雷达隐身材料
基于超构材料的红外和雷达兼容隐身材料研究进展

运用各种侦察探测手段,实现战场透明化是现代信息化战争的一个基本特点。
红外探测和雷达探测被广泛应用于战场,这促使红外和雷达兼容隐身技术成为了对抗探测的研究重点。
相较于传统红外和雷达兼容隐身材料,基于超构材料的新型红外和雷达兼容隐身材料表现出更加优异的性能。
1红外和雷达兼容隐身原理与途径红外隐身,顾名思义就是降低目标被红外探测器(红外探测系统)发现的概率,达到隐身的目的。
红外探测器通过对物体发射的红外线进行感光成像,进而可以发现与背景存在较大红外辐射差异的位置。
一般而言,武器装备以及作战人员相较于环境背景均具有较强的红外辐射。
控制目标红外辐射实现红外隐身的两个途径:一是控制目标表面的红外发射率;二是控制目标的表面温度。
通常为了实现军事目标的红外隐身,需要尽可能降低其表面温度和所用材料的红外发射率。
雷达通过主动发射并接收目标被动反射的电磁波实现对目标的探测。
雷达隐身的目的就是降低目标被雷达探测设备发现的概率。
雷达散射截面(RCS)就是反映目标在受到电磁波照射后,向雷达接收方向散射电磁波能力的量。
通过降低目标的RCS可以减小目标被探测的距离,进而降低目标被发现的概率。
降低武器装备RCS 的主要途径有:一是通过外形设计等方法来改变散射波的方向;二是通过雷达吸波材料吸收入射的电磁波。
红外和雷达兼容隐身材料要能够在红外和雷达两个频段同时具有隐身能力,然而不同频段对隐身材料的电磁特性一般具有不同的要求,甚至在某些方面是相互限制的。
红外隐身一般要求材料具有低发射率,根据基尔霍夫定律也就是低吸收率;而雷达隐身为了更好地吸收入射电磁波,则一般要求材料具有高吸收率,这就导致红外隐身和雷达隐身在隐身材料吸收率上存在机理上的矛盾,这也正是红外隐身和雷达隐身兼容的科学难点所在。
因此,红外和雷达兼容隐身材料的研究重点是在借助上述能够实现红外隐身和雷达隐身的途径的基础上,尽可能降低两者在隐身性能上的相互影响。
目前常见的红外和雷达兼容的隐身材料实现的途径可概括为以下两种:第一,通过研制单一型材料,使其能够同时实现红外低辐射和雷达高吸收,实现红外和雷达兼容隐身。
精选雷达隐身材料红外隐身技术与材料

• 1、吸波材料的发展
• 荷兰首先将吸波材料用于飞机隐身。
• 其后,德、美等国也将吸波材料用于飞机和舰艇。
• 60年代,美国将吸波材料用于U2高空侦察机。
• 70年代,美国又Байду номын сангаасF14、F16、F18战斗机上使用了吸波材料。
• 80年代初先后研制成ATF、B1 、A10等型号的隐身飞机。
• 80年代中后期相继面世的美国隐形飞机无疑代表了吸波材料实际 应用的巨大成就。其中,有代表意义的是F117、B2、F22、A 12等隐形飞机。F117隐身战斗机的成功,系统地运用了各种缩 减雷达散射截面的措施,其RCS值为0.2m2。B2隐形轰炸机的 RCS值仅为0.01m2。
1.1.2、“乔装打扮”——隐身材料技术
• 所谓“乔装打扮”,主要是指采用能吸收或透过雷达波 的涂料或复合材料,使雷达波有来无回、多来少回,达 不到预期的目的。
1.1.3、“随机应变”——微波传播指示技术
• 所谓“随机应变”,是指钻雷达波传播中的空子,利用 计算机预测出雷达波在大气中传播情况,使突防飞行器 在雷达波覆盖区的“空隙”、“盲区”或“波道”外飞 行,就可避开敌方雷达的探测,顺利突防。
e:对电子设备进行屏蔽。如改进武器装备的结构, 采用特殊材料或涂料,以减少向外辐射电磁能等。
1.4、匿迹潜形---反可见光探测隐身技术
• 控制目标的电磁辐射和红外辐射特征,虽可 对雷达、电子、红外探测系统达到隐身目的, 但对可见光波段的光学探测、跟踪、瞄准系 统达不到隐身目的,所以,反可见光探测隐 身技术也在研究和发展。
a:现用或研制中的隐身飞机都以 单站雷达 为对抗目标 。
• 现在的隐身飞机只能对抗单站雷达,很难在所有被照射 的角度上都达到很小的雷达截面。F-117A正前方迎头正 负30度之内雷达截面平均值为0.02平方米,但从前半球 45度至侧向,其雷达截面会增加25-100倍,从上方侦察 时,更容易被发现。
隐身材料

磁损性涂料
磁损性涂料主要由铁氧体等磁性填料分 散在介电聚合物中组成。目前国外航空器的 雷达吸波涂层大都属于这一类。这种涂层在 低频段内有较好的吸收性。其在常用雷达频 段内(1~16GHz)有良好的使电磁波衰减性能 (10dB)。但由于磁损型涂料的实际重量通常 为8~16kg/m2,因而降低重量是亟待解决的 重要问题。
研究前景展望
对隐身材料来说,对某种探测手段的隐身性 能好,往往对另一种探测手段的隐身性能就不好。 例如,对激光探测的隐身性能好,一般对红外探测 就不能隐身,这就是隐身材料的相容性问题。为解 决这一问题,需要研制兼容型隐身材料,如雷达波、 红外兼容隐身材料,红外、激光兼容隐身材料,雷 达波、红外、激光等多种兼容的隐身材料等。
the end
电损性涂料
电损性涂料通常以各种形式的碳、SiC粉、 金属或镀金属纤维为吸收剂,以介电聚合物 为粘接剂所组成。这种涂料重量较轻(一般可 低于4kg/m2),高频吸收好,但厚度大,难以 做到薄层宽频吸收,尚未见纯电损型涂层用 于飞行器的报道
隐身材料原理
由于纳米材料的结构尺寸在纳米数量级,物质 的量子尺寸效应和表面效应等方面对材料性能有重 要影响。金属粉体(如Fe、Ni等)随着颗粒尺寸的 减小,特别是达到纳米级后,电导率很低,材料的 比饱和磁化强度下降,但磁化率和矫顽力急剧上升。 其在细化过程中,处于表面的原子数越来越多,增 大了纳米材料的活性,因此在一定波段电磁波的辐 射下,原子、电子运动加剧,促进磁化,使电磁能 转化为热能,从而增加了材料的吸波性能。
隐身材料
当战斗机,潜艇等使用隐身材料时,可 以降低被探测率,提高自身的生存率,增加 攻击性,获得最直接的军事效益。因此隐身 Байду номын сангаас料的发展及其在飞机、主战坦克、舰船、 箭弹上应用,将成为国防高技术的重要组成 部分。
先进隐身材料技术的研究与应用

先进隐身材料技术的研究与应用一、概述先进隐身材料技术是一种以减少雷达反射以实现隐身为目的的材料技术。
这个技术的发展是为了适应现代飞行器的需求,在飞行中减少飞机的雷达反射,从而提高其隐身性能。
本文将从材料的基本特征、发展历程、研究现状和未来应用前景四个方面分析先进隐身材料技术。
二、材料基本特征隐身材料的主要特征是减少雷达反射,使飞行器可以躲避雷达侦测。
减少雷达反射的主要方法是利用多层介质、辐射损耗和电磁遮蔽等。
1.多层介质多层介质隐身材料是一种以金属、绝缘体等多种材料构成的复合材料,其反射特性随着每层材料的选择、厚度变化而改变。
随着各层材料的精细设计,可以达到较好的隐身效果。
2.辐射损耗辐射损耗隐身材料利用材料吸收雷达波的能量来减少反射,使飞行器具有良好的隐身性能。
例如,平面材料可通过选择合适的材料和结构设计进行隐身。
3.电磁遮蔽电磁遮蔽隐身材料通过阻止雷达波到达飞行器表面,从而减少反射信号。
这种材料的主要材质是抗电磁干扰材料和抗雷电材料。
利用抗电磁干扰材料可以在飞行器表面制造强磁场,从而抵消雷达波到达的能量;而抗雷电材料则在飞行器表面产生电荷,并通过抵消雷达波到达的能量来减少反射信号。
三、发展历程1.初期发展20世纪50年代初,美国空军的隐身研究首先出现,当时隐身技术的主要目的是减少地面雷达的探测。
研究人员试图开发出一种新的材料,可以吸收或耗散掉雷达信号,为飞机提供隐身的保护。
2.进一步发展60年代初,随着雷达技术的发展和周边环境的变化,隐身材料的研究得到了进一步开展。
隐身材料开始向多层介质、电磁遮蔽和辐射损耗方向发展。
研究人员开始探索新的方法来设计和制造更好的隐身材料,以适应日益复杂的现代飞行器需求。
3.现代发展近年来,随着电子科技的迅速发展和高科技产业的崛起,隐身材料技术也得到了迅速发展。
新材料不断涌现,旧材料也在不断改进,从而为隐身材料技术提供了更多的选择。
四、研究现状目前,隐身材料的研究主要集中在多层介质、电磁遮蔽和辐射损耗三个方向。
隐身材料(中文版)资料课件

03
隐身材料的发展历程
隐身材料的历史背景
早期的隐身材料
最早的隐身材料可以追溯到二战时期 ,当时德国和英国等国家开始研究雷 达吸波材料,用于减少飞机和舰艇被 雷达探测到的可能性。
05
隐身材料的市场前景
隐身材料的市场需求
军事应用
隐身材料在军事领域具有广泛的应用 ,如隐形战斗机、雷达干扰设备等, 随着军事技术的不断发展,对隐身材 料的需求也在不断增加。
民用领域
除了军事应用外,隐身材料在民用领 域也有广阔的应用前景,如航空航天 、电子通信、生物医疗等,随着科技 的进步,这些领域对隐身材料的需求 也在逐渐增长。
隐身材料的应用领域
军事领域
隐身材料广泛应用于军事领域, 如战斗机、轰炸机、导弹、卫星 等武器装备和战略目标的隐身涂 层,以提高生存率和突防能力。
民用领域
随着科技的发展,隐身材料也逐 渐应用于民用领域,如建筑、汽 车、电子设备等领域的电磁屏蔽 和防护涂层。
02
隐身材料的原理
隐身材料的工作原理
隐身材料的工作原理主要是通过特定 的材料结构和特性,吸收、散射或干 涉电磁波,使其在特定方向上难以被 探测和识别。
用。
需要注意的是,化学合成法可能 会产生环境污染和废料处理等问 题,因此需要采取相应的环保措
施。
物理制备法
物理制备法是通过物理手段,如磁场、电场、等离子体等,将原材料转化为隐身材 料的方法。
该方法具有制备条件温和、对环境友好、产品纯度高等优点,因此在一些特殊需求 的隐身材料制备中具有一定的优势。
一种耐高温雷达和红外兼容隐身材料及其制备方法与流程

一种耐高温雷达和红外兼容隐身材料及其制备方法与流程耐高温雷达和红外兼容隐身材料的制备方法及流程随着科技的进步,高温雷达和红外探测技术已经得到广泛应用。
为了克服高温环境下雷达和红外探测的限制,研究人员开发了耐高温雷达和红外兼容隐身材料。
本文将深入探讨一种制备耐高温雷达和红外兼容隐身材料的方法和流程。
制备高温雷达和红外兼容隐身材料的方法主要包括以下几个步骤:1.材料选择和设计:首先需要选择适合的材料作为基础材料,并根据要求的性能设计合适的结构和组成。
对于高温雷达和红外兼容隐身材料,需要具备高温稳定性、低雷达反射率和低红外发射率的特点。
2.材料合成和纳米结构控制:根据选择的基础材料,采用适当的合成方法进行材料的制备。
此外,在合成过程中还需要控制材料的纳米结构,以获得所需的性能。
3.材料表征:利用各种材料表征手段对制备的材料进行性能测试和分析,例如扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。
4.材料改性:根据需要,可以通过添加适当的改性剂,调控材料的性能。
例如,添加纳米粒子可以提高材料的红外吸收能力和隐身性能。
5.材料制备:将制备好的材料转变为具体的产品形式。
常用的方法包括喷涂、涂覆、热压等。
6.性能测试和评估:对制备好的材料进行性能测试和评估,包括高温稳定性、雷达反射率、红外发射率以及隐身性能等。
以上是制备高温雷达和红外兼容隐身材料的主要步骤,下面将详细介绍每个步骤的具体内容。
第一步,材料选择和设计。
根据高温雷达和红外兼容的需求,选择合适的基础材料。
对于高温稳定性,可以选择耐高温陶瓷、高温合金等材料。
对于雷达反射率和红外发射率,可以选择具有低电磁波反射特性和红外吸收特性的材料。
一般来说,金属材料具有较高的雷达反射率,而高分子材料具有较高的红外发射率。
因此,可以考虑利用纳米材料改性的方法,使材料同时具有低雷达反射率和低红外发射率。
第二步,材料合成和纳米结构控制。
根据所选的基础材料,采用适当的合成方法制备材料。
隐身材料

组成:基体材料(承载)和吸波剂复合。 基体材料主要是高分子类的一些材料
四、隐身材料的应用——军事
二战期间:蚊式轰炸机(最早)
四、隐身材料的应用——军事
20世纪50年代末,代表就是美国的 U -2侦察机
四、隐身材料的应用——军事
20世纪60年代,以美国洛克希德公司设计的SR - 71黑鸟最为典型。
四、隐身材料的应用——军事
10年后,洛克希德的F -117A 隐形战斗机和诺斯罗普公司的B- 2A 隐形轰炸机
四、隐身材料的应用——军事
先进战机一览
四、隐身材料的应用——军事
隐形潜艇
四、隐身材料的应用——民用
可建隐形罩以避免障碍物阻挡手机信号
三、雷达吸波材料
涂敷型吸波材料 这种材料在军用飞机、坦克、军舰上都有很广泛 的应用。 组成:基体材料、吸波剂(最关键)以及其它一 些助剂组成。 按照吸波剂的化学成分可分为无机吸波剂(铁氧 体、金属以及陶瓷),有机高分子吸波剂(导电 高聚物和视黄基席夫隐身材料的应用——民用
可在炼油厂上建一个隐形罩,使它不影响海边的美丽风景。
四、隐身材料的应用——民用
医生手术戴隐形手套,手会变得透明,不会挡住需要手术的部位
谢谢
张建卫 应用物理2班
一、隐形材料的定义
降低武器装备的雷达、红外、可见光 或声波等可探测信号特征、使之难以被探 测、识别、跟踪或攻击的一种特殊用途材 料。
一、隐形材料的定义
几个认识上的误区:
(1)隐身是完全“看不见”——隐身技术只是 缩短探测器的有效作用距离,有效压缩敌方 反应时间,增加自身战场生存能力和作战能 力。 (2)需要全频段、全空域的隐身能力——不但 在技术上是无法实现的,实际上也是没有必 要的,只要抓住主要矛盾,避开不利的实用 环境。
舰船雷达隐身吸波材料发展现状与趋势

一、概述舰船雷达隐身是现代海上作战中至关重要的一环,吸波材料作为提高舰船隐身性能的关键技术之一,其发展对舰船隐身性能起着至关重要的决定性作用。
本文将就舰船雷达隐身吸波材料的发展现状与趋势进行探讨,分析吸波材料在提高舰船隐身性能方面的应用现状和发展趋势,以期对相关领域的研究者和工程师提供参考。
二、舰船雷达隐身的重要性1. 舰船雷达隐身的意义舰船作为海上作战的主要载体,其雷达隐身性能直接关系到其在战场上的存活和作战能力。
对舰船进行有效的雷达隐身设计和实现可以有效地降低敌方雷达的侦测范围,提高舰船的生存空间和作战能力。
2. 吸波材料在舰船雷达隐身中的应用吸波材料是目前广泛应用于舰船雷达隐身设计中的一种材料,其独特的吸波性能能够有效地吸收和消散雷达波,在一定程度上实现舰船的雷达隐身效果。
三、舰船雷达隐身吸波材料的发展现状1. 传统吸波材料的局限性传统吸波材料在舰船雷达隐身中存在着诸多局限性,如耐久性、耐海水性等方面存在问题,使其应用受到一定的限制。
2. 新型吸波材料的发展近年来,随着材料科学和工程技术的进步,新型吸波材料在舰船雷达隐身中逐渐得到应用。
这些新型吸波材料不仅具有更高的吸波性能,同时在耐久性、耐海水性等方面也有了较大的改善,为舰船雷达隐身的实现提供了更多的可能。
四、舰船雷达隐身吸波材料的发展趋势1. 多功能化未来发展的趋势之一是吸波材料的多功能化,即除了传统的吸波性能外,还能够具有其他功能,如防护性能、结构性能等,以实现吸波材料在舰船隐身中的更广泛应用。
2. 智能化随着人工智能和智能材料的发展,未来的吸波材料将更加智能化,能够实现根据不同环境和作战需求自动调节吸波性能,以提高舰船隐身在实战中的适应性和效果。
3. 高性能化新型吸波材料将朝着高性能化的方向发展,具有更高的吸波性能、更广泛的频段覆盖以及更强的耐久性和耐海水性能,以满足未来舰船雷达隐身对吸波材料性能的更高要求。
五、结论舰船雷达隐身吸波材料的发展现状和趋势是一个持续发展和创新的过程,新型的吸波材料将会为舰船雷达隐身性能提供更多的可能性和选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达隐身材料摘要:隐身技术是指为减少航空器受雷达、红外、光电、声音与目视等探测的特征而采用的专门技术。
目前,最受重视且发展较快的隐身技术是雷达隐身技术。
外形设计对隐身飞行器隐身性能的贡献只占2/3,另外1/3将由飞行器的隐身材料贡献,它可以降低被探测率,提高自身的生存率,是隐身技术的重要组成部分。
因此隐身材料的发展与飞行器隐身性能的发展有着密不可分的联系。
关键词:雷达吸波;红外隐身;纳米复合隐身隐身材料是隐身技术的重要组成部分,在装备外形不能改变的前提下,隐身材料(stealth material)是实现隐身技术的物质基础。
武器系统采用隐身材料可以降低被探测率,提高自身的生存率,增加攻击性,获得最直接的军事效益。
因此隐身材料的发展及其在飞机、主战坦克、舰船、箭弹上应用,将成为国防高技术的重要组成部分。
对于地面武器装备,主要防止空中雷达或红外设备探测、雷达制导武器和激光制导炸弹的攻击;对于作战飞机,主要防止空中预警机雷达、机载火控雷达和红外设备的探测,主动和半主动雷达、空对空导弹和红外格斗导弹的攻击。
为此,常需要雷达、红外和激光隐身技术。
隐身材料的分类隐身材料按频谱可分为声、雷达、红外、可见光、激光隐身材料。
按材料用途可分为隐身涂层材料和隐身结构材料。
雷达吸波材料雷达吸波材料是最重要的隐身材料之一,它能吸收雷达波,使反射波减弱甚至不反射雷达波,从而达到隐身的目的。
如日本研制的一种由电阻抗变换层和低阻抗谐振层组成的宽频带高效吸波涂料,其中变换层由铁氧体和树脂混合组成,谐振层由铁氧体导电短纤维和树脂组成,在1~20吉赫的雷达波段上吸收率达20分贝以上。
雷达吸波材料中尤以结构型雷达吸波材料和吸波涂料最为重要,国外目前已实用的主要也是这两类隐身材料。
结构型雷达吸波材料:结构型雷达吸波材料是一种多功能复合材料,它既能承载作结构件,具备复合材料质轻、高强的优点,又能较好地吸收或透过电磁波,已成为当前隐身材料重要的发展方向。
国外的一些军机和导弹均采用了结构型RAM,如SRAM导弹的水平安定面,A-12机身边缘、机翼前缘和升降副翼,F-111飞机整流罩,B-1B和美英联合研制的鹞-Ⅱ飞机的进气道,以及日本三菱重工研制的空舰弹ASM-1和地舰弹SSM-1的弹翼等均采用了结构型RAM。
近年来,复合材料的高速发展为结构吸波材料的研制提供了保障。
新型热塑性PEEK(聚醚醚酮)、PES(聚醚砜)、PPS(聚苯硫醚)以及热固性的环氧树脂、双马来酰亚胺、聚酰亚胺、聚醚酰亚胺和异氰酸酯等都具有比较好的介电性能,由它们制成的复合材料具有较好的雷达传输和透射性。
采用的纤维包括有良好介电透射性的石英纤维、电磁波透射率高的聚乙烯纤维、聚四氟乙烯纤维、陶瓷纤维,以及玻纤、聚酰胺纤维。
碳纤维对吸波结构具有特殊意义,近年来,国外对碳纤维作了大量改良工作,如改变碳纤维的横截面形状和大小,对碳纤维表面进行表面处理,从而改善碳纤维的电磁特性,以用于吸波结构。
美国空军研究发现将PEEK、PEK和PPS抽拉的单丝制成复丝分别与碳纤维、陶瓷纤维等按一定比例交替混杂成纱束,编织成各种织物后再与PEEK 或PPS制成复合材料,具有优良的吸收雷达波性能,又兼具有重量轻、强度大、韧性好等特点。
据称美国先进战术战斗机(ATF)结构的50%将采用这一类结构吸波材料,材料牌号为APC(HTX)。
国外典型的产品有用于B-2飞机机身和机翼蒙皮的雷达吸波结构,其使用了非圆截面(三叶形、C形)碳纤维和蜂窝夹芯复合材料结构。
在该结构中,吸波物质的密度从外向内递增,并把多层透波蒙皮作面层,多层蒙皮与蜂窝芯之间嵌入电阻片,使雷达波照射在B-2的机身和机翼时,首先由多层透波蒙皮导入,进入的雷达在蜂窝芯内被吸收。
该吸波材料的密度为0.032g/cm,蜂窝芯材在6-18GHz时,衰减达20dB;其它的产品如英国Plessey公司的"泡沫LA-1型"吸波结构以及在这一基础上发展的LA-3、LA-4、LA-1沿长度方向厚度在3.8~7.6cm变化,厚12mm时重2.8kg/m2,用轻质聚氨酯泡沫构成,在4.6~30GHz内入射波衰减大于10dB;Plessey公司的另一产品K-RAM 由含磁损填料的芳酰胺纤维组成,厚5~10mm,重7~15kg/m2,在2~18GHz衰减大于7dB。
美国Emerson公司的Eccosorb CR和Eccosorb MC系列有较好的吸波性,其中CR-114及CR-124已用于SRAM导弹的水平安定面,密度为1.6~4.6kg/m2,耐热180℃,弯曲强度1050kg/cm2,在工作频带内的衰减为20dB左右。
日本防卫厅技术研究所与东丽株式会社研制的吸波结构,由吸波层(由碳纤维或硅化硅纤维与树脂复合而成)、匹配层(由氧化锆、氧化铝、氮化硅或其它陶瓷制成)、反射层(由金属、薄膜或碳纤维织物制成)构成,厚2mm,10GHz时复介电数为14-j24、样品在7~17GHz内反射衰减>10dB。
在结构吸波材料领域,西方国家中以美国和日本的技术最为先进,尤其在复合材料、碳纤维、陶瓷纤维等研究领域,日本显示出强大的技术实力。
英国的Plesey公司也是该领域的主要研究机构。
雷达吸波涂料:雷达吸波涂料主要包括磁损性涂料、电损性涂料。
(1)磁损性涂料:磁损性涂料主要由铁氧体等磁性填料分散在介电聚合物中组成。
目前国外航空器的雷达吸波涂层大都属于这一类。
这种涂层在低频段内有较好的吸收性。
美国Condictron公司的铁氧体系列涂料,厚1mm,在2~10GHz内衰减达10~12dB,耐热达500℃;Emerson公司的Eccosorb Coating 268E厚度1.27mm,重4.9kg/m2,在常用雷达频段内(1~16GHz)有良好的衰减性能(10dB)。
磁损型涂料的实际重量通常为8~16kg/m2,因而降低重量是亟待解决的重要问题。
(2) 电损性涂料:电损性涂料通常以各种形式的碳、SiC粉、金属或镀金属纤维为吸收剂,以介电聚合物为粘接剂所组成。
这种涂料重量较轻(一般可低于4kg/m2),高频吸收好,但厚度大,难以做到薄层宽频吸收,尚未见纯电损型涂层用于飞行器的报道。
90年代美国Carnegie-Mellon大学发现了一系列非铁氧体型高效吸收剂,主要是一些视黄基席夫碱盐聚合物,其线型多烯主链上含有连接二价基的双链碳-氮结构,据称涂层可使雷达反射降低80%,比重只有铁氧体的1/10,有报道说这种涂层已用于B-2飞机。
红外隐身材料红外隐身材料作为热红外隐身材料中最重要的品种,因其坚固耐用、成本低廉、制造施工方便,且不受目标几何形状限制等优点一直受到各国的重视,是近年来发展最快的热隐身材料,如美国陆军装备研究司令部、英国BTRRLC公司材料系统部、澳大利亚国防科技组织的材料研究室、德国PUSH GUNTER和瑞典巴拉居达公司均已开发了第二代产品,有些可兼容红外、毫米波和可见光。
近年来美国等西方国家在探索新型颜料和粘接剂等领域作了大量工作。
新一代的热隐身涂料大多采用热红外透明度。
国内外目前研制的红外隐身材料主要有单一型和复合型两种。
单一型红外隐身材料:导电高聚物材料重量轻、材料组成可控性好且导电率变化范围大,因此作为单一红外隐身材料使用的前景十分乐观,但其加工较困难且价格相当昂贵,除聚苯胺外尚无商品生产。
E. R. Stein等人研究发现, 导电聚合物聚吡咯在 1. 0~2. 0GHz 对电磁波的衰减达26dB。
中科院化学所的万梅香等人研制的导电高聚物涂层材料,当涂层厚度在 10~15μm 时,一些导电高聚物在8~20μm 的范围内的红外发射率可小于0. 4。
复合型红外隐身材料:复合型红外隐身材料主要有涂料型隐身材料、多层隐身材料和夹芯材料。
(1) 涂料型隐身材料:涂料型红外隐身材料一般由粘合剂和填料两部分组成。
填料和粘合剂是影响红外隐身性能的主要因素,目前的研究大多针对热隐身。
(2) 多层隐身材料:多层隐身材料中最常见的是涂敷型双层材料。
一般有微波吸收底层和红外吸收面层组成。
德国的 Boehne研制了一种双层材料, 底层有导电石墨、炭化硼等雷达吸收剂 ( 75%~85%) , Sb2O3 阻燃剂( 6%~8%) 和橡胶粘合剂( 7%~18%) 组成,面层含有在大气窗口具有低发射率的颜料。
国内研制出了面层为低发射率的红外隐身材料, 内层雷达隐身材料可用结构型和涂层型两种吸波材料的双层隐身材料。
(3) 夹芯材料:夹芯材料一般由面板和芯组成。
面板一般为透波材料, 芯为电磁损耗材料和红外隐身材料。
纳米复合隐身材料纳米材料的特性:表面效应。
纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例,随着粒径的减小,表面原子数量比迅速增加。
由于表面原子数量比增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。
量子尺寸效应。
粒子尺寸下降到一定值时,费米能级附近的电子连续能级离散化,致使纳米材料具有高的光学非线性,特异的催化及光催化特性。
小尺寸效应。
当超细微粒的尺寸与光波波长或德布罗意波长及超导态的相干长度等物理尺寸特征相当或者更小时,晶体周期性的边界条件将被破坏,从而产生一系列的光学、热学、磁学和力学性质。
纳米复合隐身材料的隐身机理:由于纳米材料的结构尺寸在纳米数量级,物质的量子尺寸效应和表面效应等方面对材料性能有重要影响。
隐身材料按其吸波机制可分为电损耗型与磁损耗型。
电损耗型隐身材料包括SiC粉末、SiC纤维、金属短纤维、钛酸钡陶瓷体、导电高聚物以及导电石墨粉等;磁损耗型隐身材料包括铁氧体粉、羟基铁粉、超细金属粉或纳米相材料等。
下面分别以纳米金属粉体(如Fe、Ni等)与纳米Si/C/N粉体为例,具体分析磁损耗型与电损耗型纳米隐身材料的吸波机理。
金属粉体(如Fe、Ni等)随着颗粒尺寸的减小,特别是达到纳米级后,电导率很低,材料的比饱和磁化强度下降,但磁化率和矫顽力急剧上升。
其在细化过程中,处于表面的原子数越来越多,增大了纳米材料的活性,因此在一定波段电磁波的辐射下,原子、电子运动加剧,促进磁化,使电磁能转化为热能,从而增加了材料的吸波性能。
一般认为,其对电磁波能量的吸收由晶格电场热振动引起的电子散射、杂质和晶格缺陷引起的电子散射以及电子与电子之间的相互作用三种效应来决定。
纳米Si/C/N粉体的吸波机理与其结构密切相关。
但目前对其结构的研究并没有得出确切结论,本文仅以M.Suzuki等人对激光诱导SiH4+C2H4+NH3气相合成的纳米Si/C/N粉体所提出的Si(C)N固溶体结构模型来作说明。
其理论认为,在纳米Si/C/N粉体中固溶了N,存在Si(N)C固溶体,而这些判断也得到了实验的证实。