分布式能源技术研究及应用
分布式能源技术及应用研究

分布式能源技术及应用研究随着世界各地的经济发展和环保意识的普及,越来越多的国家开始关注分布式能源技术的研究和应用。
分布式能源技术是指将能源使用和生成分散在不同的地方,通过智能化管理系统进行协调和控制的一种新型能源技术。
这种技术可以有效地提高能源利用效率和降低对环境的影响,成为未来能源发展的重要方向。
一、分布式能源技术的发展趋势分布式能源技术的发展趋势主要包括以下几方面:1、储能技术的不断改进储能技术是分布式能源技术的核心。
当前,电力市场存在高峰时段和低谷时段,而分布式能源系统可以利用储能技术在丰富充电时段将余电储存起来,在用电高峰时段进行供电,实现能量的高效利用。
2、智能化控制技术的提升分布式能源技术需要通过智能化控制技术实现对电力系统的监测、调度和控制,以实现高效性和可靠性。
当前,人工智能、云计算等技术的发展使得分布式能源系统管理更加智能化和便捷化。
3、新能源技术的广泛应用分布式能源技术一般使用可再生能源作为能源源,如太阳能、风能、水能等。
目前,随着可再生能源的广泛应用和技术的进一步改进,分布式能源系统的效率和实用性也在逐步提高。
二、分布式能源的应用领域分布式能源技术的应用领域非常广泛,主要包括以下几个方面:1、家庭用电分布式能源技术可以通过安装太阳能板、储能装置等,将太阳能转化成电能供应家庭电器,从而降低家庭能源的消耗和节约能源开支。
2、建筑用电分布式能源技术在建筑领域的应用主要是通过屋顶安装太阳能板,从而改善建筑物能源的供给和使用能源方式。
3、城市能源分布式能源技术可以通过在城市中建设太阳能光伏电池板、风力发电机组等,从而大规模地收集可再生能源,以供应城市用电需求,缓解能源不足的问题。
4、农业能源分布式能源技术可以通过帮助农民搭建太阳能光伏电池板等,实现农业用电需求的满足。
尤其在偏远地区和山区,分布式能源技术的应用可以有效地改善农村的能源消耗和生产效率。
三、分布式能源技术面临的挑战尽管分布式能源技术有很多优势,但是也存在一些困难和挑战:1、资金和投资问题分布式能源系统一般需要大量的资金和投资。
分布式能源技术的研究及未来趋势

分布式能源技术的研究及未来趋势随着能源市场的开放和电力化率的不断提高,人们对电力质量的要求也越来越高。
分布式能源技术的出现也为解决当前电力问题提供了途径。
此次我们将介绍分布式能源技术的研究进展和未来趋势。
一、分布式能源技术的研究进展1.分布式能源技术的定义分布式能源技术是以可再生能源技术为核心,通过互联网、智能电网等技术手段将分布在不同地点的能源进行统一管理,从而提高电力利用率和节约资源的一种新型能源技术。
分布式能源技术具有分散化、可再生、灵活性、互动性等特点。
2.分布式能源技术的分类分布式能源技术可以分为两种类型:一种是分布式发电技术,另一种是分布式储能技术。
(1)分布式发电技术分布式发电技术是指根据发电负荷需求,在离需求地近的地方分散式建立小型的能源系统,利用自然、人工能源进行发电,将电能输送至需求地。
分布式发电技术可分为微型涡轮发电系统、太阳能光伏发电系统、风能转换发电系统等多种。
(2)分布式储能技术分布式储能技术是指将能源储存在小型设备中,根据需求进行释放并转换成电能,达到增加系统自主性的效果,这种储能技术包括电化学储能、机械储能和电容储能等方式。
3.分布式能源技术的研究进展分布式能源技术在实践中有了广泛的应用,同时也在理论方面进行了深入研究。
在理论研究方面,目前已有多篇论文发表,包括分布式能源系统的建模与优化、分布式能源系统的控制策略和调度算法、分布式直流电网的特性及其控制等方面的研究成果。
在实践应用方面,分布式光伏发电、分布式风电、分布式能源系统等已被广泛应用于城市建设、农村电网、住宅区等领域。
二、分布式能源技术未来趋势1.分布式能源技术管理平台将成为主流分布式能源技术的出现和发展,推进了能源技术的革新和电力领域的转型,同时也带来了电力生产和管理方式的重塑。
未来,分布式能源技术管理平台将会成为主流,能够实现对分布式能源技术的集中管理和协调,为电力生产和管理带来协同、智能的效果,提高电力使用效率和降低管理成本。
多能互补分布式能源关键技术发展研究

多能互补分布式能源关键技术发展研究
分布式能源的互补性是关键技术之一。
分布式能源包括太阳能、风能等多种能源形式,每种能源都有其独特的特点和局限性。
如何合理利用这些不同的能源形式,实现互补,是
分布式能源发展的关键。
为了实现互补,需要研究不同能源形式之间的协调安排,以及能
源之间的转换和储存技术。
多能互补分布式能源需要建立一个高效的能源管理系统。
传统的能源管理系统主要面
向中央化的能源供应,而分布式能源具有能源来源分散、能源规模较小的特点。
分布式能
源的管理系统需要具备分散、灵活、可靠和智能化的特点。
这需要研究分布式能源管理系
统的设计与优化,包括对能源网络的控制与调度、能源消费的监测与管理等。
安全稳定性是多能互补分布式能源发展的又一个关键技术。
分布式能源的发展将会导
致能源供应的分散化,从而增加能源系统的复杂性和脆弱性。
为了确保分布式能源的安全
和稳定,需要研究能源系统的安全评估、风险控制和应急处理等技术,提高分布式能源系
统的韧性和抗干扰能力。
经济与环境效益的平衡也是多能互补分布式能源发展的一个重要关键技术。
分布式能
源的发展需要投入大量的资金和资源,对环境造成的影响也需要被重视。
需要研究分布式
能源系统的经济性评估和环境影响评估等技术,以实现经济与环境效益的平衡。
多能互补分布式能源的发展面临着多个关键技术挑战。
需要通过对不同能源形式的互
补性研究,建立高效的能源管理系统,提升能源系统的安全稳定性,实现经济与环境效益
的平衡,推动分布式能源的健康发展。
电力系统中的分布式能源与储能技术研究

电力系统中的分布式能源与储能技术研究近年来,随着能源问题的日益凸显,分布式能源和储能技术得到了广泛关注。
在电力系统中,分布式能源和储能技术可以为整个电力系统的稳定性和可靠性做出贡献。
一、分布式能源技术的研究1.1 定义和分类分布式能源是指分布在城市和乡村各地的小规模能源系统,包括太阳能、风能、水力发电、生物质发电等。
分布式能源技术是指利用这些能源,将其转化成电能、热能或制氢等一系列可用能源的技术。
根据能源的类型和应用领域不同,分布式能源技术可以分为三类:分布式发电技术、分布式供热技术和分布式制氢技术。
其中分布式发电技术是应用最广泛的一类。
1.2 分布式能源技术的优点分布式能源技术有很多优点。
首先,它可以提高电力系统的安全性和稳定性。
传统的中心化电力系统存在很大的故障和短路风险,而分布式能源系统可以将能源分散在各个地方,从而降低了故障和短路的风险。
其次,分布式能源技术可以提高供电可靠性。
由于分布式能源系统采用的都是小规模的能源设备,所以在发生故障时,能够更快速地进行检修和修复。
最后,分布式能源技术还可以降低电力成本。
由于分布式能源系统调度成本较低,而且可以降低输电损耗,因此可以降低电力成本,提高供电效率。
1.3 分布式能源技术的挑战分布式能源技术虽然具有很多优点,但也有不少挑战和难点需要克服。
首先,分布式能源技术需要解决能源不稳定和可预测性差的问题。
由于分布式能源依赖于可变的自然资源,所以难以准确预测能源的供应情况。
其次,分布式能源技术还需要面对电力市场竞争和管理复杂性等问题。
为了实现合理的能源分配和管理,需要对电力市场进行深入研究和改革。
二、储能技术的研究2.1 储能技术的定义和分类当发电量大于负荷需求时,电网的负荷消纳能力就会变差,很容易导致电网不稳定。
因此,储能技术是保障电网稳定性的重要手段之一。
储能技术是指将电能或其他可用能源转化为储存形式,并在需要时进行释放的技术。
储能技术根据存储介质的不同,可以分为化学储能、物理储能和电子储能等几大类。
分布式能源技术应用

分布式能源技术应用在现代社会中,能源正逐渐成为社会经济发展的基础支撑。
然而,传统的能源开采和利用方式不仅消耗资源,还造成了严重的环境污染和天气变化。
因此,追求清洁能源已成为时代的必然趋势。
分布式能源技术应运而生,成为人们追求清洁能源的重要选择。
一、分布式能源技术分布式能源技术是把多种能源设备和资源集成,建立在地理分散的基础上,形成一个相互连接、互相支持的分布式能源系统。
他们可以在最近的地点生成电力、热力或冷气,允许能源从一个地方转移到另一个地方,以最大化地使用独立能源设备。
分布式能源技术的主要特点是小规模化、分散化、本地化和智能化。
二、分布式能源技术的应用1、太阳能太阳能是一种常见的分布式能源技术,在地理分散区域能够进行资源采集和能源发电。
而且,太阳能发电系统的可扩展性非常强,可以适应各种不同的需求。
太阳能发电不仅环保而且经济实用,它所产生的电能可以直接存储在蓄电池中,也可以通过智能电网合并和共享。
2、风力风力是另一个广泛应用的分布式能源技术。
对于那些有风资源的地方,这是一种经济环保的选择。
风力发电系统可以在不同的地理位置进行部署,也可以根据实际需求进行组合和合并。
3、生物质生物质是一种可再生能源,可以通过分布式能源技术进行更高效的转换。
对于那些有废弃生物物质的地区,通过回收和再生利用,生物质能够成为一个经济实用的能源方式。
而且,在分布式系统中,生物质可以与其他能源进行整合和优化使用,使其更加多样化和灵活。
4、储能储能是分布式能源技术中的重要组成部分,它通过蓄电池、超级电容和能量存储器等技术解决了能源存储和再利用等方面的问题。
储能技术在分布式能源系统中可以实现能量多元化利用,使能源的调度更加便捷和高效。
三、分布式能源技术的优势1、环保分布式能源技术的生产方式更为环保。
对不同类型的资源和能源进行有效协调,能够更加高效地利用能源,减少能源消耗量,降低污染排放。
2、灵活分布式能源技术的规模更小,生产区域更分散。
电力系统的分布式能源接入技术

电力系统的分布式能源接入技术分布式能源接入技术是近年来电力系统领域的一项重要技术革新,其在解决能源供需矛盾、实现能源可持续发展等方面具有重要意义。
本文将从分布式能源接入技术的定义、优势、应用和发展前景等方面进行探讨。
一、分布式能源接入技术的定义和优势分布式能源接入技术是指将分布式能源源头(如太阳能、风能等)接入电力系统中,实现能源的分散供应。
与传统的集中式能源供应系统相比,分布式能源接入技术具有以下优势:1. 提高电力系统的可靠性和稳定性。
分布式能源接入技术将能源分散供应到电力系统中,降低了能源集中供应可能导致的故障风险。
同时,分布式能源源头的多样性也能有效应对能源供应出现的波动和中断的问题。
2. 提供了清洁环保的能源供应方式。
分布式能源接入技术主要利用可再生能源,如太阳能、风能,减少了对传统能源的依赖,有利于减少温室气体排放,保护环境,实现可持续发展。
3. 促进能源利用效率的提高。
分布式能源接入技术能够将能源供应更接近终端用户,减少能源传输和转换损耗,提高能源利用效率。
4. 促进能源消费者参与能源管理。
分布式能源接入技术能够让终端用户成为能源的生产者和消费者,通过参与能源管理,实现能源的实时监测和优化调度,提高能源使用效益。
二、分布式能源接入技术的应用分布式能源接入技术在各个领域得到了广泛应用,以下是几个典型的应用场景:1. 居民区和商业建筑。
通过在居民区和商业建筑安装太阳能光伏电池板和风力发电装置,实现分布式能源供应,降低用电成本,减少对传统电网的依赖。
2. 工业领域。
在工业园区或工业企业中建设分布式能源发电厂,如生物质能发电厂和风力发电厂,实现自给自足的能源供应,降低生产成本。
3. 农村地区。
在农村地区,通过分布式能源接入技术,将太阳能和生物质能等可再生能源利用起来,满足当地居民的用电需求。
三、分布式能源接入技术的发展前景分布式能源接入技术在未来有着广阔的发展前景,以下是几个方面的展望:1. 技术的不断创新和进步。
电力系统中分布式能源技术的发展和应用

电力系统中分布式能源技术的发展和应用随着全球经济的发展与社会的进步,人们对能源的需求也在不断增加。
同时,经济、环保、安全等因素的不断升级,也使得现有的能源体系面临着诸多挑战。
为此,分布式能源技术逐渐成为人们关注的焦点。
一、分布式能源技术是什么?所谓分布式能源技术,就是将能源设备分散到用户用电场所附近,通过智能化控制和运营,将散点式的能源设备转换成可视、可控、可调、可靠的能源消费者。
分布式能源技术包括太阳能光伏、风力发电、储能系统、氢能源等多个领域。
它们在电网侧、用电侧及两侧之间的不同位置,都可以实现电力的生产、转供和消耗。
二、分布式能源技术的发展现状在全球范围内,分布式能源技术发展趋势明显。
随着科技的发展,分布式能源领域不断涌现出新技术、新应用和新模式,保持着快速的发展势头。
在国内,分布式能源技术发展空间广阔,政策支持不断加强。
2018年发布的《关于促进分布式光伏发展的意见》中提出:“到2020年,全社会分布式光伏电站装机规模不少于3000万千瓦,未来逐步提高规模,以推动新能源发展和电力市场改革。
”这一政策明确地指出了分布式能源的发展方向。
三、分布式能源技术的优势分布式能源技术具有许多优势,它们受到越来越多的人们的青睐。
以下是一些分布式能源技术的主要优势:1. 能源的低碳节能分布式能源技术是“绿色”的能源,它可以减少传统能源所造成的环境污染和温室气体排放,是实现低碳、节能环保的可行方案。
2. 供电的可靠性高分布式能源技术可以将能源的供应和使用场所贴近,避免由于电网故障或其他突发事件导致的停电和电网不稳定等问题。
3. 经济性更优分布式能源技术可以减少能源运输和输电损耗,降低能源综合成本。
同时,分布式能源技术可以降低能源的过度消费,使得能源更加节约高效。
四、分布式能源技术的应用前景分布式能源技术的应用前景广阔。
它不仅可以促进新能源建设,提高电网安全性和可靠性,还可以促进能源消费结构的调整,实现能源的可持续发展。
分布式能源发电与利用

分布式能源发电与利用分布式能源发电与利用是近年来备受关注的一个热门话题,随着我国新能源产业的迅猛发展,分布式能源发电在我国的应用也日益普及。
分布式能源是指基于可再生能源或高效能源技术,通过能源生产、转换、存储和利用系统在点、线、面多个空间进行布局,满足不同用能需求的同时,优化能源资源配置,提高能源利用效率,促进我国能源生产和消费方式的变革。
一、分布式能源发电技术概述1. 太阳能发电太阳能是最主要的分布式能源之一,在我国多地普遍存在充足的太阳资源。
太阳能发电技术主要包括光伏发电和光热发电两种方式。
光伏发电是通过将太阳能转化为电能的技术,采用光伏电池板直接转换太阳光为电能。
而光热发电则是通过太阳能集热后转化为热能,再将热能转化为电能。
2. 风能发电风能是另一种重要的分布式能源,通过风力发电可以将风能转化为电能。
风能发电主要通过风力发电机实现,风力发电机可以将风力转化为机械能,再经过发电机转化为电能。
我国东部地区风资源丰富,尤其是在沿海地区和山地地区,适合开展风力发电项目。
3. 水能发电水能也是一种重要的分布式能源,主要包括水轮发电和潮汐能发电两种方式。
水轮发电是通过水能转化为机械能,再经过发电机转化为电能。
潮汐能发电则是利用潮汐能将海水的动能转化为电能。
我国拥有丰富的水资源,水能发电在我国的应用前景广阔。
二、分布式能源利用技术研究1. 智能能源管理系统智能能源管理系统是分布式能源利用的关键技术之一,通过对能源生产、转换、存储和利用等过程进行智能化管理,实现能源的高效利用和优化配置。
智能能源管理系统可以根据当地气候、负荷需求等因素,实现能源的智能调度和优化控制,提高能源利用效率。
2. 储能技术储能技术是分布式能源发电与利用的关键技术之一,通过对电能进行储存,可以解决分布式能源波动性大、间歇性等问题。
目前常见的储能技术包括电池储能、氢能储能、超级电容储能等,这些储能技术可以帮助平稳供应电能,提高电网稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分布式能源技术研究及应用
(研究单位:中国华电集团公司)
一、研究方向与主要成果
本项目以供能发电行业中节能减排的重大需求为研究背景,研究分布式能源系统余热利用关键技术及系统集成。
研究成果在广州大学城分布式能源站项目中得到充分应用,为分布式能源系统在我国有条件的地区大规模推广应用有着重大的推动作用,为降低大中城市能源消耗和实现节能减排提供重要依据,为分布式能源的规划设计、施工建设、运营管理和分布式能源的标准化、模块化、系列化方面提供重要的参考依据和典型示范。
项目研究所提出的分布式能源集成系统,能够实现一次能源70~80%的利用效率,为替代高能耗、高污染、高运行成本的传统供能方式提供支撑,是大中城市降低能源消耗,实现节能减排,推进智能电网建设的首选方案。
上世纪80年代前后开始,国际上就提出了总能系统与冷热电联产为主要特征的分布式供能系统雏形概念。
近10年来,由于分布式供能技术在能源利用效率、环境保护等方面的优势,逐渐被发达国家所接受,在面向21世纪的能源战略规划中,许多国家将分布式供能技术作为本国科技优先发展的关键领域。
分布式供能系统以冷热电联供为主要形式,具有高效、环保、经济、可靠、和灵活等特点,是一种先进的供能系统,能够大幅度节能减排,我国已将分布式供能技术定位为能源领域前沿技术。
由于分布式供能系统实现了能源的梯级利用,与传统供能系统相比,每100万kW的装机容量,每年可以节能78万吨标煤以上。
我国5年内新增电力装机容量预期超过4亿kW,如果其中的15%~20%采用分布式供能系统,则每年节能6000万吨标煤以上,CO2减排约1.6亿吨。
分布式能源系统是靠近用户端的供能方式,而用户侧的电、热、冷需求是随时间变动的,而常规动力系统往往以稳定运行作为设计要求。
采用关键设备来调整电、热、冷的匹配来适应用户需求是分布式能源系统研究的一个重点,系统集成技术是发挥冷热电联供系统节能优势的关键和难点。
本项目在综合考虑包括启动、设计、变工况在内的全工况性能的系统集成(以下简称“全工况系统集成”)为重点研究方向,同时考虑低于120℃低温烟气的能量利用。
本项目的另外一个研究重点在于引入了“混合动力”原理,采用了主动蓄能的方式来降低系统装机和提高全工况下的能源利用效率。
二、依托项目的基本情况
广州大学城项目是广东省和广州市贯彻“科教兴粤”战略部署的重点项目,是中国华电集团公司在天然气高效利用方面的首个10万千瓦级分布式能源站建设项目。
广州大学城分布式能源站是亚洲最大的
分布式能源系统,为分布式能源站的发展提供了重大示范,为我国建立分布式能源系统设计系列化、模块化标准提供示范,同时积极推动了我国节能减排的深入。
广州大学城坐落于广东省广州市番禹区新造小谷围岛及其南岸地区,远期规划面积为43平方公里,届时区域内总人口将达30余万,分两期建成。
其中小谷围岛内规划面积18平方公里,为大学城一期工程,含十所大学及中央商务区,拟建建筑面积约800万平方米,可容纳14万高校学生,总人口约25万。
广州华电大学城分布式能源站的功能是满足大学城区的各种能源需求,包括为大学城用户提供电力;向集中热水制备站提供生产生活热水的高温热媒水和加热用蒸汽;为厂区提供冷负荷等;并为原关停小电厂的部分热用户提供工业供热热源。
根据广州大学城一期和二期规划,能源站最终规划容量为300MW级,设置4×78 MW分布式能源站,分二期建成,一期先建2套分布式冷热电联供机组,二期工程根据热电负荷的增长情况,在一期基础上再扩建相应的机组,必要的公用设施土建构筑物一次建成,设备分期安装。
广州大学城能源站的热负荷为大学城各校区和中央商务区提供生活热水供应系统,其需求极不平衡。
热水主要提供给学生宿舍和教师公寓以及有需求的公共和商业建筑。
最大小时需水量出现在22:00,由于热水需求时段的极端不均匀,典型日最大用水时段的小时热水负荷大于能源系统相应的小时余热生产能力,系统采用蓄热式的热水供应方式。
广州大学城项目设计热负荷按生活热水负荷和服装洗水热负荷的分时段叠加考虑,设计热负荷:最大热负荷为310GJ/h,最小热负荷为66GJ/h,平均热负荷为146GJ/h。
工业热负荷为11.46t/h,且供汽量比较不稳定,供热蒸汽冷凝水不回收。
大学城热水制备站的热负荷需求在不同月份、不同时段差别很大;冷凝水与所制热水混合后供大学城热水,不回收。
余热锅炉热水汽水损失率为2%。
三、项目的关键技术与创新点
基于对分布式供能技术在我国能源战略中重要地位的共识,《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称“纲要”)中的第一领域(能源)第一优先主题(工业节能)中明确强调发展“分布式冷热电联供技术”。
《纲要》进一步将分布式供能技术作为与氢能、核能等并列的四项前沿技术之一。
本项目的建设实施是对《纲要》规划的具体落实,也是对节能减排的推动。
本项目在研究分布式能源系统集成过程中提出了“以冷定电”和“欠匹配”原则,同时在系统全工况调节和节能关键技术应用方面作出了突出贡献,其成果得到了充分体现。
广州大学城分布式能源项目中以“能源的梯级利用”为主线,围绕理论创新、核心技术突破等目标,开展了系统方案集成和工程应用工作,形成了华电工程自有的创新点和关键技术:
(1)提出了分布式能源系统模块化、序列化设计方法。
在该设计方法的引导下,建成了亚洲目前最大的分布式能源站(发电装机容量为15.6万kW),为分布式能源系统的研究提供了重大示范,同时也积极推动了我国节能减排的深入实施;
(2)丰富和发展了总能系统理论,实现了天然气能量的电、热、冷及生活热水的“四级”利用;
(3)提出有效的全工况调控手段,采用主动蓄能方法和抽汽补汽汽轮机关键设备,平衡了系统冷热电产出,提高了系统的全工况效率和运行灵活性。
同时系统采用了适合于变水温的热水型溴化锂吸收式制冷设备,平衡了生活热水与制冷热源的需求,进一步提高了系统的稳定,提高了燃气轮机尾部烟气的利用率;
(4)形成自主的分布式供能关键过程及系统的理论设计方法。
四、依托项目的经济效益
广州大学城项目坚持科学用能下,实现了系统基础理论、集成技术及调控手段等方面的创新,具有以下效果:
(1)广州大学城项目使分布式能源理论变成实际,在分布式供能关键过程中形成了自主创新,提出动力余热利用、主动蓄能等分布式供能关键过程及系统的理论设计方法,同时,广州大学城项目为我国建立分布式能源系统设计系列化、模块化标准提供示范,使我国的分布式供能系统研究跻身于国际先进行列。
(2)广州大学城项目在“温度对口、梯级利用”热能综合梯级利用理论下,集成了燃气轮机、余热锅炉、蒸汽轮机、溴化锂制冷机和生活热水制取装置,取得了电、热、冷及生活热水的多功能输出,实现了天然气能量的四级利用。
仅余热锅炉尾部受热面的改进,将额外得到290t/h的生活热水供大学城使用。
(3)广州大学城项目在系统全工况调控方面寻求突破,利用抽汽、补汽式汽轮机自动工况调节和稳定系统的输出,突破了传统的调节方式,引领我国分布式供能技术相关基础研究的跨越式发展。
同时系统采用了适合于变水温的热水型溴化锂吸收式制冷设备,平衡了生活热水与制冷热源的需求,进一步提高了系统的稳定性。
广州大学城项目节能率为20~25%。
仅余热锅炉低压蒸汽进入补汽式汽轮机的使用,在不增加燃料消耗的前提下可额外增加上网电量约为3250万千瓦时,每年将为系统增加约2000多万元的纯收入。
(4)变温热水型溴化锂吸收式制冷设备的采用,平衡生活热水与供冷热源的需求,稳定了制冷单元的输出,保证了燃气轮机尾部烟气的高效利用,进一步降低了排烟温度,为系统每年约增加30万元的收
入。
五、依托项目的社会效益
分布式供能技术具有良好的节能效果,并大大降低系统输配电和冷热输送设备的投资和运行成本,具有很好的经济性,可以为投资方、设备制造方、用户等各方带来良好收益。
同时,全球气温变暖,CO2已成为公认的祸首,在上述背景下,提高化石能源利用率,成为CO2减排的重要手段,而分布式能源正是以天然气的高效利用为目的,将成为我国减排目标的重要支撑。
同时,分布式能源技术通常以燃气轮机或内燃机为动力源,其NOx排放远低于常规锅炉,分布式能源系统也将成为我国降低酸雨排放的重要技术。
我国集中式供电电网的规模迅速膨胀,由此所带来的安全性问题是不容忽视的。
广州大学城项目将分布式供能技术和集中式供电有效结合,构架了更加安全稳定的电力系统。
同时,广州大学城项目对抑制夏季电力高峰、填补夏季燃气低谷等方面都发挥了有益作用。
广州大学城分布式能源系统向外界输出电、热、冷、生活热水等多种能源,具有较高的节能率,与常规系统相比,广州大学城分布式能源站项目年CO2减排在8~12万吨,年NOx排放减少1500~2000吨。
适应我国“十一五”期间大幅节能减排的需求。