循环水处理标准GB50050-2007

合集下载

工业循环冷却水水质规范GB50050之欧阳与创编

工业循环冷却水水质规范GB50050之欧阳与创编
mg/l
PH≤8.5
≤5000
游离氯
mg/l
循环回水总管处
0.2~1.0
NH3-N
mg/l
铜合金换热设备
≤1
≤10
石油类
mg/l
非炼油企业
≤5
炼油企业
≤10
CODCr
mg/l
≤100
时间:2021.03.08
创作:欧阳与
钙硬度<200
总铁
mg/l
≤1.0
Cu2+
mg/l
≤0.1
Cl-
碳钢、不锈钢换热设备,水走管程
≤1000
不锈钢换热设备,水走壳程
传热面水侧壁温不大于70℃
冷却水出水温度小于45℃
≤700
SO42-+Cຫໍສະໝຸດ -mg/l≤2500
硅酸(以SiO2计)
mg/l
≤175
Mg2+×SiO2
(Mg2+以CaCO3计)
工业循环冷却水水质规范GB50050-2007:
时间:2021.03.08
创作:欧阳与
项目
单位
要求或使用条件
许用值
浊度
NTU
根据生产工艺要求确定
≤20
换热设备为板式、翘片管式、螺旋板式
≤10
PH
6.8~9.5
钙硬度+甲基橙碱度
(以CaCO3计)
mg/l
碳酸钙稳定指数RSI ≥3.3
≤1100
传热面水侧壁温大于70℃

石油化工企业循环水站设计

石油化工企业循环水站设计

石油化工企业循环水站设计在石油化工企业中,循环水主要用于冷却生产设备和产品。

结合循环冷却水系统设计的相关规范,对石油化工企业循环冷却水系统设计过程进行阐述,总结设计过程中的注意事项,以提高设计效率。

标签:石油化工;循环水系统;设计在石油化工企业中,循环水系统是保障工艺设备正常运行一个必不可少的系统。

近期在参与石油化工企业循环水系统设计的过程中发现,涉及循环水系统设计规范较多,最基本的有《工业循环冷却水处理设计规范》(GB50050-2007)、《化学工业循环冷却水系统设计规范》(GB50648-2011)、《工业循环水冷却设计规范》(GB/T 50102-2014)、《石油化工循环水场设计规范》(GB/T 50746-2012)、《化工企业循环冷却水处理加药装置设计统一规定》(HG/T 20524-2006)。

规范各有不同侧重,同时也有部分内容重复出现。

将各规范进行比较,对石油化工企业循环水系统设计进行如下总结,供参考及批评指正。

1 设计规范的介绍设计规范主要从5个方面对循环水系统设计内容进行了规定,第一,循环水系统总体设计,主要包括循环水系统划分、循环冷却水装置区的布置,水量设计等;第二,循环水冷却设施设计,主要为冷却塔(含冷却塔水池)设计;第三,循环冷却水水质处理设计;第四,循环水泵房设计;第五,循环水管网及配套设施的设计。

在上述5本规范中,《工业循环冷却水处理设计规范》(GB50050-2007)及《化工企业循环冷却水处理加药装置设计统一规定》(HG/T 20524-2006)主要规定了循环冷却水水质处理设计方面的内容;《工业循环水冷却设计规范》(GB/T 50102-2014)主要涉及循环水冷却设施设计内容的规定,《化学工业循环冷却水系统设计规范》(GB50648-2011)及《石油化工循环水场设计规范》(GB/T 50746-2012)较为综合,对5个方面的内容均有涉及。

另外,在设计循环水泵房及管网时,还需参照《室外给水设计规范》(GB50013-2006)及《泵站设计规范》(GB 50265-2010)。

供水处理基础知识试题(含答案)

供水处理基础知识试题(含答案)

1/ 4供水处理基础知识试题(含答案)姓名_________考号__________班级__________学院__________一、单项选择题(共___小题,每小题___分,共___分)1、表示溶液浓度时1ppm等于()BA、1000mg/LB、1mg/LC、1/1000g/LD、1/1000mg/L2、()可以改变污泥的内聚力和黏着性,或者使成片污泥分割开来分散在溶液中,或者渗入金属与污泥分界面,降低金属与污泥间黏结能力,使它们从金属表面剥离下来,最后通过排污或旁流过滤去除。

()AA、剥离剂B、乳化剂C、助凝剂D、混凝剂3、两种不同溶解度的饱和溶液,它们的百分比浓度--定为()CA、80%B、100%C、不相同.D、90%4、净水流经连接前后两处理构筑物的管渠(包括配水设备)是产生的水头损失,包括()。

DA、局部水头损失B、沿程水头损失C、污水流经计量设备时产生的水头损失D、沿程与局部水头损失5、,检查性称量至两次称量差不超过()mg,表示沉淀已被灼烧至恒重。

DA、0.B:B、0.A:C、0.D。

D、0.C:6、在循环冷却水系统综合治理中,预膜的好坏往往是决定()效果好坏。

()AA、缓蚀B、阻垢C、清洗D、杀菌7、一级脱盐系列再生:盐酸浓度()BA、≤4%B、4%C、1、5~4%D、≥4%8、好氧性生物处理碳、氮、磷的需要应满足BOD5:N:P=()。

DA、100:20:5B、10:20:12/ 4C、200:5:1D、100:5:19、与离心脱水机运行无关的因素()。

AA、污泥种类B、污泥量C、泥饼的含水率D、固体负荷10、循环水的标准GB50050-2007中,再生水水质标准中化学需氧量应≤()mg/l。

BA、50B、30C、100D、6011、蝶阀手轮转动轻快,但阀门不能开启或关闭,可能的原因是()。

CA、阀盖结合面漏B、阀门内漏C、阀芯与阀杆脱离D、阀杆及与其配合的丝母螺纹损坏12、下列哪个因素不是有机氯工业废水的特点是()。

浅析电石炉循环水质对冷却设备危害

浅析电石炉循环水质对冷却设备危害

浅析电石炉循环水质对冷却设备危害发布时间:2023-02-23T02:11:52.494Z 来源:《新型城镇化》2023年1期作者:渠红凯[导读] 然而设备固有运行寿命,对于循环冷却水系统,难免进行检维修,因此电石炉设备停止循环水冷却,设备极易被烧损,影响后续的正常生产,同时浪费成本。

新疆圣雄电石有限公司新疆吐鲁番 838100摘要:电石循环水质结垢、腐蚀、微生物粘泥危害严重,造成冷却器换热效率低,可通过选择药剂控制结垢、缓蚀、菌藻的滋生,减小设备腐蚀与结垢。

电石循环水浊度高是泥沙、系统腐蚀产物、细菌和藻类繁殖进入系统后造成的,可采取水池池底定期清砂、杀藻等措施降低循环水浊度。

本文对电石炉循环水质对冷却设备危害进行探讨,以供参考。

关键词:电石炉;循环水质;冷却设备引言目前采用循环冷却水代替普通工业用水,循环用水有效节约了冷却水,电石生产与水密不可分,然而设备固有运行寿命,对于循环冷却水系统,难免进行检维修,因此电石炉设备停止循环水冷却,设备极易被烧损,影响后续的正常生产,同时浪费成本。

1.电石循环水管理存在的问题与原因循环冷却水系统的连续运行,水的浓缩而导致水中各种离子浓度增大,相应的腐蚀、结垢等问题亦随之发生,在中盐吉兰泰电石炉循环冷却水系统生产中主要存在以下问题:1.1开放式循环水系统泥沙、灰尘进入较多,导致循环水浊度高、泥沙淤积GB50050-2007《中华人民共和国国家标准工业循环冷却水处理设计规范》规定,工业循环水的浊度小于20NTU,而中盐吉兰泰电石循环水系统浊度长期高于40mg/L。

浊度过高会造成设备堵塞、微生物滋生、结垢、腐蚀、排污量增大等一系列问题。

水中悬浮固体(如灰尘、泥沙、腐蚀产物、微生物残骸等)于流速慢或温度高地方慢慢沉积而形成污垢。

乌斯太地区风沙大、空气中粉尘含量较高,大量泥沙尘埃带入循环水中(为开放的冷却系统)。

1.2电石炉循环水系统腐蚀产物的剥落进入系统影响循环水浊度2012年6月起循环水系统开始使用软水与中水,由于软水、中水水量供给依然需要添加大量一次水,如果不添加缓蚀阻垢剂,系统锈蚀物剥落后大量进入循环水影响水质。

补水率理论计算说明

补水率理论计算说明

补水率理论计算公式说明
B-排污水量m3/h
E-蒸发水量m3/h
R-循环水量m3/h
N-浓缩倍数
M-补充水量m3/h
W-风吹损失m3/h
●按照《工业循环冷却水处理设计规范GB50050--2007》
浓缩倍数N=M/(B+W) 即浓缩倍数=补水量/(排污量+风吹损失)⑴
实际上:N=M/B-(M/B-c0/c M)e-B/V(t-t0)经验算发现补水和排污量以月计算时,公式一偏差很小,可以略去不计。

补水量M=E+B+W 即补水量=蒸发量+排污量+风吹损失⑵
蒸发水量E=K·△t·R ⑶
其中:△t --- 冷却塔进出水温差(℃)
K --- 气温系数(1/℃)
由⑴、⑵、⑶推出B+W=E/(N-1)
●根据公司节水考核指标要求:
补水率=补水量/循环量+1
=M/R+1
=(E+B+W)/R+1
=E·N/[(N-1)·R]+1
= K·△t·R·N/[(N-1)·R]+1
= K·△t·N/[(N-1)]+1
从上式可以看出补水率仅与浓缩倍数N、冷却塔进出水温差△t、以及大气温度相关。

以我厂2012年3月循环水数据计算:
统计补水率=补水量/循环量+1=21786.9kt/312.9kt+1=1.0144
理论计算补水率= K·△t·N/[(N-1)]+1=0.0015*7.7*6.56/(6.56-1)+1=0.0136+1
从附表的计算结果可以看出,我厂的统计数据通常与理论数据比较接近,而且偏大,其它厂则都比理论值小,并且一些数据与理论值偏差较大。

补水率理论计算说明

补水率理论计算说明

补⽔率理论计算说明
补⽔率理论计算公式说明
B-排污⽔量m3/h
E-蒸发⽔量m3/h
R-循环⽔量m3/h
N-浓缩倍数
M-补充⽔量m3/h
W-风吹损失m3/h
●按照《⼯业循环冷却⽔处理设计规范GB50050--2007》
浓缩倍数N=M/(B+W) 即浓缩倍数=补⽔量/(排污量+风吹损失)⑴
实际上:N=M/B-(M/B-c0/c M)e-B/V(t-t0)经验算发现补⽔和排污量以⽉计算时,公式⼀偏差很⼩,可以略去不计。

补⽔量M=E+B+W 即补⽔量=蒸发量+排污量+风吹损失⑵
蒸发⽔量E=K·△t·R ⑶
其中:△t --- 冷却塔进出⽔温差(℃)
K --- ⽓温系数(1/℃)
由⑴、⑵、⑶推出B+W=E/(N-1)
●根据公司节⽔考核指标要求:
补⽔率=补⽔量/循环量+1
=M/R+1
=(E+B+W)/R+1
=E·N/[(N-1)·R]+1
= K·△t·R·N/[(N-1)·R]+1
= K·△t·N/[(N-1)]+1
从上式可以看出补⽔率仅与浓缩倍数N、冷却塔进出⽔温差△t、以及⼤⽓温度相关。

以我⼚2012年3⽉循环⽔数据计算:
统计补⽔率=补⽔量/循环量+1=21786.9kt/312.9kt+1=1.0144
理论计算补⽔率= K·△t·N/[(N-1)]+1=0.0015*7.7*6.56/(6.56-1)+1=0.0136+1
从附表的计算结果可以看出,我⼚的统计数据通常与理论数据⽐较接近,⽽且偏⼤,其它⼚则都⽐理论值⼩,并且⼀些数据与理论值偏差较⼤。

《工业循环冷却水处理设计规范》GB50050-2007

《工业循环冷却水处理设计规范》GB50050-2007

《工业循环冷却水处理设计规范》GB50050-2007说明1.新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。

我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。

1.2 循环冷却水处理技术的发展我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。

在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。

瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。

80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。

一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。

实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。

90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。

同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。

“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。

3关于循环冷却水中含量标准解读和理解

3关于循环冷却水中含量标准解读和理解

关于循环冷却水中氯离子含量标准说明及建议一、氯离子对304不锈钢危害临界点北京化工大学材料科学与工程学院;氯离子对304不锈钢钝化膜的破坏实验结论如下:304不锈钢在60℃中性水(溶液)中发生应力腐蚀的临界氯离子浓度约90-98mg/L。

304不锈钢在小于100 mg/L ;60℃中性水或溶液中,承受30%拉应变力,具有较好的耐应力腐蚀性能。

但超过100 mg/L;60℃开始应力腐蚀。

就是说发生应力腐蚀的临界氯离子浓度约90-100mg/L。

二、新标准的附加规定内容循环冷却水含氯离子指标修订值由现行规范300 mg/L提高至700 mg/L因此在确定氯离子指标的同时,还对换热器材质、水侧壁温、设备冷却水出口的水温等作了规定,以保证该指标的安全可靠。

附带说明,氯离子指标是在药剂处理条件下的数据,采用此指标时,其它条件(诸如水流速、浊度、pH值、菌藻数量等)也应符合本规范的规定。

在执行700 mg/L同时执行以下标准:游离氯(余氯):0.2~1.0mg/L浊度:≤20NTU 腐蚀速率:碳钢<0.075mm/a生物粘量:≤3ML/M3腐蚀速率:不锈钢<0.005 mm/a污垢热阻值:<0.86×10-1m2·K/W管程水的流速:≥0.9M/S 冷却水出口温度:≤45℃壳程水的流速:≥0.3M/S 冷却水进出口温差:10±1℃传热管壁温度:≤70℃共有23项指标,在这里没有全部列出。

在执行2007版新标准时必须同时执行相关标准参数,否则不锈钢设备就要出问题。

也就是说放宽了氯离子含量与此同时提高了相关标准,比如标准推荐用316L不锈钢材料,一般的企业很难接受。

三、执行新标准同时要执行相应的规定执行新标准700 mg/L的前提是有附加规定的:如水的流速、水侧壁温、水进出口温差、生物粘量、异养菌总数、污垢沉积量、药剂等23项指标,其中最重要是水侧壁温的数据,在GB50050-2007标准中53页第3.1.8条中第6条的最后一段原文是这叙述的:根据高等院校研究资料表明,CL-腐蚀的诸多因素中,关键的是温度,据资料介绍,同等条件下温度高者腐蚀加剧,因此在选用CL-指标应结合温度因素确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新版国标《工业循环冷却水处理设计规范》GB50050-2007释义新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科技有限公司与您共同学习,共同提高。

国标《工业循环冷却水处理设计规范》GB50050-2007说明1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。

我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。

1.2 循环冷却水处理技术的发展我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。

在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。

瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。

80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。

一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。

实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。

90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。

同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。

“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。

我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。

表1 我国循环冷却水处理配方发展年代配方1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH)聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH)1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH)1980~1985 膦酸盐/聚合物或共聚物(碱性处理)硅酸盐或钼酸盐配方1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高1998 开始开发无磷无金属配方目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。

不论是国产装置还是引进装置,其使用的循环冷却水药剂绝大部分已经国产化,我们已经有能力解决各种条件苛刻的冷却水系统中所遇到的腐蚀、结垢、生物粘泥等问题。

从90 年代开始,我国在循环冷却水处理监控技术开发方面也开展了一些工作,如示踪和远程控制技术已取得初步成果,冷却水系统成垢过程专家系统已开发成功。

但在这些方面我们也有较大差距,循环冷却水系统的计算机控制、自动化管理等方面没有投入很大的开发力量,影响了水处理应用技术水平的提高。

我国循环冷却水处理技术在某些方面具有较高水平,如我国的膦酸盐类水处理剂的质量已明显提高,接近或达到了国际先进水平,因此已开始大量出口。

然而就总体而言,与国际先进水平的差距仍很明显:重点是水处理管理水平和控制水平。

现行规范GB50050-95,其中一些数据均是以聚磷、聚合物水处理配方为基础制定的,实际上至2000年水处理配方已发展至全有机配方:新型膦酸盐及新型共聚物,无磷,无金属水处理配方也开始出现,这些新型水处理配方与管理的科学化,控制的自动化相结合,使得水处理效果明显提高,水质适用范围更加宽泛,所有这一些水处理技术上进步在现有规范中没有得到反映,因此循环水处理技术发展的形势也要求对现有《工业循环冷却水处理规范》进行修订。

1.3 我国供水现状也要求对现行《工业循环冷却水处理规范》进行修订a 我国用水现状我国是一个水资源短缺的国家,人均水资源占有量约为2200m3,不足世界平均水平的四分之一,随着我国经济建设的迅速发展,水资源短缺的问题日益显现,我国正常年份缺水量约400亿m3,已经严重制约了我国经济建设的发展。

缺水不仅影响经济建设,而且还威胁到人们的生活甚至生命安全,比如四川、内蒙古等地,均出现过因干旱而发生人、畜饮水危机。

面对这样的严重局面,节水不仅是水处理工作者的任务,而且也是全社会紧迫的任务。

水资源的欠缺和用水效率不高是导致目前供水不足的主要原因,自然条件无法改变,但是在用水效率方面,我国和发达国家还有很大差距,我国万元GDP用水量是世界平均水平的4倍左右,工业万元增加值取水量是发达国家的5~10倍,我国灌溉水利用率仅为43%,为世界先进水平的二分之一,由此可见,无论是工业还是农业节水潜力还是很大的。

b 全民节水节水是全民的义务,哪个人不用水,哪个行业不需要水,因此,节水不只是水行业的任务,而且是所有行业和全体公民的共同任务。

至2003年,我国总用水量约5300亿m3,其中农业3430亿m3,(约占64.5 %),工业1170亿m3(约占22%),生活630亿m3(约占12%)。

农业节水:喷灌、滴灌;生活节水:节水龙头,厕所水箱。

工业节水:首先是生产工艺的改革,充分利用生产过程中产生的废热,采用不用水的工艺(空冷)等。

请看这一现象,钢铁、石化、电力、石油、纺织、化工等行业的生产厂,无不冷却塔林立,大量的热量通过冷却塔散发到大气之中,这不仅是能量的浪费,也是水资源的极大浪费。

对于冷却塔所蕴藏的巨大能量,很值得进行研究、挖潜。

以全国循环水量4亿m3/h,冷却降温Δt=10 ℃计算,损失的热量为4×1012千卡/h,折合标准煤为0.57×106吨煤/h,天然气0.47×106米3/h,这仅是一小时的热量损失。

按年8000h计算,折合为45.6亿吨煤,约40亿m3天然气,是我国煤的年产量2.4亿吨的19倍,多么巨大的能源浪费。

可见节能、节水是有巨大潜力。

其次是水行业的节水,在工业用水中的70~80%是循环水的补充水,可见循环水在工业节水中的重要作用。

目前生产工艺还做不到热能的全部利用,也就是说冷却塔还需继续存在,循环水还得继续使用,那么循环水节水效益到底有多大呢?循环冷却水的节水作用,对比直流冷却水而言是非常巨大的。

上个世纪五十~六十年代,国家工业建设刚刚起步,工业用水量很少,相对来说水资源是丰富的,因此很多工厂企业都采用直流冷却水,既简便又省钱。

但是随着工业建设的发展,水资源逐渐紧张,迫使工厂企业不得不采用循环冷却水。

采用这一措施到底能节省多少水呢?以10000m3/h的直流冷却水为例,改用循环冷却水,温降10℃,浓缩倍数N为3,只需240m3/h,若N=5,则需200m3/h,可见节水的巨大成果。

同时从上面的数据也可以得出这样一个结论,循环冷却水系统本身的节水取决于浓缩倍数的高低产。

因此在工业用水中节水的最有效措施,就是采用循环水,高浓缩倍数。

最初人们的想法比较简单,以为把水循环起来,温升降下来即可,但是问题远非这么简单,循环水在运行过程中产生一系列问题,如果不能很好的解决,则循环水根本无法运行。

例子很多,如北京化工厂(结垢),栖霞山化肥厂(生物泛滥)。

归结起来,循环水运行过程中所产生的主要问题如下:a水垢由于循环冷却水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度而沉淀。

常见的有碳酸钙、磷酸钙、硅酸镁等垢。

水垢的质地比较致密,可以防止对金属面的腐蚀,但是却大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了17.9%。

b污垢污垢主要由水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成,垢的质地松软,不仅降低传热效率而且还引起垢下腐蚀。

c腐蚀循环冷却水对换热设备的腐蚀,主要是电化腐蚀,产生的原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蚀的后果十分严重,不加控制极短的时间即使设备报废。

d微生物的孳生因为循环冷却水中有充足的氧气、合适的温度及丰富的营养,很适合微生物的生长繁殖,如不及时控制将迅速导致水质恶化、发臭、变黑,大量黏垢沉积,设备腐蚀加剧。

因此循环冷却水处理的关键即是控制微生物的繁殖。

面对上述这些问题,人们在生产实践中,不断的总结、探索和研究,掌握了治理这些危害的方法和技术,从而保证了循环冷却水系统的稳定运行,也保证了企业生产活动的安全、高效、持久的运行。

“工业循环冷却水处理设计规范”就是把人们长期积累的实践经约和科研成果,经过高度概括与浓缩,以规范形式呈现出来,其目的是为生产、建设、科研、设计和施工服务,为它们提供依据。

1.4 《工业循环冷却水处理规范》GB50050-2007版的特点规范修订版以及前两版,其主要特点就是以节水为目的,随着国家经济建设的发展,修订版的节水措施突破了原有的框框,增加以再生水(处理后的污水)为补充水的内容,为节水减排,保护环境创造了新的条件,同时修订版还增加了直冷开式循环冷却水的内容,即通常称谓的浊环水系统,扩大了规范的覆盖面。

涵盖了以淡水为补充水的全部循环冷却水系统。

海水作补充水的循环水系统,限于技术成熟程度,此次未曾纳入,随着技术的不断完善,也将陆续收入到规范中。

此次《工业循环冷却水处理规范》修订式一次全面修订,修订内容很多,将在后面详细介绍。

2. 当前工业循环冷却水处理设计现状、存在问题以及解决措施2.1 循环冷却水处理设计现状过去循环冷却水是以设计为主体,从收集循环冷却水系统资料起至水系统设计,设备订货,现场施工,调试开车,设计单位全部参与,但是随着改革开放社会主义市场经济的建立,以设计负全责的模式发生了很大的改变。

现在是业主——设计——水处理公司三位一体的建设模式,即由业主通过招标的方式选择水处理公司,而后设计单位再根据水处理公司提供的水处理方案进行设计。

因为水处理公司是专业公司,掌握循环冷却水处理技术和积累了丰富的经验,因此,更能有效的保证水处理效果。

2.2 存在问题由于循环冷却水处理设计是三方参与,必然会因为三方的立场、观点不同而对问题的处理产生分歧,因此常常发生设计条件的反复修改,出现问题屡议不决,严重影响了工程进度和工程设计质量。

相关文档
最新文档