小波变换在图像压缩中应用[论文]
小波变换的图像压缩

研究基于小波变换的图像压缩摘要图像压缩的关键技术是图像数据转换,转换后的数据进行数据量化和数据熵编码。
基于小波变换的图像压缩是一种常见的图像压缩方法,本篇论文使用小波变换、多分辨率分析及不同规模的量化和编码实现图像压缩。
在相同的条件下,本文采用两种不同的方法,第一种方法保留低频和放弃高频,第二种方法是阈值方法来实现图像压缩。
关键词:关键词——小波变换;小波图像系数;量化;编码1.引言图像压缩是指损失一部分比特率的技术或无损还原原始图像信息。
在信息理论中,它的有效性,源编码的问题,即通过移除冗余即不必要的信息来实现这一目标。
压缩的图像信息有两个方法,模拟和数字,因为数字压缩方法有大幅减少比特数量的优势,绝大多数的系统使用数字压缩方法。
信号分析及处理的常用方法是傅里叶变换(FT),而且最广泛的分析工具应用于图像处理,但由于傅里叶变换不能满足局部的时间域和频率域的特点,小波变换具有傅立叶变换没有的两个特征,同时小波变换系数相同的空间位置描述在不同的尺度上有相似性,使得小波变换能进行量化编码。
近年来,使用基于小波变换的图像压缩已取得了很大的进步,也变换算法充分利用小波系数的特性。
2.图像压缩编码的基本原理图像编码研究侧重于如何压缩图像数据信息,允许一定程度的失真条件下的还原图像(包括主观视觉效果),称为图像压缩编码。
然后使图像信号的信号源通过系统PCM编码器由线性PCM编码,压缩编码器压缩图像数据,然后摆脱码字的冗余数据。
图像压缩编码的基本原理是图1。
图1 图像压缩编码的基本框图因此,图像编码是使用统计特性的固有效果和视觉特征,从原始图像中提取有效信息,信息压缩编码和删除一些无用的冗余信息,从而允许高效传输的数字图像或数字存储。
图像恢复时,恢复图像的不完全与原始图像相同,保留有效信息的图像。
3.小波分析的基本理论小波变换具有良好的定位时间和频域的特征,充分利用非均匀分布的分辨率,对于高频信号,使用时域的小时间窗口,进行低频信号分析,使用一个大的时间窗口。
小波变换在图像压缩中的应用

小波变换在图像压缩中的应用图像压缩是一种常见的数据压缩技术,其目的是通过减少图像数据的存储空间,以便更有效地传输和处理图像。
小波变换作为一种重要的数学工具,被广泛应用于图像压缩领域。
本文将探讨小波变换在图像压缩中的应用,并介绍其原理和优势。
一、小波变换的原理小波变换是一种多尺度分析方法,能够将信号分解成不同频率的子信号。
与傅里叶变换相比,小波变换具有更好的时域和频域局部性。
小波变换通过将信号与一组基函数进行卷积,得到信号在不同频率上的分解系数。
这些分解系数表示了信号在不同频率上的能量分布情况。
二、在图像压缩中,小波变换被用来分解图像,并通过舍弃部分系数来实现图像的压缩。
具体而言,小波变换将图像分解成一系列不同频率的子图像,其中低频子图像包含了图像的大部分能量,而高频子图像则包含了图像的细节信息。
通过舍弃高频子图像的一部分系数,可以实现对图像的压缩。
三、小波变换图像压缩的优势相比于传统的基于傅里叶变换的图像压缩方法,小波变换具有以下几个优势:1. 多尺度分析:小波变换能够对图像进行多尺度分析,能够更好地捕捉图像的细节信息。
这使得小波变换在保持图像质量的同时实现更高的压缩率。
2. 良好的时域和频域局部性:小波变换在时域和频域上都具有较好的局部性,能够更准确地描述图像的局部特征。
这使得小波变换在压缩图像时能够更好地保持图像的细节和边缘信息。
3. 适应性:小波变换是一种自适应的变换方法,能够根据图像的特性进行变换。
这使得小波变换能够更好地适应不同类型的图像,并实现更好的压缩效果。
四、小波变换图像压缩的实现步骤小波变换图像压缩一般包括以下几个步骤:1. 图像预处理:对原始图像进行预处理,包括灰度化、降噪等操作,以提高压缩效果。
2. 小波分解:将预处理后的图像进行小波分解,得到一系列不同频率的子图像。
3. 系数选择:根据压缩比率和图像质量要求,选择保留的小波系数。
4. 逆小波变换:对选择的小波系数进行逆小波变换,得到重构的图像。
小波变换在图像压缩中的应用

小波变换在图像压缩中的应用一、引言近年来,随着数字图像的广泛应用,图像的压缩和储存问题得到了越来越多的关注。
图像压缩是将图像从原始表示转换为更紧凑的表示的过程,其目的是通过减少数据来减少存储空间和传输时间。
小波变换作为一种有效的信号分析工具,在图像压缩领域上也有广泛应用。
本文将探讨小波变换在图像压缩中的应用。
二、小波变换基础小波变换是一种多尺度分析方法,与傅里叶变换不同,它用一组经过移位和缩放的基本函数来分析信号的不同频率成分。
小波变换的基本函数是小波,它可以用于分析不仅包含低频信息的信号,也包含高频信息。
小波分析可根据信号中不同频率的变化来确定信号的局部特性。
小波变换优于传统的傅里叶变换在于它能保留信号的时域和频域特征,并且可以进行多分辨率分析。
三、小波变换的特点小波变换的主要特点有以下几个方面:1.自适应性:小波变换可以在不同分辨率下对不同频段的信号进行分析,因此可以根据需要选择合适的小波分析不同类型的图像。
2.局部性:小波变换可以分析信号的局部特性,因此能够对图像的局部结构进行更准确的处理。
3.高效性:小波变换可以通过快速算法进行计算,因此能够在较短时间内处理大量数据。
四、小波变换在图像压缩中的应用在图像压缩中,小波变换主要应用于两种压缩方法:基于小波变换的可逆压缩和基于小波变换的不可逆压缩。
1. 基于小波变换的可逆压缩小波变换在可逆压缩中的应用中,将图像分解为不同尺度和不同方向的子带。
在编码之前,可以对每个子带进行一些变换,例如位平面编码和霍夫曼编码。
这种方法的优点是压缩比高和可逆性好,但缺点是解压缩速度慢和需要大量的存储空间。
2. 基于小波变换的不可逆压缩不可逆压缩通常用于图像和视频压缩中。
这个过程是基于小波变换和基于量化的。
其中,小波变换负责将信号转换为不同频段的按重要性排序的系数,而量化将系数视为可压缩的数据,以达到良好的压缩率。
这种方法的优点是压缩比比可逆压缩高,缺点是解压缩后的图像已无法恢复原始精度。
小波分析在图像压缩中的应用

小波分析在图像压缩中的应用引言图像压缩在当今数字图像处理中扮演着重要的角色,因为它可以减少图像的存储空间和传输带宽要求。
小波分析是图像压缩领域中最重要的工具之一。
它是一种时间和频率分析方法,可以提取图像的特定信息。
本文将介绍小波分析的背景和原理,并探讨它在图像压缩中的应用。
小波分析的背景和原理小波分析是一种多尺度分析技术,也称为小波变换。
它是由法国数学家Jean Morlet于1980年提出的,用于描述地震波的信号分析。
小波变换可以将一个信号分解成多个频率组成的子信号,并可以识别出不同时间尺度的信息。
小波变换使用小波函数来描述信号的频率和时间信息,这些函数是具有较小的支持区间的局部函数。
在数学上,小波函数是任意可微函数,满足一定的正交性和可缩放性条件。
小波变换使用的小波函数有两种类型:离散小波函数和连续小波函数。
离散小波函数的支撑区间是有限的,一般选择倍增长的方式来实现多尺度分解。
而连续小波函数的支撑区间是无限的,因此需要使用多分辨率连续小波变换,也称为CWT(Continuous Wavelet Transform,连续小波变换)。
小波变换具有一些重要的性质,例如可逆性、多分辨率等。
这些性质使得小波变换在图像压缩中得到广泛应用。
图像压缩中的小波分析图像压缩一般分为有损压缩和无损压缩两种。
有损压缩指的是在压缩过程中会有一定的信息损失,但可以获得更高的压缩比。
而无损压缩可以生成和原始图像完全一样的压缩数据,但压缩比一般较低,且压缩速度较慢。
小波分析在两种压缩方法中均有重要的应用。
有损压缩中,小波分析通常与离散余弦变换(DCT)结合使用,来实现更好的压缩效果。
小波分析的重要性在于它可以去除图像中的高频噪声,提取图像中的低频信息,从而减少冗余数据。
小波分析在JPEG2000 压缩标准的实现中得到了广泛应用。
在无损压缩中,小波分析可以与无损预测编码(Lossless Predictive Coding,LPC)相结合。
基于小波分析的图像压缩技术研究

基于小波分析的图像压缩技术研究一、前言随着互联网技术的迅速发展,数字图像处理技术日益成熟。
在各种场合中,使用数字图像进行信息传输和展示已成为一种常见的方式。
但是,由于数字图像的数据量庞大,传输和存储所需要的空间和时间也很大,因此需要对数字图像进行压缩处理以减少数据量。
本文将介绍基于小波分析的图像压缩技术的研究。
二、图像压缩的意义在日常生活和工作中,我们经常使用数字图像作为载体进行信息传输和展示。
在互联网的环境下,数字图像成为了年轻人的主要娱乐方式。
然而,原始的数字图像文件通常很大,不仅占用大量的存储空间,而且传输需要的时间也很长。
因此,图像压缩技术的引入有效地解决了这个问题。
图像压缩技术的意义在于可以将原始的数字图像文件进行压缩处理,使其变为更小的文件,从而可以减少存储和传输所需要的时间和空间。
在大量使用数字图像的互联网环境下,图像压缩技术的使用已经成为了不可或缺的一部分。
三、小波分析的基本原理小波分析作为一种近年来发展起来的新的数学工具,在信号处理领域有着广泛的应用。
它不仅可以对信号进行分析,还可以进行信号处理和变换。
在数字图像处理中,小波分析被广泛应用于图像的压缩和特征提取等方面。
小波分析是基于函数的分解的方法。
它通过对函数进行分解和重构来实现信号的分析和处理。
在小波分析中,函数的分解是通过某一类型的函数(称为小波函数)的变换得到的。
小波函数是一种具有局部性质的函数,它的形态类似于波浪。
它可以对信号的局部特征进行描述,因此可以在信号处理中实现分段处理和局部分析。
四、基于小波分析的图像压缩技术基于小波分析的图像压缩技术是一种新型的图像压缩技术。
与传统的图像压缩方法不同,它是一种基于局部特征的压缩方法,可以更好地保留原始图像中的重要信息。
该方法的具体实现过程如下:(1)进行离散小波分解,将图像分解为多个子带。
(2)对每个子带进行量化,将每个子带的系数转化为离散值。
(3)将量化后的系数编码,并储存为压缩文件。
小波变换在图像处理中的应用毕业论文

结论.......................................................................15
参考文献...................................................................16
cl是x的小波分解结构则perf0100小波分解系数里值为0的系数个数全部小波分解系数个数perfl2100cxc向量的范数c向量的范数华侨大学厦门工学院毕业设计论文首先对图像进行2层小波分解并通过ddencmp函数获取全局阈值对阈值进行处理而后用wdencmp函数压缩处理对所有的高频系数进行同样的阈值量化处理最后显示压缩后的图像并与原始图像比较同时在显示相关的压缩参数
3.2.2实现增强的算法流程............................................10
3.3小波包图像去噪......................................................10
3.3.1实现去噪的主要函数............................................11
指导教师签名:
日期:
华侨大学厦门工学院毕业设计(论文)
小波变换在图像处理中的应用
摘要
近年来小波变换技术已广泛地应用于图像处理中。小波分析的基本理论包括小波包分析、连续小波变换、离散小波变换。小波变换是一种新的多分辨分析的方法,具有多分辨率和时频局部化的特性,
可以同时进行时域和频域分析。
因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定
基于小波变换的图像压缩与去噪技术研究

基于小波变换的图像压缩与去噪技术研究1. 引言图像是一种以人眼可接受的方式来存储和传输大量视觉信息的媒体。
然而,图像文件通常具有较大的数据量,需要占用较大的存储空间和传输带宽。
因此,图像压缩成为一项重要的技术,对图像进行压缩可以减小文件大小和传输时间,提高存储利用率和传输效率。
此外,图像往往受到噪声的影响,噪声会导致图像质量的下降,降低图像的可视性和识别性。
因此,图像去噪也是一个重要的研究方向,可以提升图像的质量和信息内容。
基于小波变换的图像压缩和去噪技术因其较好的性能而备受关注。
本文将探讨小波变换在图像压缩和去噪中的应用。
2. 小波变换基础小波变换是一种数学变换方法,将函数分解为多个尺度的基函数(小波),并用各个尺度上的系数来表示原函数。
小波变换可以提取图像的频域信息和时域信息,具有较好的局部化特性。
3. 图像压缩技术图像压缩技术可以分为有损压缩和无损压缩两种方法。
有损压缩减少了图像中的冗余信息,牺牲一定的图像质量,而无损压缩可以完全恢复原始图像,但压缩比较低。
基于小波变换的图像压缩利用小波变换的多尺度分解和系数量化来实现。
首先,将原始图像进行小波分解得到低频分量和高频分量。
然后,对高频分量进行系数量化,利用人眼对于高频信息的较低敏感性,减少高频分量的数据量。
最后,将量化后的系数进行编码和存储。
4. 图像去噪技术图像去噪的目标是恢复出原始图像中的有效信息并去除噪声,提升图像的质量和可视性。
小波变换的局部化特性使其在图像去噪中有较好的效果。
基于小波变换的图像去噪方法通常采用阈值去噪的思想。
将图像进行小波分解,得到各个尺度上的小波系数。
然后,对小波系数应用适当的阈值,在不影响原始图像主要特征的情况下去除噪声。
5. 小波变换在图像压缩与去噪中的应用小波变换在图像压缩与去噪中已经得到广泛应用。
通过灵活选择不同的小波基函数和改进的算法,可以进一步提高图像压缩和去噪的性能。
在图像压缩方面,小波变换可以通过调整系数量化策略来平衡图像质量和压缩比。
基于小波变换的图像压缩方法研究

基于小波变换的图像压缩方法研究图像压缩是数字图像处理中的重要内容。
在现代社会中,随着信息技术的迅猛发展,数字图像的应用越来越广泛,因此对图像压缩算法的研究也变得越来越必要。
其中,基于小波变换的图像压缩方法是一种常用的压缩算法。
本文将着重探讨这种算法的原理和实现方式。
第一部分:小波变换理论基础在图像压缩领域中,小波变换被广泛应用。
小波变换是一种分析信号的方法,其本质是一种基于多项式的变换过程。
小波变换可以将信号分解成不同的频率分量,较高频率部分细节更加清晰,较低频率部分包含更多的整体信息。
所以,利用小波变换可以将信号从时间域转换到频率域,并对其进行分析和处理。
小波分解是小波变换的一种方法,通常可以分为两步。
首先,利用小波函数将原始信号进行分解,得到系数序列。
然后,选择合适的系数进行逆变换,还原得到原始信号。
小波变换可以在不同的尺度上对信号进行分解,因此在利用小波变换进行压缩处理时,可以在不同的尺度上对图像进行分解,以得到更合理的压缩质量。
第二部分:基于小波变换的图像压缩原理基于小波变换的图像压缩方法实现的原理可以简化为以下几个步骤:首先,将原始图像进行小波变换处理,得到小波系数表示。
然后,根据压缩要求,选择适当的小波系数进行保留或者舍弃。
最后,对经过修剪的小波系数进行逆变换,还原得到压缩后的图像。
在小波分解的过程中,利用“滤波器组”将图像分解为低频分量和高频分量。
低频分量表示图像的粗略整体信息,而高频分量则表示图像的细节特征部分。
将这些系数表示成矩阵形式,以更方便地进行数学分析和处理。
在实际应用中,我们通常只需要保留小波系数矩阵中的一部分,以降低图像的大小。
因此,在小波变换的过程中,常常采用阈值技术来实现压缩。
利用阈值将小波系数分成较强和较弱两部分,舍弃较弱的部分以达到压缩的目的。
第三部分:基于小波变换的图像压缩算法实现基于小波变换的图像压缩算法实现主要有两种方式:离散小波变换和连续小波变换。
离散小波变换使用离散小波基函数对图像进行分解,因此实现相对简单,而连续小波变换则使用连续小波基函数对图像进行分解,因此实现相对复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换在图像压缩中的应用
【摘要】对图像进行压缩可以在有限带宽下提高图像的传输速度,也可以在有限空间内存储更多的图像数据。
小波变换在图像压缩中得到了重点应用。
本文简要分析了小波变换在图像压缩领域的应用过程,对如何应用小波变换实现图像压缩进行了详细阐述,此外对如何进一步提高经过小波变换的压缩图像的压缩比进行了讨论。
【关键词】图像小波变换图像压缩压缩比
数字图像在诸多领域均发挥着重要作用,但是被采集的图像通常较大,不利于传输存储,因而需要对图像进行压缩处理。
对图像的存储数据进行分析可知,一幅图像内包含大量的冗余信息,这些信息虽然能够提升图像的质量,但是也占用了大量的存储空间和带宽,因而,有必要对图像进行适当的压缩处理,以节省图像的传输时间和存储空间。
现有的图像压缩方法很多,如熵编码法、变换编码法、预测编码法等,其中变换编码法可以将图像的能量变换到更为集中的区域,如离散余弦变换和离散小波变换等,可以获得较为满意的压缩效果。
离散余弦变换编码方法虽然可以再较高码率下获得较好的图像质量,但是随着人们对图像压缩速度要求的不断提升,离散余弦变换在码率低于0.25bpp时存在的重构缺陷使得其应用效果大大降低。
相较而言,离散小波变换则因其优良的图像压缩性能得到了重点关注,并被采用为jpeg 2000图像编码的核心技术。
1 小波变换在图像压缩中的发展概述
小波变换最早于1989年被应用到多分辨率的图像描述中,其基于某一固定函数进行伸缩和平移来构造一系列的小波基实现图像的压缩编码,这种方法被称为第一代小波。
随着理论研究的深入,在进行小波变换时,人们采用双正交小波的函数特性,通过提升和对偶提升过程来优化小波特性。
其中,小波性能提升的方法在于小波基的构造方式抛弃了傅里叶变换,只按照需要的小波性能进行小波基构造,因而这种小波变换方式具有更大的自由度和执行速度,在整数到整数的变换中性能非常好。
这种小波构造方式被称为第二代小波。
之后嵌入式零树小波编码方法进一步利用了小波系数的特性,改进了小波基的构造方式,提升了小波变换的性能。
该编码方法可以按照要求的目标比率或目标失真精度决定编码决定位置。
2 小波变换在图像分解中的应用
小波变换使用一个小波母函数进行伸缩或平移操作获得一系列的小波基函数,对这些小波基函数的伸缩因子和平移因子进行离散采样即可获得小波函数。
应用小波变换对图像进行分解压缩实质就是在图像空间内寻找标准的小波正交基,然后将图像数据在该正交基中进行分解或重构。
第二代小波也被成为小波提升格式,该小波变换的整个过程在原位实现,也就是分解后生成的新数值会代替原始数值,故其占用的空间更小。
以二维图像为例进行小波变换。
原始图像数据经过一次小波变换被分解成四个子带,分别为图像的低频成分ll、图像的水
平低频与垂直高频成分lh、属相的水平高频与垂直低频成分hl以及图像的高频成分hh。
其中lh、hl以及hh分别反映图像垂直方向、水平方向、对角线方向的高频图像细节。
分别对每一子带再次进行小波变换,可以获得图像的更多分辨率信息。
经过多次变换后,小波分解后得到的ll部分依然具有图像的概貌信息,其他诸如hl、lh、hh等图像子带则带有图像的细节信息和边缘信息。
通过多次小波变换,图像的能量被集中到更小的区域范围内,对小波系数进行阈值量化,即可实现只需要较少的编码保留较多的图像信息的目的,从而实现了对图像的压缩。
应用小波变换对图像进行压缩关键在于小波函数和小波滤波器
的选择。
适当的小波函数选择可以减少浮点运算,进而减少图像重构时的误差,提高图像重构效果;小波滤波器的合理选用则可以自适应的对预测算子和更新算子进行修正,以减小其所带来的误差,提高图像压缩质量。
3 对量化结果进行编码
为进一步提升图像的压缩比,可在阈值量化的基础上进一步对小波系数进行量化编码。
常用的编码方式有幅值平均方法和游程编码方法。
3.1 幅值平均方法
小波系数经过量化后会产生大量的“0”值,对于剩下的非“0”值可以考虑进一步编码以压缩图像。
幅值平均法将这些非“0”值的取值进行区间划分,若小波系数的量化值在划分后的某一区间
内,则用该区间的平均值代替该值作为新的小波系数。
这种方法的优点在于可以获得更高的压缩比,但是缺点也非常明显,会降低图像的质量,增大图像数据误差。
压缩比和图像误差两者之间呈反比关系。
区间间隔越大则压缩比越大,但是图像质量损失也越大;区间间隔越小则压缩比越小,图像的质量损失也越小。
如,原始小波系数由8个bit信息构成,其表示范围为1-255,但是若将小波系数数值划分为128个区间,则小波系数只需要使用7个bit即可完成表示。
3.2 游程编码方法
游程编码方法属于一类统计编码算法,该算法与幅值平均方法相比是一种无损压缩方法。
该方法利用小波系数经过量化后会产生较多的“0”值这一特定对图像数据进行压缩,应用更少位数的编码表示连续的“0”值信息。
但是该方法也存在一定的缺陷,即若小波系数的幅值变化范围较大,连续的幅值系数之间差异较大,会产生多种游程,这些游程编码也会占用大量的信息位,导致编码压缩效果不够理想。
4 结语
小波变换可以将图像有用信息进行集中,从而消除一部分图像数据的冗余信息,同时,小波变换的多分辨率特性可以在保持图像概貌的情况下对图像数据中除必须精细结构外的其他信息进行去除,达到对图像压缩的目的。
小波变换具有良好的图像压缩效果,在图像压缩领域中得到了肯定、认可以及广泛的应用。
参考文献:
[1]廖锋峰,郭行波,刘文捷.基于小波变换的图像编码研究[j].浙江工业大学学报,2010,38(2).
[2]赵楠楠,孙红星,徐心和.基于小波变换和svm的图像压缩仿真研究[j].系统仿真学报,2006,18(11).
[3]王金宝,王凤妮.基于自适应提升格式小波变换的图像压缩研究[j].计算机工程,2008,34(10).
[4]蒲亚坤,丛爽.基于小波变换的图像压缩改进方法及其应用[j].科技导报,2009,27(18).
[5]刘泉,周祖德,王晟.基于小波变换的jpeg2000图像压缩研究[j].华中科技大学学报(自然科学版),2002,30(2).。