单位脉冲函数及傅里叶变换的性质

合集下载

第三章傅里叶变换的性质.ppt

第三章傅里叶变换的性质.ppt


0
f (t)奇函数:X ()

f (t)sin tdt 2

f (t)sin tdt

0
X () 0
R() 0
可见,R()=R(- )为偶函数; X()= -X(- )为奇函数; 若 f (t)是实偶函数,F(j )=R() 必为实偶函数。 若 f (t)是实奇函数,F(j )=jX() 必为虚奇函数。

1 T

(t

T
)
F( j)
T
根据时域微分特性:
( j)2 F ( j) 1 e jT 2 1 e jT ,
0 2
T
TT
T

F(
j )

2
2T
(1
cosT )

4
2T
sin
2 (T
2
)

TSa2 (T
2
)
第三章第1讲

12
频域微分和积分特性
公式:
( jt)n f (t) F (n) ( j) f (0) (t) 1 f (t) F (1) ( j)
表明信号过延程时都了是t0在秒频并谱不搬会移改的变基其础频上谱完的成幅的度。,但是 使其相位变化了 - t0
频移特性: f (t)e j0 t F[ j( 0 )]
表明信号 f (t)乘以 e j0 t,等效于其频谱 F(j)沿频率右移 0
因为: cos 0 t

1 2
(e
j0 t

e
j0 t
)
sin
0t

1 2j
(e
j0 t

傅里叶变换三部曲(二)·傅里叶变换的定义

傅里叶变换三部曲(二)·傅里叶变换的定义

傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。

傅里叶变换及其性质

傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分

别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02

4

2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4

(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:

第七章 傅立叶变换

第七章 傅立叶变换
T p j( n - m ) d 0 -T2 e (e ) d t 2p -p e 2p t 2p d t T 其中 wt , 则d ,dt d T T 2p
T 2
j nwt
j mwt *
pe
-
p 这是因为
j( n - m )
1 j( n - m ) d e j( n - m) -p 1 j( n - m )p - j( n - m )p [e -e ] j( n - m) 1 - j( n - m )p j 2 ( n - m )p e [e - 1] 0 j( n - m)


为求an, 计算[fT(t), cosnwt], 即 a
T 2 T 2
fT (t ) cos nwt d t T
-
T 2
0
2
2
cos nwt d t
am T cos mwt cos nwt d t
m 1 n
2

T 2
bm T sin mwt cos nwt d t
1复变函数与积分变换第七章傅立叶变换第七章傅立叶变换71傅立叶积分与傅立叶积分定理72傅氏变换与傅氏逆变换73单位脉冲函数75傅氏变换的性质一傅里叶fourier级数展开71傅立叶积分与傅立叶积分定理在工程计算中无论是电学还是力学经常要和随时间而变的周期函数ftt打交道
复变函数与积分变换
第七章 傅立叶变换
方波
4个正弦波的逼近
100个正弦波的逼近
研究周期函数实际上只须研究其中的一个周期 内的情况即可, 通常研究在闭区间[-T/2,T/2]内 函数变化的情况. 并非理论上的所有周期函数都 可以用傅里叶级数逼近, 而是要满足狄利克雷 (Dirichlet)条件, 即在区间[-T/2,T/2]上

6.3 单位脉冲函数及其傅里叶变换

6.3 单位脉冲函数及其傅里叶变换

sin 0t
|F()|
t
0 O
0
F [cos0t] ( 0) ( 0).
例3 证明:F [u(t)] 1 (). i
证:F
1
1
i
()
1
2
1
i
()
eit d
1
2
() eit d 1
2
1
i
eit
d
1 1
2 2
cos
t
i
i
sin
t
d
1 1
一、单位脉冲函数的定义
定义1
(t)
lim
0
(t).
其中,
0
(t
)
1
0
(t 0)
(0 t )
(t 0)
定义2 若函数满足下列两个条件:
(1) (t) 0, t 0;
(2) (t)dt 1.
则称其为单位脉冲函数,或 -函数。
可将-函数用一个长度等于1的有向线段表示, 这个线段 的长度表示-函数的积分值, 称为-函数的强度.
(t)
δ(t-t0) 1
O
t0
t
如果脉冲发生在时刻t=t0,则函数为δ(t-t0)
二、单位脉冲函数的性质
(1)对任意的连续函数 f (t)
(t) f (t)dt=f 0
(t t0 ) f (t)dt
f
t0
(2)对任意的有连续导数的函数 f (t)
(t)
f
(t )dt =
f
0
第六章 傅里叶变换
第三讲 单位脉冲函数的Fourier变换
06
CHAPTER
§3 单位脉冲函数的Fourier变换

第三节(脉冲函数)

第三节(脉冲函数)

f (τ )δ (τ − t0 )dτ
f (τ )δ (τ − t0 )dτ
7
第一和三项为零, 第一和三项为零,对中间一项应用中值定理得


即可。 上的某个值, 其中 ξ 为区间 (t0 − ε ,t0 + ε ) 上的某个值,令 ε → 0 即可。 (4) 连续分布的质量、电荷或持续力也可用 连续分布的质量、 划分为许多小区间段,某个 [τ ,τ 划分为许多小区间段,
ρl ( x)dx = ∫
m dx = m l


−∞
4
如果不求积分,而先求极限, 如果不求积分,而先求极限,则有
m x 0 ρ ( x) = lim ρ l ( x) = lim rect ( ) = l →0 l →0 l l ∞
( x ≠ 0) ( x = 0)
对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 质点 某个瞬时时刻的抽象模型, 某个瞬时时刻的抽象模型,物理学中引入 δ 函数描述
3
(一)
δ
函数
质量m均匀分布在长为 的线段 质量 均匀分布在长为l的线段 均匀分布在长为 的线段[-l/2,l/2]上,则线密度 ρ l (x ) 上
0 ρl ( x)= m / l
(|x| > l/ 2) (|x| ≤ l/ 2)
l 2 l − 2
m x ρl ( x) = rect ( ) l l
∫∫∫
1 δ (r − c)e − ik ⋅r dxdydz r
化成球坐标计算,以k的方向作为球坐标系的极轴方向 化成球坐标计算, 的方向作为球坐标系的极轴方向
∞ π 2π 1 1 1 δ (r − c) = δ (r − c)e −ikr cosθ ⋅ r 2 sin θdrdθdϕ 3 ∫r = 0 ∫ = 0 ∫ = 0 r θ ϕ r (2π ) ∞ π 1 = δ (r − c)e −ikr cosθ rd (− cosθ )dr (2π )2 ∫r =0 ∫θ =0 ∞ 1 1 = δ (r − c) (eikr − e −ikr )dr ik (2π )2 ∫r =0 1 1 ikc −ikc = (e − e ) 2 11 (2π ) ik

复变函数与积分变换-第七章-傅里叶变换

复变函数与积分变换-第七章-傅里叶变换
证:f t 1 F ejt d
2
1
2

2d

0 ejt d
ejt
0
ej0t
.
即ej0t 和2d 0 构成了一个傅氏变换对。
由上面两个函数的变换可得
e jt dt 2d
1
2


f ( )cos(t )d

j

f
(
) sin
(t

)d

d
因 f ( )sin(t )d 是ω的奇函数, f cos t d是 的偶函数,
定义
d
t


lim
0
d

t


0
t 0。 t 0
O


d t dt

lim 0

d t dt
lim 0
1 dt
0
1
(在极限与积分可交换意义下)
工程上将d-函数称为单位脉冲函数。
22
d -函数的筛选性质:
若f(t)为无限次可微的函数,则有
2 3

19
3.单位脉冲函数及其傅里叶积分变换
在物理和工程技术中, 常常会碰到单位脉冲函数. 因为有许多物理现象具有脉冲性质, 如在电学中, 要 研究线性电路受具有脉冲性质的电势作用后产生的电 流; 在力学中, 要研究机械系统受冲击力作用后的运 动情况等. 研究此类问题就会产生我们要介绍的单位 脉冲函数.
从 f t 1
2



f

傅里叶变换的性质

傅里叶变换的性质

1 0 1
21 31
即:
T
t
1 e jn1t T n
再求这个级数的傅氏变换
F
1 T n
e
j
n1t
2
T
n
n1
1 n1
n
T t 的频谱函数如图2-25b所示。 F
1
1
0 1
21 31
单位周期冲激序列的傅氏变换仍为周期冲激序列。
9、奇、偶、虚、实性
f t为实函数时, F 的模与幅角、实部与虚部表示形式
-1
0
0
0
/2
0
0
0
/2
例2-5 求如图2.-18所示
f t 的 F 并作图。
f t
A
t
2
2
-A
解 令 f1t Ag t , f t f1tcos0t 0 2 /
图 2 .
F1 ASa / 2
3
4

F
1 2
F1
0
F1
0
A
2
S
a
0 2
Sa
0 2
其中 0 2 /
F1以及 F 如图2-19所示。
a a
特别地,当 a 1 时,得到 其频谱亦为原频谱的折叠,即
f t 的折叠函数 f t ,
f t F 。
尺度特性说明,信号在时域中压缩,频域中就扩展;反 之,信号在时域中扩展,在频域中就一定压缩;即信号 的脉宽与频宽成反比。一般来说时宽有限的信号,其频 宽无限,反之亦然。
可以理解为信号波形压缩(扩展)

F f te jtdt
f
t co std t
j
f tsin tdt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( s )e
−j
ω
a
s
1 ω ds = F ( ) a a
4.微分性: 4.微分性: 微分性
原像函数的微分性: 若F [ f (t )] = F (ω ),且 lim f (t ) = 0, 则
t → +∞
F [ f ′(t )] = jω F (ω )
一般地,若 lim f ( k ) (t ) = 0 ( k = 0,1, 2,L, n − 1) , 则
−∞
变换中, 注 在 δ 函数的 Fourier 变换中,其广义积分是根据 δ 函数的 性质直接给出的,而不是通过通常的积分方式得出来的, 性质直接给出的,而不是通过通常的积分方式得出来的, 变换是一种广义的 广义的Fourier变换。 变换。 称这种方式的 Fourier 变换是一种广义的 变换

+∞
−∞
δ (t − t0 ) f (t)dt = f (t0 ). (f ( t ) 为连续函数)
(2) δ函数为偶函数,即δ (t) = δ (−t).
函数的傅氏变换为: 二、δ-函数的傅氏变换为 函数的傅氏变换为
F[δ (t)] = F(ω) = ∫ δ (t)e
−∞
+∞
−iωt
dt = e
+∞
−iωt t =0
=1
于是δ (t)与常数1构成了一傅氏变换对.
1 δ (t ) = F [1] = 2π
−1
e dω ⇒ ∫ eiωt dω = 2πδ (t ) ∫−∞
−∞
+∞
iωt
例1 证明:1和2πδ (ω)构成傅氏变换对.
F 证法1: [ 1 ] = ∫ 1 ⋅ e
−∞ +∞ − iωt
1 则 F [ f (t ) cosϖ 0 t ] = [ F (ω + ϖ 0 ) + F (ϖ − ϖ 0 )], 2 i F [ f (t ) sin ϖ 0 t ] = [ F (ω + ϖ 0 ) − F (ϖ − ϖ 0 )], 2 1 iϖ 0t − iϖ 0t 证明: F [ f (t ) cosϖ 0t ] = F [ f (t )e + f (t )e ] 2 1 = [ F (ω + ω0 ) + F (ω − ω0 )] 2
−1
f (t )称为原像函数,F (ω )称为像函数。
单位脉冲函数及其傅氏变换 Fourier变换与逆变换的性质 变换与逆变换的性质
7.1.3单位脉冲函数及其傅氏变换 单位脉冲函数及其傅氏变换 在物理和工程技术中, 常常会碰到单位脉冲 函数. 因为有许多物理现象具有脉冲性质, 如在 电学中, 要研究线性电路受具有脉冲性质的电势 作用后产生的电流; 在力学中, 要研究机械系统 受冲击力作用后的运动情况等. 研究此类问题就 会产生我们要介绍的单位脉冲函数.
1 +∞ 1 +∞ 1 jωt jωt = ∫−∞ [πδ (ω )] e dω + 2π ∫−∞ jω e d ω 2π 1 1 +∞ cos ω t + j sin ω t = + dω ∫−∞ 2 2π jω
1 1 = + 2 2π

+∞
−∞
1 1 sin ω t ω dω = 2 + π
7.2 Fourier变换与逆变换的性质 变换与逆变换的性质 这一讲介绍傅氏变换的几个重要性质, 为了 叙述方便起见, 假定在这些性质中, 凡是需要求傅 氏变换的函数都满足傅氏积分定理中的条件, 在 证明这些性质时, 不再重述这些条件. 1.线性性质 线性性质: 线性性质
F [af (t ) + bg (t )] = aF [ f (t )] + bF [ g (t )] F [ AF (ω ) + BG (ω )] = AF [ F (ω )] + BF [G (ω )]
例1 求指数衰减震荡函数
t<0 0 f (t ) = − at 的傅氏变换. e sin ϖ 0t t ≥ 0 解: t<0 0 令 g (t ) = − at t≥0 e 则 f (t ) = g (t ) sin ϖ 0t.
而 F [ g (t )] = ∫ e
0 +∞ − at
dt s = −t ∫ eiω s ds = 2πδ (ω ) .
−∞
+∞
证法2:若F(ω)=2πδ (ω), 由傅氏逆变换可得
1 +∞ f (t) = 2πδ (ω)eiωtdω = eiωt =1 ∫−∞ ω=0 2π
例2 证明e
1 = 2π
和2πδ (ω − ω0 )构成一个傅氏变换对。 1 +∞ 证: (t) = f F(ω)eiωt dω ∫−∞ 2π
如果我们形式地计算这个导数, 则得 如果我们形式地计算这个导数
q(0 + ∆t) − q(0) 1 i(0) = lim = lim − = ∞ ∆t →0 ∆t →0 ∆t ∆t
这表明在通常意义下的函数类中找不到一个函数能 够表示这样的电流强度. 为了确定这样的电流强度, 够表示这样的电流强度 为了确定这样的电流强度 引进 一称为狄拉克(Dirac)的函数 简单记成δ-函数 的函数, 函数: 一称为狄拉克 的函数 函数

δ (t)dt = lim∫−∞ δε (t)dt = lim∫0 dt =1 −∞ ε →0 ε →0 ε
+∞
+∞
ε
1
可将δ-函数用一个长度等于1的有向线段表示, 这个线段的长度表示δ-函数的积分值.
δ (t)
1 O t
+∞
δ-函数有性质:
(1) (筛选性质 )

−∞
δ (t) f (t)dt = f (0) 及
d q(t) q(t + ∆t) − q(t) i(t) = = lim ∆t →0 dt ∆t
由于q(t)是不连续的 是不连续的, 当t≠0时, i(t)=0, 由于 是不连续的 从而在 ≠ 时 普通导数意义下, 在这一点是不能求导数的. 普通导数意义下 q(t)在这一点是不能求导数的 在这一点是不能求导数的
t →+∞
Ff
(n)
(t ) = ( jω ) F (ω )
n
像函数的微分性: F ′(ω ) = − jF [tf (t )]
(n) n n
(或F [tf (t )] =
F (ω ) = (− j ) F [t f (t )]
(或F [t
jF ′(ω ) )
n
f (t )] = j F (ω ) )

+∞
sin ω t
0
ω

1 1 = + 2 2π

+∞
−∞
1 1 sin ω t ω dω = 2 + π

+∞
sin ω t
0
ω


+∞
sin ωt
0
ω
π 2 , t > 0 dω = ⇒ − π 2 , t < 0
1 1 π 2 + π − 2 = 0, t < 0 1 −1 1 F + πδ (ω ) = , t = 0 = u (t ) jω 2 1 1 π 2 + π 2 = 1, t > 0
证明:
F [ f (at )] = ∫
+∞ s − jω 1 +∞ f ( s )e a ds, a > 0 s = at ∫−∞ a − jω t f (at )e dt = s − jω −∞ 1 f ( s )e a ds, a < 0 a ∫+∞
−∞
1 = a

+∞
−∞
在原来电流为零的电路中, 某一瞬时(设为 设为t=0) 在原来电流为零的电路中 某一瞬时 设为 进入一单位电量的脉冲, 进入一单位电量的脉冲 现在要确定电路上的电流 i(t). 以q(t)表示上述电路中的电荷函数 则 表示上述电路中的电荷函数, 表示上述电路中的电荷函数
0, t ≠ 0; q(t) = , 1 t = 0.
+∞ −∞ +∞
)
ds
− jω t0
证明:F [ f (t − t0 )] = ∫
f (t − t0 )e − jω t dt
−∞
s = t − t0 ∫ =e
− jω t0
f ( s )e
− jω ( s + t0 )

+∞
−∞
f ( s )e
− jω s
ds = e
F (ω )
推论: 推论:
若F [ f (t )] = F (ω ),
0 t<0 δε(t) 1 给函数序列 δ ε (t ) = 0≤t ≤ε , 1/ε ε 0 t >ε O 0 t ≠ 0 定义 δ (t ) = lim δ ε (t ) = 。 ε →0 ∞ t = 0
ε
函数称为单位脉冲函数 工程上将δ-函数称为单位脉冲函数。 函数称为单位脉冲函数。
sin ω0t

t
|F(ω)|
π
−ω0
O
π ω0 ω
0, t < 0 , 证明: 例 5 单位阶跃函数 u (t ) = 1, t > 0
1 F [u (t )] = + πδ (ω ). jω
相关文档
最新文档