高考前数学知识点汇总
高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高考数学知识点提纲

高考数学知识点提纲一、函数与方程A. 函数的概念与性质1. 函数定义2. 定义域与值域3. 奇偶性与周期性B. 一次函数与二次函数1. 一次函数的表示与性质2. 一次函数的图像与应用3. 二次函数的表示与性质4. 二次函数的图像与应用C. 指数函数与对数函数1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数与对数的运算规律二、三角函数与图形变换A. 三角比的概念与性质1. 正弦、余弦、正切的定义2. 三角函数之间的关系B. 三角函数的图像与性质1. 周期性与对称性2. 幅值与相位差C. 三角函数的图像变换1. 上下平移与缩放2. 左右平移与周期改变3. 反函数与复合函数的图像变换三、数列与数学归纳法A. 数列的概念与性质1. 数列的定义与表示2. 等差数列与等比数列3. 通项公式与前n项和公式B. 递推数列与数学归纳法1. 递推数列的定义与求解2. 数学归纳法的原理与应用四、几何与易混易错题型A. 三角形与四边形的性质1. 三角形的角度与边长关系2. 四边形的边长与对角线关系B. 平面几何的应用题1. 几何问题的建模与解法2. 相似三角形与勾股定理的应用C. 易混易错题型的解题技巧1. 注意题目条件的限制与合理性2. 多角度思考与审题的重要性五、概率与统计A. 概率的基本概念与性质1. 随机事件与样本空间2. 概率的计算与性质B. 统计与数据分析1. 数据的收集与整理2. 描述性统计与数据解读3. 相关性与回归分析六、解析几何A. 平面与空间的基本概念1. 平面方程与交点计算2. 球面与圆锥曲线的性质B. 直线与圆的性质与方程1. 直线的方程与位置关系2. 圆的方程与位置关系3. 平面与直线的位置关系C. 空间几何的应用题1. 距离计算与相交问题2. 空间图形的投影与旋转总结:以上为高考数学知识点的提纲整理,涵盖了函数与方程、三角函数与图形变换、数列与数学归纳法、几何与易混易错题型、概率与统计以及解析几何等重要内容。
高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
2024年高考数学知识点及公式整理汇总.doc

2024年高考数学知识点及公式整理汇总高中数学重点知识点全总结1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
3、向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
4、并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
1、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:3、怎样判断直线l与圆C的位置关系?圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
高考数学(理)考前必记的60个知识点含公式推理推论总结及提醒

高考理科数学考前必记的60个知识点集合(1)集合之间关系的判断方法①A真含于B⇔A⊆B且A≠B,类比于a<b⇔a≤b且a≠b.②A⊆B⇔A真含于B或A=B,类比于a≤b⇔a<b或a=b.③A=B⇔A⊆B且A⊇B,类比于a=b⇔a≤b且a≥b.(2)集合间关系的两个重要结论①A⊆B包含A=B和A B两种情况,两者必居其一,若存在x∈B且x∉A,说明A≠B ,只能是A B.②集合相等的两层含义:若A⊆B且B⊆A,则A=B;若A=B,则A⊆B且B⊆A.[提醒]1任何一个集合是它本身的子集,即A⊆A.2对于集合A,B,C,如果A⊆B且B⊆C,则有A⊆C.3含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.4集合中元素的三大特性:确定性、互异性、无序性.常见关键词及其否定形式关键词等于大于小于是一定是都是至少有一个至多有一个存在否定词不等于不大于不小于不是不一定是不都是一个也没有至少有两个不存在命题(1)四种命题间的相互关系(2)四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假[提醒]1两个命题互为逆否命题,它们有相同的真假性.2两个命题为互逆命题或互否命题,它们的真假性没有关系.3在判断一些命题的真假时,如果不容易直接判断,则可以判断其逆否命题的真假.(3)含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M非p(x) 充分、必要条件(1)充分条件与必要条件的相关概念①如果p⇒q,那么p是q的充分条件,同时q是p的必要条件.②如果p⇒q,但q⇒/ p,那么p是q的充分不必要条件.③如果p⇒q,且q⇒p,那么p是q的充要条件.④如果q⇒p,且p⇒/ q,那么p是q的必要不充分条件.⑤如果p⇒/ q,且q⇒/ p,那么p是q的既不充分也不必要条件.(2)充分、必要条件与集合的对应关系从逻辑观点看从集合观点看p是q的充分条件(p⇒q)A⊆Bp是q的必要条件(q⇒p)A⊇Bp是q的充分不必要条件(p⇒q,q⇒/ p)A真含于Bp是q的必要不充分条件(q⇒p,p⇒/ q)A真包含Bp是q的充要条件(p⇔q)A=B函数的定义域及相关的6个结论(1)如果f(x)是整式函数,那么函数的定义域是R.(2)如果f(x)是分式函数,那么函数的定义域是使分母不等于0的实数的集合.(3)如果f(x)是偶次根式函数,那么函数的定义域是使被开方数大于或等于0的实数的集合.(4)如果f(x)是对数函数,那么函数的定义域是使真数大于0的实数的集合.(5)如果f(x)是由几个代数式构成的,那么函数的定义域是使各式子都有意义的实数的集合.(6)如果f(x)是从实际问题中得出的函数,则要结合实际情况考虑函数的定义域.函数的值域求函数值域常用的7种方法(1)配方法:二次函数及能通过换元法转化为二次函数的函数类型.(2)判别式法:分子、分母中含有二次项的函数类型,此函数经过变形后可以化为x2A(y)+xB(y)+C(y)=0的形式,再利用判别式加以判断.(3)换元法:无理函数、三角函数(用三角代换)等,如求函数y=2x-3+13-4x的值域.(4)数形结合法:函数和其几何意义相联系的函数类型,如求函数y=3-sin x2-cos x的值域.(5)不等式法:利用几个重要不等式及推论求最值,如a2+b2≥2ab,a+b≥2ab(a,b为正实数).(6)有界性法:一般用于三角函数类型,即利用sin x∈[-1,1],cos x∈[-1,1]等.(7)分离常数法:适用于解析式为分式形式的函数,如求y=x+1x-1的值域.指数函数与对数函数(1)指数函数与对数函数的对比区分表解析式y=a x(a>0且a≠1)y=log a x(a>0且a≠1)定义域R(0,+∞)值域(0,+∞)R图象关系指数函数对数函数奇偶性非奇非偶非奇非偶单调性0<a<1时,在R上是减函数;0<a<1时,在(0,+∞)上是减函数;a>1时,在R上是增函数a>1时,在(0,+∞)上是增函数[提醒]直线x=1与所给指数函数图象的交点的纵坐标即底数,直线y=1与所给对数函数图象的交点的横坐标即底数.(2)比较幂值大小的方法①若指数相同,底数不同,则考虑幂函数.②若指数不同,底数相同,则考虑指数函数.③若指数与底数都不同,则考虑借助中间量,这个中间量的底数与所比较的一个数的底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.(3)常见抽象函数的性质与对应的特殊函数模型的对照表抽象函数的性质特殊函数模型①f(x+y)=f(x)+f(y)(x∈R,y∈R);②f(x-y)=f(x)-f(y)(x∈R,y∈R)正比例函数f(x)=kx(k≠0)①f (x )f (y )=f (x +y )(x ,y ∈R ); ②f (x )f (y )=f (x -y )(x ,y ∈R ,f (y )≠0) 指数函数f (x ) =a x (a >0,a ≠1)①f (xy )=f (x )+f (y )(x >0,y >0);②f (xy)=f (x )-f (y )(x >0,y >0)对数函数f (x )=log a x (a >0,a ≠1)①f (xy )=f (x )f (y )(x ,y ∈R ); ②f (x y )=f (x )f (y )(x ,y ∈R ,y ≠0)幂函数f (x )=x n函数零点的判断方法(1)利用零点存在定理判断法:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0.这个c 也就是方程f (x )=0的根.口诀:函数零点方程根,数形本是同根生,函数零点端点判,图象连续不能忘.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点. 导数(1)基本初等函数的导数公式①(sin x )′=cos x ,(cos x )′=-sin x .②(ln x )′=1x (x >0),(log a x )′=1x ln a(x >0,a >0,且a ≠1).③(e x )′=e x ,(a x )′=a x ln a (a >0,且a ≠1). (2)导数的四则运算法则 ①(u ±v )′=u ′±v ′⇒[f 1(x )+f 2(x )+…+f n (x )]′ =f ′1(x )+f ′2(x )+…+f ′n (x ).②(u v )′=v u ′+v ′u ⇒(c v )′=c ′v +c v ′=c v ′(c 为常数). ③⎝⎛⎭⎫u v ′=v u ′-v ′u v 2(v ≠0).[提醒] 1若两个函数可导,则它们的和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.2利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ∈Q *,(cos x )′=-sin x . 3注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.4导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形,即[u (x )±v (x )±…±w (x )]′=u ′(x )±v ′(x )±…±w ′(x ).5一般情况下,[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )·g (x )]′≠f ′(x )+g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )-g ′(x ).6。
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
2024年高考数学知识点总结整理

2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高考前数学必背知识点

高考前数学必背知识点一、代数与函数1. 二次函数的基本形态及其图像特征- 二次函数的一般形式:f(x) = ax^2 + bx + c,其中a ≠ 0。
- 二次函数的顶点坐标:顶点坐标为(-b/2a, f(-b/2a))。
- 二次函数的开口方向:a > 0 开口向上,a < 0 开口向下。
- 二次函数的对称轴:对称轴为x = -b/2a。
2. 平方根与实数- 平方根定义:对于非负实数a,若存在一个非负实数b,使得b的平方等于a,则b称为a的平方根。
- 平方根的性质:非负实数的平方根唯一确定,即√a ≥ 0。
- 实数的分类:有理数与无理数,其中无理数指不能表达为两个整数的比值的实数。
- 无理数的性质:无理数的平方根是无理数,如√2、√3。
3. 指数与对数- 指数的基本性质:a^m * a^n = a^(m+n),(a^m)^n = a^(mn),a^-n = 1/a^n。
- 对数的定义:以a为底,b的对数等于x,记作loga b = x,即a^x = b。
- 常用对数与自然对数:常用对数以10为底,自然对数以e (约等于2.71828)为底。
二、几何与向量1. 几何基本概念- 点、直线和平面:点没有长度、宽度和高度,直线只有长度没有宽度,平面有长度和宽度,没有高度。
- 射线与线段:射线是一个起点但没有终点的直线部分,线段是有两个确定端点的直线部分。
- 角的概念:由两条射线共享一个端点所形成的几何图形。
2. 三角函数- 正弦函数、余弦函数和正切函数的定义:在直角三角形中,对应于某一锐角的三个比的关系。
- 三角函数之间的基本关系:tanθ = sinθ / cosθ,cotθ = 1 / tanθ。
3. 向量的基本概念与性质- 向量的定义:具有大小和方向的量。
- 向量的加法和减法:向量的加法满足交换律和结合律。
- 基本向量与单位向量:长度为1的向量称为单位向量。
- 向量的数量积:两个向量的数量积等于它们的模长的乘积再乘以它们的夹角的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考前数学知识点总结一. 教学内容: 知识点总结二. 教学过程:高考临近,对以下问题你是否有清楚的认识?1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U UU U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。
[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域) 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a[][]∴====---f f a f b a f f b f a b111()()()(),14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。
)f x f x ϕϕ()()()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是( ) A. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤∴a 的最大值为3)16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔ 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
()若是奇函数且定义域中有原点,则。
2f(x)f(0)0=17. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()()函数,T 是一个周期。
) ()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2()又如:若图象有两条对称轴,f x x a x b ()==⇔即,f a x f a x f b x f b x ()()()()+=-+=-则是周期函数,为一个周期f x a b ()2-如:18. 你掌握常用的图象变换了吗? f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称--f x f x y x ()()与的图象关于直线对称-=1f x f a x x a ()()与的图象关于直线对称2-=f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b ()()()()>−→−−−−−−−−>=++=+-00注意如下“翻折”变换:f x f x f x f x ()()()(||)−→−−→− 19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b kx a k O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a =++≠=+⎛⎝ ⎫⎭⎪+-顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b a ac b a x ba 24422开口方向:,向上,函数a y ac b a >=-0442mina y acb a <=-0442,向下,max 应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆的两个交点,也是二次不等式解集的端点值。
ax bx c 200++><()②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
()()指数函数:,401y a a a x =>≠()()对数函数,501y x a a a =>≠log由图象记性质! (注意底数的限定!)a x(a>1)()()“对勾函数”60y x kx k =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?指数运算:,a a a a a p p 01010=≠=≠-(())aaa aa a mnmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00log log log log log aa a a n a M N M N M n M =-=,1对数恒等式:a x a xlog =对数换底公式:log log log log log a c c a n a b b a b nm bm =⇒=21. 如何解抽象函数问题? (赋值法、结构变换法) 如:(),满足,证明为奇函数。
1x R f x f x y f x f y f x ∈+=+()()()()()(先令再令,……)x y f y x ==⇒==-000()(),满足,证明是偶函数。
2x R f x f xy f x f y f x ∈=+()()()()() [](先令·x y t f t t f t t ==-⇒--=()()() ∴f t f t f t f t ()()()()-+-=+∴……)f t f t ()()-=()[]()证明单调性:……32212f x f x x x()=-+=22. 掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
) 如求下列函数的最值:()123134y x x =-+-()2243y x x =-+(),33232x y x x >=-[]()()设,,449302y x x x =++-=∈cos θθπ(),,54901y x x x =+∈(]23. 你记得弧度的定义吗?能写出圆心角为α,半径为R 的弧长公式和扇形面积公式吗?(·,··)扇l l ===ααR S R R 1212224. 熟记三角函数的定义,单位圆中三角函数线的定义sin cos tan ααα===MP OM AT ,,yTA xα B SO M P如:若,则,,的大小顺序是-<<πθθθθ80sin cos tan又如:求函数的定义域和值域。
y x =--⎛⎝ ⎫⎭⎪122cos π(∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤22()∴,25424012k x k k Z y ππππ-≤≤+∈≤≤+25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?sin cos x x ≤≤11,yxO-π2 π2π y tgx =对称点为,,k k Zπ20⎛⎝ ⎫⎭⎪∈()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈sin 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈[]()y x k k k Z =+∈cos 的增区间为,22πππ[]()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈2y x k k k Z =-+⎛⎝ ⎫⎭⎪∈tan 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。