11-6带电粒子在磁场中的受力

合集下载

初中物理:带电粒子在匀强磁场中的运动

初中物理:带电粒子在匀强磁场中的运动

第6节 带电粒子在匀强磁场中的运动1.洛伦兹力方向总是垂直于速度方向,所以洛伦兹力不对带电粒子做功,它只改变带电粒子速度的方向,不改变带电粒子速度的大小.2.垂直射入匀强磁场的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力充当向心力.即Bq v =m v 2r ,所以r =m v Bq ,由v =2πr T ,得知T =2πmBq3.质谱仪的原理和应用 (1)原理图:如图1所示.图1(2)加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v 2①(3)偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B =m v 2r②(4)由①②两式可以求出粒子的质量、比荷、半径等,其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化.(5)质谱仪的应用:可以测定带电粒子的质量和分析同位素 4.回旋加速器的原理及应用 (1)构造图:如图2所示.回旋加速器的核心部件是两个D 形盒.图2(2)原理回旋加速器有两个铜质的D 形盒D 1、D 2,其间留有一空隙,加以加速电压,离子源处在中心O 附近,匀强磁场垂直于D 形盒表面.粒子在两盒空间的匀强磁场中,做匀速圆周运动,在两盒间的空隙中,被电场加速.如果交变电场的周期与粒子在磁场中的运动周期相同,粒子在空隙中总被加速,半径r 逐渐增大,达到预定速率后,用静电偏转极将高能粒子引出D 形盒用于科学研究.(3)用途加速器是使带电粒子获得高能量的装置,是科学家探究原子核的有力工具,而且在工、农、医药等行业得到广泛应用.5.一个质量为m 、电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,则下列说法中正确的是( )A .它所受的洛伦兹力是恒定不变的B .它的速度是恒定不变的C .它的速度与磁感应强度B 成正比D .它的运动周期与速度的大小无关 答案 D解析 粒子在匀强磁场中做匀速圆周运动时洛伦兹力提供向心力,沦伦兹力的大小不变,方向始终指向圆心,不断改变,所以A 错.速度的大小不变,方向不断改变,所以B 错.由于粒子进入磁场后洛伦兹力不做功,因此粒子的速度大小不改变,粒子速度大小始终等于其进入磁场时的值,与磁感应强度B 无关,所以C 错.由运动周期公式T =2πmBq ,可知T 与速度v 的大小无关.即D 正确.6.两个粒子,带电量相等,在同一匀强磁场中只受洛伦兹力而做匀速圆周运动( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则周期必相等 D .若质量相等,则半径必相等 答案 B解析 根据粒子在磁场中的运动轨道半径r =m v qB 和周期T =2πmBq 公式可知,在q 、B 一定的情况下,轨道半径r 与v 和m 的大小有关,而周期T 只与m 有关.【概念规律练】知识点一 带电粒子在匀强磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径为原来的四分之一D .粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =m v qB ,T =2πmqB 知:磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1 答案 A解析 质子(11H)和α粒子(42He)带电荷量之比q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动规律,R =m v qB ,T =2πmqB,粒子速率相同,代入q 、m 可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确.知识点二 带电粒子在有界磁场中的圆周运动3. 如图3所示,一束电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子的入射方向的夹角是30°,则电子的质量是多少?电子穿过磁场的时间又是多少?图3答案2deB v πd3v解析 电子在磁场中运动时,只受洛伦兹力作用,故其轨道是圆弧的一部分.又因洛伦兹力与速度v 垂直,故圆心应在电子穿入和穿出时洛伦兹力延长线的交点上.从图中可以看出,AB 弧所对的圆心角θ=30°=π6,OB 即为半径r ,由几何关系可得:r =d sin θ=2d.由半径公式 r =m v Bq 得:m =qBr v =2deB v. 带电粒子通过AB 弧所用的时间,即穿过磁场的时间为: t =θ2πT =112×T =112×2πm Be =πm 6Be =πd 3v. 点评 作出辅助线,构成直角三角形,利用几何知识求解半径.求时间有两种方法:一种是利用公式t =θ2πT ,另一种是利用公式t =Rθv求解.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).知识点三 质谱仪5. 质谱仪原理如图5所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:图5(1)粒子的速度v 为多少?(2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?答案 (1) 2eU 1m (2)B 1d 2eU 1m (3)1B 2 2U 1me解析 根据动能定理可求出速度v ,据电场力和洛伦兹力相等可得到v 2,再据粒子在磁场中做匀速圆周运动的知识可求得半径.(1)在a 中,e 被加速电场U 1加速,由动能定理有eU 1=12m v 2得v = 2eU 1m.(2)在b 中,e 受的电场力和洛伦兹力大小相等,即e U 2d=e v B 1,代入v 值得U 2=B 1d2eU 1m. (3)在c 中,e 受洛伦兹力作用而做圆周运动,回转半径R =m v B 2e ,代入v 值解得R =1B 2 2U 1m e.点评 分析带电粒子在场中的受力,依据其运动特点,选择物理规律进行求解分析. 知识点四 回旋加速器 6.在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .在交流电压一定的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关. 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确;粒子获得的动能E k =(qBR )22m ,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,故C选项正确.7.有一回旋加速器,它的高频电源的频率为1.2×107 Hz ,D 形盒的半径为0.532 m ,求加速氘核时所需的磁感应强度为多大?氘核所能达到的最大动能为多少?(氘核的质量为3.3×10-27 kg ,氘核的电荷量为1.6×10-19C)答案 1.55 T 2.64×10-12 J解析 氘核在磁场中做圆周运动,由洛伦兹力提供向心力,据牛顿第二定律q v B =m v 2R,周期T =2πR v,解得圆周运动的周期T =2πmqB .要使氘核每次经过电场均被加速,则其在磁场中做圆周运动的周期等于交变电压的周期,即T =1f.所以B =2πfm q =2×3.14×1.2×107×3.3×10-271.6×10-19T=1.55 T.设氘核的最大速度为v ,对应的圆周运动的半径恰好等于D 形盒的半径,所以v =qBRm .故氘核所能达到的最大动能E max =12m v 2=12m·(qBR m )2=q 2B 2R 22m=(1.6×10-19)2×1.552×0.53222×3.3×10-27J =2.64×10-12 J.【方法技巧练】一、带电粒子在磁场中运动时间的确定方法8. 如图6所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )图6A .1∶2B .2∶1C .1∶ 3D .1∶1 答案 B9. 如图7所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )图7A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D 解析由图中的几何关系可知,圆弧AB 所对的轨迹圆心角为60°,O 、O ′的连线为该圆心角的角平分线,由此可得带电粒子圆轨迹半径为R =rcot 30°=3r.故带电粒子在磁场中运动的周期为 T =2πR v 0=23πr v 0.带电粒子在磁场区域中运动的时间t =60°360°T =16T =3πr 3v 0.方法总结 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α360°T 或t =α2πT.1.运动电荷进入磁场后(无其他力作用)可能做( ) A .匀速圆周运动 B .匀速直线运动 C .匀加速直线运动 D .平抛运动 答案 AB解析 若运动电荷垂直于磁场方向进入匀强磁场,则做匀速圆周运动;若运动方向和匀强磁场方向平行,则做匀速直线运动,故A 、B 正确,由于洛伦兹力不做功,故电荷的动能和速度不变,C 错误.由于洛伦兹力是变力,故D 错误.2.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )答案 C3.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.如图8所示是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图8A .粒子先经过a 点,再经过b 点B .粒子先经过b 点,再经过a 点C .粒子带负电D .粒子带正电答案 AC解析 由于粒子的速度减小,所以轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.4.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E 1和α粒子的动能E 2之比E 1∶E 2等于( )A .4∶1B .1∶1C .1∶2D .2∶1 答案 B解析 由r =m v qB ,E =12m v 2得E =r 2B 2q 22m,所以E 1∶E 2=q 21m 1∶q 22m 2=1∶1. 5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.6.如图9所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )图9A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O点处的距离相等答案 A7. 如图10所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子()图10A.只有速度v大小一定的粒子可以沿中心线通过弯管B.只有质量m大小一定的粒子可以沿中心线通过弯管C.只有m、v的乘积大小一定的粒子可以沿中心线通过弯管D.只有动能E k大小一定的粒子可以沿中心线通过弯管答案 C解析因为粒子能通过弯管要有一定的半径,其半径r=R.所以r=R=m vqB,由q和B相同,则只有当m v一定时,粒子才能通过弯管.8. 如图11所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()图11A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0答案AD解析不加磁场时:F E=mR(2πT0)2,若磁场方向向里,则有F E-F B=mR(2πT1)2,若磁场方向向外,则有F E+F B=mR(2πT2)2,比较知:T1>T0,T2<T0,选项A、D正确.9.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是()图12A.增大匀强电场间的加速电压B.增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径 答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r,得v =qBr m.若D 形盒的半径为R ,则r =R 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m ,所以要提高加速粒子射出时的动能,应尽可能增大磁感应强度B 和加速器的半径R.10. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图13所示,离子源S 产生一个质量为m ,电荷量为q 的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U 加速,进入磁感应强度为B 的匀强磁场,沿着半圆运动而达到记录它的照相底片P 上,测得它在P 上的位置到入口处S 1的距离为x ,则下列说法正确的是( )图13A .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子的质量一定变大B .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明加速电压U 一定变大C .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明磁感应强度B 一定变大D .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子所带电荷量q 可能变小答案 D解析 由qU =12m v 2,得v =2qU m ,x =2R ,所以R =x 2=m vqB ,x =2m v qB =2m qB 2qU m=8mUqB 2,可以看出,x 变大,可能是因为m 变大,U 变大,q 变小,B 变小,故只有D 对.11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m.求:(1)质子最初进入D 形盒的动能多大;(2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.答案 (1)eU (2)e 2B 2R 22m (3)eB2πm解析 (1)粒子在电场中加速,由动能定理得: eU =E k -0,解得E k =eU.(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R①质子的最大动能:E km =12m v 2②解①②式得:E km =e 2B 2R 22m(3)f =1T =eB 2πm12. 如图14所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图14(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.答案 (1)3πmqB (2)6m v 0qB解析 粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入x 轴下方磁场,又运动半个圆周后第二次到达x 轴.如下图所示.(1)由牛顿第二定律q v 0B =m v 20r①T =2πr v 0②得T 1=2πm qB ,T 2=4πmqB ,粒子第二次到达x 轴需时间 t =12T 1+12T 2=3πm qB. (2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB ,粒子第二次到达x 轴时离O 点的距离 x =2r 1+2r 2=6m v 0qB.。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动
分析
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出所受重力与洛 伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆周运动,由此可以求出 粒子运动的轨道半径及周期
解: (1)粒子所受的重力 G =mg=1.67×10-27×9.8 N = 1.64×10-26N
所受的洛伦兹力
F= qvB = 1.6×10-19×5×105×0.2N = 1.6×10-14N
的变化。速度增大时,圆周运动的半径增大;反之半径减小。 • 保持出射电子的速度不变,改变磁感应强度,观察电子束径迹
的变化。B增大时,圆周运动的半径减小;反之半径增大。
带电粒子在匀强磁场中做匀速圆周运动时周期有何特征?
根据T 2r 结合r mv
v
qB
可知T 2m
qB
可见同一个粒子在匀强磁场中做匀速圆周运动的周期与速 度无关
A.粒子从a到b,带正电 B.粒子从a到b,带负电 C.粒子从b到a,带正电 D.粒子从b到a,带负电
大小,由公式可求出运动时间。
t
3600
T
( 的单位是:度)
或 t T ( 的单位是 : 弧度)

1. 轨道半径与磁感应强度、运动速度相联系,在磁场中运动的时间与周 期、偏转角相联系。
2. 粒子速度的偏向角 ( φ ) 等于圆心角 ( α ),并等于AB 弦与切线的夹角 ( 弦 切角 θ ) 的 2 倍 ( 如图 ),即
重力与洛伦兹力之比
G F
1.64 1026 1.6 1014
1.03 1012
可见,带电粒子在磁场中运动时,洛伦兹力远大于重力,重力作 用的影响可以忽略。
(2)带电粒子所受的洛伦兹力为
F = qvB 洛伦兹力提供向心力,故 qvB m v2

带电粒子在电场和磁场中所受的力解读

带电粒子在电场和磁场中所受的力解读

特点:不对运动电荷做功。不改变 v0大小,只改变 v0 方向。即不改变带电粒子的速率和动能。 轨迹: 匀速率圆周运动,速率仍为
v0
回旋半径R:带电粒子作圆周运动的半径。
由牛顿第二定律: qv B mv 0
2 0
R
回旋半径
m v0 R q B
回旋周期T:带电粒子运行一周所需要的时间。 2 R 2 m T v0 qB 回旋频率f:单位时间内带电粒子运行的圈数。
当年用它发现了氯和汞的同位素,以后几年内 又发现了许多种同位素,特别是一些非放射性的同 位素。
阿斯顿于1922年获诺贝尔化学奖。 工作 原理 正离子经过狭缝Sl和S2之后,进入速度选 择器;由S3射出,进入另一磁场,作匀速 圆周运动到达照相底片。
p
滤速器
qE qvB
vE B
F Fe 速度选择器 m B 照相底片 A x s3 B
等螺距螺旋线运动 R mv qB mv0 sin qB 2m h Tv// v0 cos qB
三、带电粒子在电场和磁场中的运动
质谱仪(P155)
~就是用物理方法分析同位素的仪器。
英国实验化学家和物理学家阿斯顿(F.W.Aston, 1877-1945)在1919年创制的。
Fm qv B


Fm 0
匀速圆周运动 匀速直线运动
d
其合运动为螺旋线运动。
螺距
螺旋线的半径为 R mv mv sin qB qB
~与垂直于磁场的速度分量成正比。 粒子的回旋周期 2 R 2 R 2 m T v v sin qB ~与速度、半径无关。

带电粒子在电场磁场中的运动

带电粒子在电场磁场中的运动

磁流体发电
气体在3000K高温下将 + 高温 等离 子气
+ + +
v v
I
发生电离,成为正、负离子,
将高温等离子气体以 1000m/s的速度进入均匀磁


fm
+ -



B
场B中,
根据洛仑兹力公式
f qv B
– – –
fm
正电荷聚集在上板,负电荷聚集在下板,因而可向外供电。



B



•电子偶:理论和实验都表明,正电子总是伴随着 电子一起出现的,犹如成对成双的配偶,故称之为 电子——正电子偶,简称电子偶或电子对。
3、磁聚焦
速度与磁场有一个夹角θ, 把速度分解成平行于磁场 的分量与垂直于磁场的分 量 v // v cos v v sin 在平行于磁场的方向: F//=0 ,作匀速直线运动; 在垂直于磁场的方向: F⊥=qvBsinθ,匀速圆周运动 故带电粒子同时参与两个运动,结果粒子作螺旋线向前运动, 轨迹是螺旋线。 mv mv 螺距——粒子回转一周 sin 回旋半径 R qB qB 所前进的距离
0
q B R0 2m
2
2
2
2
从原理上说,要增大粒子的能量,可以从增大电磁铁的截面 (即增大半圆盒的面积)着手,但实际上这里很困难的。
我国最大的三个加速器
北京正负电子对撞机
合肥同步辐射加速器
兰州重离子加速器
4、霍耳效应
•现象 1879年霍耳发现把一载流导体 d 放在磁场中,如果磁场方向与 电流方向垂直,则在与磁场和 电流二者垂直的方向上出现横 uH b 向电势差,这一现象称之为霍 耳效应。相应的电势差称为霍 耳电压。

11-3洛伦兹力

11-3洛伦兹力

11-6,7 带电粒子在电磁场中的运动 -
十一章 真空中的恒定磁场
二、带电粒子在均匀磁场中的运动 1 . v0 ⊥ B 粒子:电量q,质量m, 粒子:电量 ,质量 ,速度 v0
v02 qv0B = m R
mv0 R= qB
2π R 2π m T= = v0 qB
11-6,7 带电粒子在电磁场中的运动 - 2.
11-6,7 带电粒子在电磁场中的运动 -
十一章 真空中的恒定磁场
§8-6 带电粒子在静电场中的运动
力矩) 一、带电粒子在匀强场中受力(力矩 带电粒子在匀强场中受力 力矩
+q
F = F+ + F− = qE − qE = 0
M = qEr0 sinθ = pE sinθ
r0
θ
稳定平衡
F+
E
F−
M =0
F = qE e Fm = qv × B
z
2. 磁场力(洛仑兹力) 磁场力(洛仑兹力) 特征
Fm
o x
q+ θ
B
y
v
始终与电荷的运动方向垂直, 1) 始终与电荷的运动方向垂直,只改变电荷运动方向 2) 洛伦兹力永远不会对运动电荷作功。 洛伦兹力永远不会对运动电荷作功。 • 运动电荷在电场和磁 F = qE + qv× B 场中受的力
作业
书 11-17 11-20
(同轴电缆) 同轴电缆)
下次课内容
§11-8、9、10 、 、 磁场对载流导线的作用 第十二章 磁介质
11-23 11-26
当太阳黑子活动引起空间磁 场的变化, 场的变化,使粒子在两极处的磁 力线引导下, 力线引导下,在两极附近进入大 气层,能引起美妙的北极光。 气层,能引起美妙的北极光。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

带电物体在磁场中受力公式_概述说明

带电物体在磁场中受力公式_概述说明

带电物体在磁场中受力公式概述说明1. 引言1.1 概述本文旨在介绍和探讨带电物体在磁场中受力公式的原理、推导方法以及应用实例。

对于理解电磁学和磁场对带电粒子的作用具有重要的意义。

通过深入了解这一领域,我们可以更好地理解和应用于现实生活中的各种情境。

1.2 文章结构本文共分为五个部分。

首先,我们将在引言部分给出总览,并说明文章结构。

其次,将介绍带电物体在磁场中受力公式的概述,包括对磁场和带电粒子受力原理的介绍,以及磁场对带电物体的影响。

接下来,将详细讲解带电物体在磁场中受力公式的推导与解释,包括洛伦兹力公式的推导、方向与大小关系的说明以及特殊情况下受力表达式的讨论。

然后,在应用与实例分析部分,将探讨该公式在电磁感应现象、粒子加速器以及日常生活中的案例中所起到的重要作用。

最后,在结论与总结部分,我们将总结所述内容并提出一些进一步的思考。

1.3 目的本文旨在通过对带电物体在磁场中受力公式的深入讨论,帮助读者更全面地理解该公式的原理和应用。

同时,希望通过对实际案例的分析,展示该公式在各个领域中的重要性和实际价值。

通过阅读本文,读者将能够获得较为完整准确的关于带电物体在磁场中受力公式的知识,并能够将其运用到实践中。

2. 带电物体在磁场中受力公式概述2.1 磁场介绍磁场是由具有磁性的物质产生的一种物理现象,它可以通过磁力线表示。

磁场存在于许多自然界和人造物体中,如永久磁铁、电流通过的导线、地球等。

在磁场中,带电粒子会受到一定的力的作用。

2.2 带电粒子受力原理根据安培定律和洛伦兹力定律,当一个带电粒子(电荷)运动时,如果它穿过一个磁场,则会感受到一个垂直于其速度方向和磁场方向的力,该力被称为洛伦兹力(FL)。

洛伦兹力的大小与带电粒子的电荷量(q)、它的速度(v)以及它所在位置处的磁感应强度(B)有关。

洛伦兹力可以用以下公式表示:FL = q * v * B * sinθ其中,FL表示洛伦兹力的大小,q是粒子的电荷量,v是粒子运动速度,B是磁场的磁感应强度,θ是带电粒子的速度方向与磁场方向之间的夹角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向垂直时: Fm qvB
B
v
q2 F ຫໍສະໝຸດ BF 不做功q v
F
二、 带电粒子在磁场中的运动 f qv B
(1)v与 B 平行或反平行 f 0 v c
(2) v与B垂直
f qvB
v2 qvB m
R mv
R
qB
T 2R 2m
v qB

B
粒子做直线运动
× ×× × ××
× × × × × ×B × × ×f × × ×
fm qv B
大小
fm qvB sin
方向
fm
q
B v
力与速度方向垂直。 不能改变速度大小, 只能改变速度方向。
粒子在同时存在电场和磁场的空间运动时,其受的合力:
F q(E v B) ——洛仑兹关系式
电场力
磁场力
讨论:
1当带电粒子沿磁场方向运动时:
F 0
当带电粒子的运动方向与磁场
× × × × × × × × ×q × × ×v
粒子做匀速圆周运动
(3) v与B 成角
v// v
v cos v sin
R mv mv sin
qB
qB
v
v

v//
B
B
2R 2m
T
v qB
螺距 h : h v//T v cos T 2mv cos
qB
v//
h
q
R
v v
B
R
B
R
B
R
B
R
B
R
B
R
B
R
B
R
谢谢观看
11-6带电粒子在磁场中的 力
§11-6 带电粒子在磁场中所受作用及运动
一、洛仑兹力
带电粒子B 在 中磁 所场 受的最大 为 磁 F qvB
m
一般情况下,的 带v与 电 B的 粒夹 子角 为 则磁 F的 力 大f 小 qv为 sB in 用矢量式表示运动电荷在磁场中所受的磁场力为:
fm qv B
相关文档
最新文档