉要不断地调整汽压、汽温和蒸汽流量。单纯调整锅炉燃烧或运行压力,很难达到上述要求。采用旁路系统就可改善启动条件,尤其在机组热态启动时,利用旁路系统能很快地提高主蒸汽和再热蒸汽的温度,缩短启动时间,延长汽轮机寿命。对于大容量机组,当发电机负荷减少、解列或只带厂用电负荷,以及汽轮机甩负荷时,旁路系统能在几秒钟内完全打开,使锅炉逐渐调整负荷,并保持在最低稳定燃烧负荷下运行,而不必停炉,在故障消除后可快速恢复发电,从而减少停机时间和锅炉的启停次数,大大缩短了单元机组的重新启动时间,有利于系统稳定; 3. 回收工质,消除噪声。机组在启停过程中,锅炉的蒸发量大于汽轮机的消耗量,在负荷突降和甩负荷时,有大量的蒸汽需要排出。多余的蒸汽若直接排向大气,不仅损失了工质,而且对环境产生很大的噪声污染。设置旁路系统,可以达到回收工质和消除噪声的目的。另外,在机组突降负荷或甩负荷时,利用旁路系统排放蒸汽,可减少锅炉安全门的动作。 4利用旁路实现中压缸启动。 高、低压旁路系统有如下功能: (1) 改善机组启动性能。机组冷态或热态启动初期,当锅炉给出的蒸汽参数尚未达到汽轮机冲转条件时,这部分蒸汽就由旁路系统流到凝汽器,以回收工质,适应系统暖管和储能的要求。特别是在热态启动时,锅炉可用较大的燃烧率和较高的蒸发量运行,加速提高蒸汽温温,使之与汽轮机的金属温度匹配,从而缩短启动时间。 (2)能够适应机组定压和滑压运行的要求。在机组启动时可以控制主蒸汽压力和中压缸进汽压力;正常运行时,监视锅炉出口压力,防止超压。 (3)启动工况或者汽轮机跳闸时,旁路系统可保证再热器有一定的蒸汽流量,使其得到足够的冷却,从而起保护作用。 (4)事故状态下缩短安全阀动作时间或完全不起座,节约补给水。电网事故时机组可以短时间保持低负荷带厂用电;汽轮机事故时,允许锅炉处于热备用状态,停机不停炉,故障排除后能迅速恢复发电。减少停机时间,有利于整个系统的稳定。 总之,高、低压旁路系统具有启动、溢流和安全三项功能。 精品文档

旁路系统的功能及应用-张宝川

旁路系统的功能及应用 国华定电张宝川 摘要:文中阐述了中间再热机组旁路系统的功能、安全保护作用及在整个电力生产过程中的作用,以及600MW机组旁路系统的选择及旁路系统在不同的运行要求以及不同的启动方式下的应用等。 关键词:汽轮机旁路系统功能选择应用 一、概述 随着电力工业的发展,新技术、新材料在火电厂的应用使得机组的容量越 来越大,运行方式也都采用了一机一炉的单元制。在单元制运行中,机炉一一对应,锅炉产生的蒸汽无法储存,在机组运行的过程中,必须始终保持机炉之间的 出力平衡,这一点在机组正常运行或部分辅机出故障时,通常由机炉协调控制系 统完成:即依据外界负荷要求,使机炉的出力协调一致,既满足负荷要求,又可 维持机组安全运行。但是由于汽机和锅炉的动态特性相差太大,在某些情况下不 匹配,要保持二者出力平衡,仅依靠协调控制系统完成是很困难的,或者说是无 法实现的。 例如机组在低负荷工况时,对锅炉而言其最小允许负荷般为额定蒸发量的30%~50%,负荷再低将导致锅炉燃烧不稳定,水循环被破坏,导致灭火等问题; 汽机空载运行时,进汽量仅须额定值的5%~8%,当汽机由于需要进行低负荷或空 载运行时,为使锅炉不灭火,以待再启动,就必须设法处理锅炉的过剩蒸汽;启 动工况时,锅炉(刚点火不久)提供蒸汽的温度、过热度都很低,不允许蒸汽进 入汽轮机。需要回收锅炉的多余蒸汽,避免对空排汽造成工质损失;另外再热器 要求有一定流量的蒸汽冷却,所以机组启动、空载和低负荷运行时,要解决再热 器的超温保护问题。 为了解决上述问题,在单元再热机组设置了旁路系统。旁路系统的设置使 机组采用中压缸启动较为方便,有利于改善汽轮机的暖机效果,缩短启动时间。 当汽轮机系统出现小故障需要短时检修时,锅炉可维持在最低稳燃负荷下进行, 故障排除后,即可很快重新冲转并网带负荷运行。通过旁路系统的运行给单元机 组带来了灵活性,进一步提高了机组安全经济运行的可靠性,提高了大机组在火

为什么选择旁路电容很重要

为什么选择旁路电容很重要 设计人员在选择旁路电容,以及电容用于滤波器、积分器、时序电路和实际电容值非常重要的其他应用时,都必须考虑这些因素。若选择不当,则可能导致电路不稳定、噪声和功耗过大、产品生命周期缩短,以及产生不可预测的电路行为。 电容技术 电容具有各种尺寸、额定电压和其他特性,能够满足不同应用的具体要求。常用电介质材料包括油、纸、玻璃、空气、云母、聚合物薄膜和金属氧化物。每种电介质均具有特定属性,决定其是否适合特定的应用。 在电压调节器中,以下三大类电容通常用作电压输入和输出旁路电容:多层陶瓷电容、固态钽电解电容和铝电解电容。 多层陶瓷电容 多层陶瓷电容(MLCC)不仅尺寸小,而且将低ESR、低ESL和宽工作温度范围特性融于一体,可以说是旁路电容的首选。不过,这类电容也并非完美无缺。根据电介质材料不同,电容值会随着温度、直流偏置和交流信号电压动态变化。另外,电介质材料的压电特性可将振动或机械冲击转换为交流噪声电压。大多数情况下,此类噪声往往以微伏计,但在极端情况下,机械力可以产生毫伏级噪声。 电压控制振荡器(VCO)、锁相环(PLL)、RF功率放大器(PA)和其他模拟电路都对供电轨上的噪声非常敏感。在VCO和PLL中,此类噪声表现为相位噪声;在RF PA中,表现为幅度调制;而在超声、CT扫描以及处理低电平模拟信号的其他应用中,则表现为显示伪像。尽管陶瓷电容存在上述缺陷,但由于尺寸小且成本低,因此几乎在每种电子器件中都会用到。不过,当调节器用在噪声敏感的应用中时,设计人员必须仔细评估这些副作用。 固态钽电解电容 与陶瓷电容相比,固态钽电容对温度、偏置和振动效应的敏感度相对较低。新兴一种固态钽电容采用导电聚合物电解质,而非常见的二氧化锰电解质,其浪涌电流能力有所提高,而且无须电流限制电阻。此项技术的另一好处是ESR更低。固态钽电容的电容值可以相对

旁路系统的功能及应用-张宝川复习进程

旁路系统的功能及应 用-张宝川

旁路系统的功能及应用 国华定电张宝川 摘要:文中阐述了中间再热机组旁路系统的功能、安全保护作用及在整个电力生产过程中的作用,以及600MW机组旁路系统的选择及旁路系统在不同的运行要求以及不同的启动方式下的应用等。 关键词:汽轮机旁路系统功能选择应用 一、概述 随着电力工业的发展,新技术、新材料在火电厂的应用使得机组的容量越 来越大,运行方式也都采用了一机一炉的单元制。在单元制运行中,机炉一一 对应,锅炉产生的蒸汽无法储存,在机组运行的过程中,必须始终保持机炉之 间的出力平衡,这一点在机组正常运行或部分辅机出故障时,通常由机炉协调 控制系统完成:即依据外界负荷要求,使机炉的出力协调一致,既满足负荷要求,又可维持机组安全运行。但是由于汽机和锅炉的动态特性相差太大,在某 些情况下不匹配,要保持二者出力平衡,仅依靠协调控制系统完成是很困难的,或者说是无法实现的。 例如机组在低负荷工况时,对锅炉而言其最小允许负荷般为额定蒸发量的30%~50%,负荷再低将导致锅炉燃烧不稳定,水循环被破坏,导致灭火等问题; 汽机空载运行时,进汽量仅须额定值的5%~8%,当汽机由于需要进行低负荷或 空载运行时,为使锅炉不灭火,以待再启动,就必须设法处理锅炉的过剩蒸 汽;启动工况时,锅炉(刚点火不久)提供蒸汽的温度、过热度都很低,不允 许蒸汽进入汽轮机。需要回收锅炉的多余蒸汽,避免对空排汽造成工质损失; 另外再热器要求有一定流量的蒸汽冷却,所以机组启动、空载和低负荷运行 时,要解决再热器的超温保护问题。 为了解决上述问题,在单元再热机组设置了旁路系统。旁路系统的设置使 机组采用中压缸启动较为方便,有利于改善汽轮机的暖机效果,缩短启动时 间。当汽轮机系统出现小故障需要短时检修时,锅炉可维持在最低稳燃负荷下

第十四 章 汽轮机旁路系统

第十四章汽轮机旁路系统 第一节统概述 现代大容量火力发电机组,由于采用了单元机组和中间再热,因此在下列运行过程中,锅炉和汽轮机间运行工况必须有良好的协调:锅炉和汽轮机的启动过程;锅炉和汽轮机的停用过程;汽轮机故障时锅炉工况的调整过程。为使再热机组适应这些特殊要求,使其有良好的负荷适应性,再热机组都设置了一套旁路系统。旁路系统是指高参数蒸汽不进入汽缸的通流部分作功而是经过与该汽缸并联的减温减压器,将降压减温后的蒸汽送至低一级参数的蒸汽管道或凝汽器。机组在各种工况下(冷态、温态、热和极热态)启动时,投入旁路系统控制锅炉蒸汽温度使之与汽轮机汽缸金属温度较快地相匹配,从而缩短机组启动时间和减少蒸汽向空排放,减少汽轮机循环寿命损耗,实现机组的最佳启动。 我厂1000MW汽轮机采用高压缸启动方式,旁路系统仅考虑机组启动需要,设置一级35%BMCR容量高压启动大旁路系统。旁路系统装置由高压旁路阀、喷水调节阀、喷水隔离阀等组成。旁路装置布置在汽机房15.1m层上,阀门形式为角式,水平进水平出,执行机构水平布置。蒸汽经过第一级减压后部分蒸汽直接通过减温水喷头并雾化减温水,其它蒸汽经过多级减压后和经过雾化的蒸汽混合并减温。这种减温方式的特点是汽水混合效果好,无热应力冲击。旁路喷水减温水源取自凝结水,水压最大4 MPa(a),正常3 MPa(a),水温正常32.5℃。采用蒸汽驱动,可加速水的雾化,完全适应低负荷启动及甩负荷等工况要求,而且检测表明在阀后2~3米内即可降到目标值,阀体上表面不会产生超温。蒸汽压力在经过多级减压后达到设计压力值,减压级数可以随着减压幅度的增加而增加,这主要根据设计要求确定。由于是简单启动旁路系统,机组启动后不再考虑其它的旁路运行方式,故在旁路减压阀前加装了电动隔离阀以保护凝汽器(由于设备原因,该阀在启动时未装)。在安装阶段,主汽通过旁路阀后的管道上又做了改动,即将进入凝汽器高压侧的旁路加装一电动调整阀门,以防止旁路系统进入高、低压凝汽器时造成两侧负荷不均及防止高、低压凝汽器联通,因而加装了一个调整阀进行分配调整。下图20-1是一级大旁路系统简图(图中未标出炉侧疏水扩容器和冷凝水泵)。 第二节路系统的作用 旁路系统是为了适应再热式机组启停、事故情况下的一种调节和保护系统。机组如何在安全可靠的前提下,以较快的速度启动并迅速并网,其关键就是严密监视各处温度,力求高中压缸金属温度均衡上升,严格控制胀差和轴承的振动。 不同条件下的启动,对进入汽轮机的蒸汽温度有不同要求:冲转的主蒸汽温度最少应有50℃过热度;温态、热态启动时应保证高压调速汽门及中压调速汽门后蒸汽温度高

耦合、旁路、滤波电容作用

电容耦合的作用是将交流信号从前一级传到下一级。当然,耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。 滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高, 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大, 会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

相关文档
最新文档