动力电池组特性分析与均衡管理

合集下载

影响动力电池一致性的因素分析以及6大解决措施

影响动力电池一致性的因素分析以及6大解决措施

影响动力电池一致性的因素分析以及6大解决措施编者按锂离子电池一致性是指:用于成组的单体电池的初期性能指标的一致,包括:容量、阻抗、电极的电气特性、电气连接、温度特性、衰变速度等。

以上因数的不一致,将直接影响运行中输出电参数的差异。

锂离子电池目前在新能源汽车、智能电网等领域中大规模应用情况在逐年增加,但目前电池参数的不一致性是影响电池组使用寿命的关键因素,虽然热管理水平的提升在某种程度上保证了电池组的安全运行,但对于提升电池的一致性水平仍然是大规模使用锂电池的重要技术影响因素。

通过对一个10串10并电池组的模拟,阐明了电池组内的温度分布对其性能与循环寿命的影响。

平均温度越低,温度不均匀程度越高,电池组内单电池放电深度的不一致性越高;平均温度越高,温度不均匀程度越高,电池组循环寿命越短。

值得注意的是,不均匀的温度分布会导致并联支路间电流分配不均,从而恶化单电池老化速率的一致性。

锂离子电池一致性是指:用于成组的单体电池的初期性能指标的一致,包括:容量、阻抗、电极的电气特性、电气连接、温度特性、衰变速度等。

以上因数的不一致,将直接影响运行中输出电参数的差异。

锂离子电池组的不一致性或电池组的离散现象就是指同一规格型号的单体蓄电池组成电池组后, 其电压、荷电量、容量、衰退率、内阻及其随时间变化率、寿命、温度影响、自放电率及其随时间变化率。

单体电池在制造出来后,本身存在一定性能差异。

初始的不一致度随着电池在使用过程中连续的充放电循环而累计,导致各单体电池状态(SOC、电压等)产生更大的差异;电池组内的使用环境对于各单体电池也不尽相同。

这就导致了单体电池的不一致度在使用过程中逐步放大,从而在某些情况下使某些单体电池性能加速衰减,并最终引发电池组过早失效。

不一致性原因从时间顺序划分,电池组中单体电池的不一致性主要体现在两方面:制造过。

动力电池组SOC估算及均衡控制方法研究

动力电池组SOC估算及均衡控制方法研究

动力电池组SOC估算及均衡控制方法研究一、本文概述随着电动汽车和可再生能源的快速发展,动力电池组作为其核心能量存储系统,其状态监测与控制技术日益受到重视。

动力电池组的荷电状态(SOC)估算与均衡控制方法对于保障电池系统的安全性、提高能量使用效率、延长电池寿命等方面具有至关重要的意义。

本文旨在探讨动力电池组SOC估算及均衡控制方法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考。

本文首先介绍了动力电池组SOC估算的基本概念和原理,包括常见的SOC估算方法及其优缺点。

在此基础上,重点分析了基于模型的方法、基于数据驱动的方法和基于智能算法的方法在动力电池组SOC 估算中的应用,并对各种方法的准确性和鲁棒性进行了比较和讨论。

随后,本文深入探讨了动力电池组均衡控制的重要性和必要性,分析了常见的均衡控制策略及其实现方式。

针对传统均衡控制方法存在的问题,本文提出了一种基于智能算法的均衡控制方法,并对其原理和实现过程进行了详细介绍。

该方法旨在通过智能优化算法实现对动力电池组内部单体电池电压的均衡控制,以提高电池系统的整体性能和稳定性。

本文总结了动力电池组SOC估算及均衡控制方法的研究现状和发展趋势,并指出了未来研究的方向和重点。

通过本文的研究,可以为动力电池组的状态监测与控制提供有效的技术支持,推动电动汽车和可再生能源领域的持续发展。

二、动力电池组SOC估算方法动力电池组的SOC(State of Charge,荷电状态)估算是电池管理系统(BMS)的核心功能之一,它对于确保电池的安全运行、优化能量利用和提高电池寿命具有重要意义。

目前,动力电池组的SOC 估算方法主要可以分为基于电化学模型的方法、基于数据驱动的方法和基于融合算法的方法。

基于电化学模型的方法:这类方法主要依赖于电池的充放电特性和电化学原理,通过建立电池的电化学模型(如等效电路模型、神经网络模型等)来估算SOC。

其中,等效电路模型因其计算效率高、物理意义明确等优点而被广泛应用。

汽车动力电池的电化学特性与热力学特性分析

汽车动力电池的电化学特性与热力学特性分析

汽车动力电池的电化学特性与热力学特性分析随着新能源汽车的普及,汽车动力电池的能量密度、寿命、安全性等方面的特性也越来越受到关注。

汽车动力电池作为新能源汽车的关键部件之一,是将化学能转化为电能的装置。

在汽车动力电池的电化学特性和热力学特性方面,有以下几点需要注意。

一、电化学特性1. 开路电压汽车动力电池的开路电压是指在不通电的情况下,电池两端的电压。

其大小反应了电池中化学反应的走向和程度。

根据电池中反应的化学物质不同,开路电压也有所差别。

例如,铅酸电池的开路电压约为2V,镍氢电池的开路电压为1.2V,磷酸铁锂电池的开路电压约为3.4V。

2. 放电平台汽车动力电池的放电平台是指在电池开始放电后,在相对稳定的条件下,电池电压变化不大的一段时间。

放电平台部分的电压大小和持续时间与电池的工作状态、电流密度、电池化学物质等有关。

3. 比能量比能量指的是电池能量密度的一种指标,单位为Wh/kg。

在同样重量的电池中,比能量越大,意味着电池储存的能量也就越多。

目前,磷酸铁锂电池的比能量已经达到了200Wh/kg以上,而氢燃料电池的比能量已经超过了约600Wh/kg。

4. 循环寿命循环寿命是指电池在充放电循环过程中能够持续运行的次数。

循环次数越多,代表着电池的使用寿命越长。

不同种类的电池的循环寿命会有所不同。

例如,锌银电池的寿命为数十次,而磷酸铁锂电池的寿命可达到1500次以上。

二、热力学特性1. 热失控汽车动力电池中的化学反应会产生热量,因此,如果不能正确地处理电池中的热量,就有可能发生热失控。

电池热失控的原因可以有很多种,例如过度放电、过度充电、过高的温度等。

若电池热失控,会引发电池内部的化学反应速度急剧加快,产生的气体量增加,导致电池爆炸或者起火。

2. 温升特性电池的工作温度对电池的性能有着非常重要的影响。

一般来说,汽车动力电池的工作温度范围为-20℃至60℃之间。

电池工作在过高或者过低的温度下,都会对电池的性能和寿命造成不利影响。

锂离子动力电池组电芯不一致的原因分析及相关建议控制策略

锂离子动力电池组电芯不一致的原因分析及相关建议控制策略

锂离子动力电池组电芯不一致的原因分析及相关建议控制策略收益于下游新能源电动车及小电动工具的发展,锂电池的制造技术及组装方式也不断改进来适用下游的用电设备的发展。

锂电池作为电动汽车的动力电源时,因为高功率、大容量的要求,单体锂离子电芯并不能满足要求,所以就要对锂离子电芯进行串、并联组合使用。

由于锂电芯在做成电池组时,会出现的短板效应,即单体电芯的不一致性会造成电池组在使用过程中出现容量衰减过快、寿命较短,内阻增加等问题。

因此动力电池组在成组前会根据设备的使用条件,对单电池需要进行筛选,配对进行组合。

单电芯在制造出来后,因为设计,工艺生产过程的影响导致电芯的电压、容量、内阻、寿命、自放电率等参数存在不一致。

有些可以根据生产工艺和设计通过一定的手段和方法进行筛选来降低单体电池的不一致性,但是有些无法定义,这也导致了同批电池组,同样的条件下使用,电芯的寿命长短不一致。

锂离子电池不一致性主要表现在两个方面:1)单体电芯性能参数(电池容量、内阻和自放电率等)的差异2)电芯荷电状态(SOC)的差异。

戴海峰等研究发现,电池单体之间容量的差异分布接近威尔分布,而内阻的离散程度较容量更为显著,且同批次电池的内阻一般满足正态分布的规律,自放电率也呈现近似正态分布。

SOC表征着电池的荷电状态,是电池剩余容量与额定容量的比值,解竞等认为由于电池的不一致性,电池的容量衰减速率不同,导致电池间的最大可用容量存在差异。

容量小的电池的SOC变化速率比容量大的电池快,充放电时更快达到截止电压。

锂离子电池出现不一致性问题的原因很多,主要有2个方面:1)制造过程这设计到原材料的性能差异,生产设备,设备的工艺参数,生产工艺流程等方面。

比如制造过程的每个环节例如配料时浆料的均匀度、涂布时面密度及表面张力的控制等都会造成单体电池性能的差异。

罗雨等研究了锂离子电池生产制造工艺对电池一致性的影响,重点研究了水性粘结剂体系的锂离子电池生产制片工艺对电池一致性的影响。

电动汽车电池管理系统电池状态估算及均衡技术

电动汽车电池管理系统电池状态估算及均衡技术

电动汽车电池管理系统电池状态估算及均衡技术作者:百合提努尔阿地里江·阿不力米提来源:《时代汽车》2024年第06期摘要:文章根據纯电动汽车和混合动力汽车的工作情况,归纳提出了电池管理系统(BMS)的核心功能和拓扑结构,对电池状态估算、电池监测系统和电池均衡系统等做了新的解析,简要的解释了电池常见故障原因以及预防措施等。

关键词:电池管理系统电池状态均衡1 电动汽车电池管理系统电池管理系统(Battery Management System,BMS)是电动汽车动力电池系统的重要组成部分,也是关键核心控制元件。

它一方面检测收集并初步计算电池实时状态参数,并根据检测值与允许值的比较关系来控制供电回路的通断;另一方面,将采集的关键数据上报给整车控制器,并接收控制器的指令,与车上的其他系统协同工作。

不同类型动力电池包的电芯(单体电池)对电池管理系统的要求是不尽相同的。

在任何一种电池管理系统(BMS)无论是简单还是复杂,均都有基本功能和实现这些功能的具体元器件。

如果需求越多,需要向系统中添加的元器件就越多。

如图1所示,电池管理系统(BMS)的核心功能。

2 电动汽车电池管理系统(BMS)拓扑结构电池管理系统的部件则是以几种不同的方式布置结构。

这些布置结构称为拓扑结构。

电池管理系统的拓扑结构主要分为集中式、分布式和模块化等类型,如图2所示。

在集中式BMS拓扑结构中有一个带有控制单元的BMS印刷电路板,其通过多个通信电路管理电池包中的所有电芯。

这种类型的结构体积大、不灵活,但成本低。

在分布式BMS拓扑结构中,每一个电芯都有BMS印刷电路板,控制单元通过单个通道连接到整个电池。

常用的环形连接(菊花链式连接)是分布式拓扑结构的一种类型,并用于容错需求较小的系统。

分布式BMS易于配置,但电子部件多、成本高。

在模块化BMS拓扑结构是集中式和分布式两种拓扑的组合。

这种布置也称为分散、星形或主从控拓扑。

有相互连接的几个控制单元(从控板),每个控制单元监测电池中的一组电芯。

26 电池均衡之被动均衡

26  电池均衡之被动均衡

电池均衡之被动均衡电池是电动汽车最重要的组成部分之一,长久以来,如何延长其使用寿命是一直困扰着整车厂和电池厂的一个难题,而这一难题的根本原因是多串并联下的电池不均衡。

本文主要分析目前市场上均衡多串并联电池系统的传统被动均衡。

一、均衡充电定义及均衡的必要性1.均衡充电的定义:均衡充电简称均充,是均衡电池特性的充电,是指在电池的使用过程中,由于电池的个体差异、温度差异等原因造成电池端的电压不平衡,为了避免这种不平衡趋势的恶化,需要提高电池组的充电电压,对电池进行均衡性的充电,以达到均衡电池组中各个电池单体特性,延长电池使用寿命。

均衡充电是在动力电池充电过程的中后期,动力电池单体电压达到或超过截止电压时,均衡电路开始工作,减小动力电池单体电流,以期限制动力电池单体电压不高于充电截止电压。

均衡充电的唯一功能是防止过充电,而在放电使用中将带来负面影响。

在使用均衡充电时,小容量动力电池单体没有过充,能放出的电量小于不用均衡器时轻度过充所能释放的电能,使得该动力电池单体放电时间更短,过放的可能性就更大了。

2.均衡充电的必要性:以目前的锂动力电池制造水平和工艺,在锂动力电池电芯在生产过程中,各个锂动力电池单体会存在细微的差别,也就是一致性问题,不一致性主要表现在锂动力电池单体容量、内阻、自放电率、充放电效率等方面。

锂动力电池单体的不一致,传导至锂动力电池组,必然的带来了锂动力电池组容量的损失,进而造成寿命的下降。

在组成的锂动力电池组装车使用过程中,也会由于自放电程度以及部位温度等原因导致单体不一致性的现象出现,锂动力电池单体的不一致性从而又影响锂动力电池组的充放电特性。

有研究表明,锂动力电池单体20%的容量差异,会带来锂动力电池组40%的容量损失。

锂动力电池均衡的意义就是利用电力电子技术,使锂离子锂动力电池单体电压或锂动力电池组电压偏差保持在预期的范围内,从而保证每个单体锂动力电池在正常的使用时保持相同状态,以避免过充、过放的发生。

动力电池的电化学特性与能量效率分析

动力电池的电化学特性与能量效率分析

动力电池的电化学特性与能量效率分析动力电池是电动汽车和混合动力汽车的重要组件,其电化学特性和能量效率对于车辆性能和续航里程具有决定性影响。

本文将对动力电池的电化学特性和能量效率进行详细分析。

一、动力电池的电化学特性动力电池是一种可充电电池,其主要由正负极、隔膜和电解液组成。

正极材料通常是金属氧化物,如钴酸锂、镍钴锰酸锂等;负极材料通常是石墨或金属锂;电解液一般使用有机溶液,如碳酸酯类。

动力电池的电化学特性主要包括放电曲线、充电曲线和循环寿命。

放电曲线描述了电池在不同电流下的电压随时间的变化关系,充电曲线则是描述电池在充电过程中的电压变化。

放充电曲线的斜率和形状可以反映电池的内阻和容量大小。

循环寿命是衡量电池性能的重要指标之一,它指的是电池在充放电循环中能保持额定容量的次数。

循环寿命的长短与电极材料的稳定性、电解液的稳定性以及电池的温度管理等因素有关。

二、动力电池的能量效率能量效率是指电池存储的能量在充放电过程中的损耗情况。

它可以通过电池的充放电效率来描述,充电效率是指电池在充电时输入的电能与输出的电能之比,放电效率则是指电池在放电时输出的电能与存储的电能之比。

电池的能量效率受到多种因素的影响,比如电流密度、温度、充放电速率和循环次数等。

高电流密度和快速充放电速率会增加电池内阻和极化现象,导致能量效率下降。

高温环境会引起电解液的挥发和电极材料的腐蚀,同样会降低能量效率。

另外,电池的循环次数越多,其能量效率也会逐渐下降。

为了提高动力电池的能量效率,需要优化电极材料的选择、电解液的性质以及控制充放电过程中的温度和电流密度。

此外,合理的电池管理系统也可以提高能量效率,如充电均衡、电流限制和温度控制等。

总结:动力电池的电化学特性和能量效率是影响电动汽车性能的重要因素。

在选择和设计动力电池时,需要考虑电池的电化学特性,如正负极材料、电解液的选择以及循环寿命等。

同时,为了提高能量效率,需要优化充放电过程中的温度、电流密度和电池管理系统等。

(完整版)动力电池及管理

(完整版)动力电池及管理

1.拆卸高压维修开关 2. 找出高压互锁开关 3.通过电压测量判断高压维修开关在电池组中 的位置
1.记录各单体电池电压、总电压 2. 记录电池温度值;模拟温度变化,并记录报警时对应 的数值。 3.记录绝缘电阻值 4.记录SOC值 5.记录充放电电流;模拟充电电流过大、放电电流过大
7.继电器控制
1)上电控制 放电: 充电:
2)充电控制 (1)快充
1.BMS确认充电枪连接正常(Ucc1电压有效),充电桩提供12V直流电(A+,A-) BMS和VCU得电被唤醒。 2. BMS确定Ucc2信号有效,向VCU发出“充电请求”,确定后(点火开关OFF) VCU发出“充电允许信号”,BMS闭合充电接触器和主负接触器。充电桩经过三个 继电器向动力电池充电。
主预 接充 触接 器触



池信 史
信息 信
息交 息
显互 存


北汽EV200 BMS系统架构
1.数据采集功能
1)检测单体电池电压(e5 13个分控模块)
每个单体电池运行状态、根据电压差判断差异性、累积获取总电压(e5 192个,EV200 91个)
2)电池包总电压(主控模块)
SOC计算参考、监测接触器状态
7.继电器控制
2)充电控制 (1)快充
3.VCU从 CAN 线上接收到 CC2 连接信号后闭合充电辅助电源继电器,提供充电过 程中低压电路的电能,并在蓄电池电量低时,给蓄电池充电。 4. BMS与直流充电桩通讯,控制充电电流和充电电压。 5.BMS与VCU(组合仪表)通讯,仪表显示充电信息。
7.继电器控制
165
额定总容量 (AH) 75
91.5
电池组连接方式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力电池组特性分析与均衡管理
被认为是未来汽车的电动汽车是电动源、电机和整车三大技术的结合体,电动源是电动汽车的核心部件,目前已经形成动力锂离子电池及其专用材料的开发热潮.做为一种新型的动力技术,锂电池在使用中必须串联才能达到使用电压的需要,单体性能上的参差不齐并不全是缘于电池的生产技术问题,从涂膜开始到成品要经过多道工序,即使每道工序都经过严格的检测程序,使每只电池的电压、内阻、容量一致,使用一段时间以后,也会产生差异,使得锂动力电池的使用技术问题迫在眉睫,而且必须尽快解决. 动力电池组的使用寿命受多种因素影响,如果电池组寿命低于单体平均寿命的一半以下,可以推断都是由于使用技术不当造成的,首要原因当推过充和过放导致单体电池提前失效.本文结合锂动力电池特性、电子电源、计算机控制技术研究动力电池组的使用技术,探讨动力电池组的均衡控制和管理. 1 动力电池主要性能参数 1.1 电压开路电压=电动势+电极过电位,工作电压=开路电压+电流在电池内部阻抗上产生的电压降.电动势由电极和电解质材料特性决定,电极的过电位与材料活性、荷电状态和工况有关.金属锂标准电极电位-3.05V,3V锂电池3.3~2.3V,4V锂
4.2~3.7V,5V锂4.9V~3.0V. 1.2 内阻电池在短时间内的稳态模型可以看作为一个电压源,其内部阻抗等效为电压源内阻,内阻大小决定了电池的使用效率.电池内阻包括欧姆电阻和极化电阻两部分,欧姆电阻不随激励信号频率变化,又称交流电阻,在同一充放电周期内,欧姆电阻除温升影响外变化很小.极化电阻由电池电化学特性对外部充放电表现出的抵抗反应产生,与电池荷电、充放强度、材料活性都有关.同批电池,内阻过大或过小者都不正常,内阻过小可能意味材料枝晶生长和微短路,内阻太大又可能是极板老化、活性物质丧失、容量衰减,内阻变化可以作为电池裂化的充分性参考依据之一. 1.3 温升电池温升。

相关文档
最新文档