第四章应力应变关系
第4章 塑性应力应变关系(本构方程)

强化材料卸载:
f ( ij ) 0,
f df d ij 0 ij
4.3 增量理论
在塑性变形时,全量应变和加载历史有关,要建立普遍的全量应变与应力 之间的关系是很困难的,所以主要研究应力和应变增量或应变速率之间的关系 。这种关系叫做增量理论,其中包括:密席斯方程、塑性流动方程和劳斯方程 。前两者适用于理想刚塑性材料,后者适用于弹塑性材料。
x
y 4G2 x y
2
2
2 2 6 xy 4G 2 xy 6
2 2 2 2 2 2 xy yz xz 等式左边为: x y y z z x 6
1 等效应力为:
1 i 2 1
2 2 2 yz xz x y y z z x 6 xy 2 2 2
则等效应变与弹性应变强度关系为: 当 =0.5 时
3 i = 2(1 )
i
弹性应力应变关系特点: 1.应力与应变成线性关系 2.弹性变形是可逆的,应力应变关系单值对 应 3.弹性变形时,应力球张量使物体产生体积 变化;物体形状的改变只是由应力偏张量引 起的。 4.应力主轴与应变2G
同理可得:
y m
1 - E 1 - E
x
z m z
m
1 y y 2G
1 z z 2G
m
x
1 x 2G
1 y y 2G 1 z z 2G
d
2 2 2 x d y d y d z d z d x 6 d xy d yz d xz 2 2 2
《弹塑性力学》第四章 应力应变关系(本构方程)-精品文档42页

28.09.2019
2
第四章 应力应变关系(本构方程)
共9个方程,但需确定的未知函数共15个:
ui,ij=ji, ij=ji,
还需要根据材料的物理性质来建立应力与 应变间的关系:
ij = ji = fij ( kl )
Wijij
——W为
的函数。
ij
28.09.2019
11
§4-1 应变能、应变能密度与弹性材料的
本构关系
因为W只取决于弹性体的初始应变状态和最 终应变状态,与变形过程(加载路线)无关,
所以W 为它的全微分
W
W
ij
ij
28.09.2019
12
§4-1 应变能、应变能密度与弹性材料的
时刻达到 t +t:位移有增量 uuiei
应变增量 ijeiej 外力功增量:A Vfu d V S F u d S
28.09.2019
8
§4-1 应变能、应变能密度与弹性材料的
A 本构f关u 系d VF u d :函S 数增量
则 [C] 为对称矩阵 [C]= [C]T。
28.09.2019
19
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 的独立系数为21个——材料为各向
异性线弹性材料。
*对各向异性材料的本构关系可见,剪应 变引起正应力,正应变也产生剪应力。 弹性材料性质一般都具有某些对称性, 利用对称可进一步简化 [C] 中系数。
V
S
Vfiuid V sF iuid SU V Wd
应变能增量A 中有体积分和面积分,利用
第四章 应力和应变的关系

于是
∂K ∂2 u ∂2 v ∂2 w δK = δ t = ∫∫∫ ρ dτ[ 2 δu + 2 δv + 2 δw] ∂t ∂t ∂t ∂t
第二节 弹性变形过程中的能量 对于物体静止时 可认为 δ K = 0 , 不考虑热交换 ,即 δ Q = 0 δ V = δ U , δ U = δ U1 + δ U 2 其中,
c41 = c42 = c43 = 0 c51 = c52 = c53 = 0 c61 = c62 = c63 = 0 只能证9个数为0
第三节 各向同性体中的弹性常数 (2)沿任意两个相反的方向,弹性关系相同。 如只改变z轴方向,w和z的方向改变,则
γ yz
∂w ∂v = + = −γ yz′ ∂y ∂z
σ x = f 1 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) σ y = f 2 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) σ z = f 3 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ xy = f 4 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ yz = f 5 ( ε x , ε y , ε z , γ xy , γ yz , γ zx ) τ zx = f 6 ( ε x , ε y , ε z , γ xy , γ yz , γ zx )
+
σ ij , j + X i = ρ u i
..
第二节 弹性变形过程中的能量 由平衡方程: σ ij, j + X i = ρ ui ∂δu ∂u ∂ v ∂u 又 ; ∂ δ v ∂δ u =δ = δε = δγ + = δ +
弹塑性力学第四章

x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
第四章应力与应变关系

(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
动荷载下土的应力应变关系

4.3.1 等效线性模型(Hardin-Drnevich 模型)
等效线性模型就是将土视为粘弹性体,采用等效弹性模量 E 或 G 和等效阻尼比 λ 来反
映土体动应力~动应变关系的非线性与滞后性。并且将模量与阻尼比表示为动应变幅的函
数,即 Ed = E(ε d ), λ = λ(ε d ) 或 Gd = G(ε d ), λ = λ(ε d ) ,同时在确定上述关系中考
4.2 应力应变关系的力学模型
从土受力后的表现可以抽象出以下三个基本力学元件(即弹性元件、粘性元件和塑性元 件),并且可用这三个元件的组合来近似地描述土的力学性能。
如果在上述每种力学元件上作用的应力σ 为往返动应力,即σ d = σ m sin ω ⋅ t ,则可以
看出,对于弹性元件(Hooke 模型),动应力应变关系为过原点的一条斜直线(如图 4-4a), 直线的斜率取决于弹性元件的弹性模量 E,应力应变曲线内的面积等于零。对塑性元件
σ d ≥ σ 0 时为粘性元件的关系,因此组合成一个
如图 4-9 所示的曲线形态。
图 4-8
6
σ
σ σ0 o −σ0
σ0
c (Bigham 体)
σ
σ
σ
0
σ0
σc o εd
E1
σ
σ
E2
σ0
σd
σ0 1
o E
−σ0 1
E1 E 1 εd
图 4-9
图 4-10
对于双曲线模式如图 4-10 所示,当 σ d ≤ σ 0 时,σ d = (E1 + E2 )ε d ;当 σ d ≥ σ 0 时,
(3)变形积累性
由于土体在受荷过程中会产生不可恢复的塑性变形,这一部分变形在循环荷载的作用下
第四章应力与应变关系本构方程

x
x
E
y
E
z
E
y
y
E
x
E
z
E
z
z
E
y
E
x
E
xy
xy
G
yz
yz
G
zx
zx
G
常数关系:
E (1 )(1 2 )
E G 2(1 )
本构方程:
x
x
Ex
xy y
Ey
xz z
Ez
y
y
Ey
yx x
Ex
yz z
Ez
z
z
Ez
zy y
Ey
zx x
Ex
xy
xy
Gxy
yz
yz
Gyz
zx
zx
Gzx
4-4 层向同性体的本构方程
层向同性材料,弹性常数有5个
C11 C12 C13 C23 C55 C66
C44
1 2
第四章 应力与应变关系 本构方程
4―1 4-2 4-3 4-4 4-5
广义虎克定律 应变能、应变能与弹性常数的关系 正交各向异性体的本构方程 层向同性体的本构方程 各向同性体的本构方程
4―1 广义虎克定律
一、单向虎克定律
E
二、广义虎克定律的一般形式
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
四弹性常数之间的关系36个常数就变为21个常数对于完全的各向异性弹性体有21个弹性常数对于具有一个弹性对称面的各向异性材料具有13个弹性常数对于正交各向异性材料弹性常数有9个对于层向同性材料弹性常数有5个对于各向同性材料弹性常数有2个43正交各向异性体的本构方程对于正交各向异性材料弹性常数有9个本构方程
第四章土体中的应力计算详解

土体中的应力计算
§4 土体中的应力计算
地基中的应力状态 应力应变关系 土力学中应力符号的规定
强度问题 变形问题
应力状态及应力应变关系
自重应力 附加应力
建筑物修建以前,地基 中由土体本身的有效重 量所产生的应力。
基底压力计算 有效应力原理
建筑物修建以后,建筑物 重量等外荷载在地基中引 起的应力,所谓的“附加” 是指在原来自重应力基础 上增加的压力。
§4 土体中的应力计算 §4.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律 (2)侧限压缩试验
应力应变关系-以某种粘土为例
z p
非线性 弹塑性
1 Ee
1 Es
z
e0 (1 e0 )
侧限变形模量:
Es
z z
§4 土体中的应力计算 §4.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律
常规三轴试验与侧限压缩试验应力应变关系曲线的比较
z p
侧限压缩试验
常规三轴试验
z
e0 (1 e0 )
§4 土体中的应力计算 §4.1 应力状态及应力应变关系
三. 土的应力-应变关系的假定 1、室内测定方法及一般规律
变形模量 E 与侧限变形模量 Es 之间的关系
§4 土体中的应力计算 §4.3 地基中附加应力的计算
一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
P
o
αr
x R
y M’
βz
x
z
zx
y
xy
x
M
y yz
z
R2 r2 z2 x2 y2 z2 r / z tg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y y x zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1)式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zxzy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
4.2塑性变形时应力和应变的关系弹性力学是以应力与应变成线性关系的广义Hooke 定律为其基础的;而在塑性力学的范围内,一般来说,应力与应变间的关系是非线性的,同时这种非线性的特征,又与所研究的具体材料和塑性应变有关。
塑性变形过程中的应力应变关系十分复杂,相关的理论较多,但可将它们分为两大类,即增量理论和全量理论。
4.2.1增量理论在弹性极限范围内,弹性全量应变与当时的应力状态有确定的一一对应关系,而与加载的历程无关。
但由于塑性变形的不可恢复性,塑性全量应变与当时的应力状态不是单值关系,而与加载的历史有关。
图4.1所示低碳钢拉伸实验的结果表明:在应力超过弹性极限条件下卸载时,其应力应变基本呈平行于弹性线的线性关系,直到材料反向时的屈服极限's σ,这就是材料的卸载规律(图4.1a )。
因此,当材料发生塑性图4.1 单向拉伸随加载历史变化的应力应变关系变形时,即使应力水平相同,不同加载历程所对应的应变值也会不同(图4.1b )。
同样,对于同一应变值,不同加载历程所对应的应力值也会不同(图4.1c )。
因此,只有明确了加载历程,才能得到应力应变间的对应关系。
既然塑性变形时的应变与加载历史有关,而且也不容易得到全量应变与应力状态间的对应关系,人们自然想到建立塑性变形每一瞬时应变增量与当时应力状态之间的关系,又因为金属塑性变形过程中体积的变化可以忽略,人们又会想到建立每一瞬时应变增量与当时应力偏量之间的关系,增量理论便建立了这样的关系,这里的“增量”指的是应变增量,是相对全量应变而言的。
增量理论又称流动理论,是历史上最早提出来的阐述塑性变形过程应力应变关系的理论,代表性的有Levy-Mises (列维-米赛斯)理论和Prandtl-Reuss (普朗特-劳斯)理论。
4.2.1.1 Levy-Mises 理论S.Venant (圣维南)首先提出了应变增量主轴与应力主轴相重合的假定。
1871年Levy 进一步提出塑性变形过程中应变增量的各分量与相应的应力偏量分量成比例;1913年Mises 独立地提出了同样假设,并考虑到材料达到塑性状态后的塑性变形较大,因此建议忽略变形中的弹性部分(假定为刚塑性材料),即假定塑性应变增量与应力偏量主轴或应力的主方向重合,即λτετετεσεσεσεd zxzx yzyz xyxy z zyyxxd d d d d d ======''' (4.6a )或λσεd d ij ij '= (4.6b )该式称为Levy-Mises 流动法则,它说明:塑性变形时,应变增量主轴与应力偏量主轴重合,即与应力主轴重合;应变增量的各分量与应力偏量的各相应分量成正比。
显然,上式在主轴的情况下为λσεσεσεd d d d ==='33'22'11(4.7)或表达为应变增量张量与应力张量之间的关系,即()()()213221322132()()()x x y z y y z x z z x y xy xy yz yz zx zxd d d d d d d d d d d d ελσσσελσσσελσσσελτελτελτ⎧=-+⎪⎪=-+⎪⎨=-+⎪⎪===⎪⎩,, (4.8) 式中,λd 为瞬时的非负比例系数,它在塑性变形过程中是变化的。
将式(4.7)代入式(3.40),得e d ε==参照等效应力式(3.30a ),可得等效应变增量和等效应力之间的函数关系32eed d ελσ=(4.9) 于是,式(4.6)可写为'''33,2233,2233,22e e x x xyxy e e e e y y yzyz e ee e z z zxzx e e d d d d d d d d d d d d εεεσετσσεεεσετσσεεεσετσσ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩(4.10) 或写作张量形式'32e ij ij ed d εεσσ=(4.11) 于是,通过等效应力和等效应变增量式,Levy-Mises 塑性应力应变关系式中的比例系数d λ便可计算出来,从而通过应力状态可以求出应变增量的具体值。
式(4.11)与广义Hooke 定律的结构极为相似,只不过等式左边为应变增量,比例系数为瞬时变化值,这正好体现了塑性变形与弹性变形的不同。
若某平面应变状态的z 向没有应变,即z d ε=0,则按照式(4.6)有'z σ=0,此时03x y zz z σσσσσ++'=-=,1()2z x y σσσ=+ 在主轴坐标系下则有2131()2σσσ=+,此即平面应变条件下应力间应满足的关系。
4.2.1.2 Prandtl-Reuss 理论当变形较小,如应变的弹性部分和塑性部分属于同一量级时,忽略弹性变形将会带来较大误差,此时总应变增量应由弹性应变增量和塑性应变增量两部分组成,即e ijp ij ij d d d εεε+= 前者为塑性部分,由(4.6)式确定,即λσεd d ij p ij '=后者为弹性部分,由(4.3)式确定,即'1212'e vij ij m ij ij m GE d d d d d εεεσδσ-=+=+ 于是''1212vij ij ij ij m GE d d d d εσλσδσ-=++ (4.12) 上式即为Prandtl-Reuss 理论。
Prandtl-Reuss 理论与Levy-Mises 理论的差别在于前者考虑了塑性区的弹性应变部分,因而得出了不同的本构方程式。
增量理论建立了各瞬时应变增量和应力偏量之间的关系,考虑了加载过程对变形的影响,能反映复杂的加载情况,并不受加载条件的限制。
但变形终了的应变需由各瞬时的应变增量积分得出,因此实际应用较为复杂。
需要说明的是,Levy-Mises 理论和Prandtl-Reuss 理论都只能在加载的情况下使用,卸载时须按Hooke 定律计算。
4.2.2全量理论全量理论又称形变理论,它所建立的是应力与应变全量之间的关系,这一点和弹性理论极为相似,但全量理论要求变形体受简单加载,即要求各应力分量在加载过程中按同一比例增加,因而变形体内各点的应力主轴方向不发生变化,显然,这一要求限定了全量理论的应用范围。
4.2.2.1 Hencky (汉基)理论Hencky 小塑性变形理论描述了偏差塑性应变分量与相应的偏差应力分量间的函数关系,即偏差塑性应变分量与相应的偏差应力分量及切应力分量成正比,即λτετετεσεσεσε======zxp zx yzp yz xyp xy zp z ypy xp x '''''')()()( (4.13a )或'p ij ij εσλ'= (4.13b )式中,λ—瞬时的正值比例常数,在整个加载过程中可能为变量。
因为p x p m p x p xεεεε=-=)(',所以,式(4.13)也可改写为 λτετετεσεσεσε======zxp zx yzp yz xyp xy zp z yp yxpx ''' (4.14a )即'p ij ij εσλ= (4.14b )或p p p p p px y y z z x x y y z z xεεεεεελσσσσσσ---===--- (4.14c ) 4.2.2.2 A.Ильющин(依留辛)简单加载定理在Hencky 和Nadai (纳代依)工作的基础上,A.Ильющин于1943年将形变理论的形式和所必须满足的条件进行了整理,提出了物体内每个单元都处于简单加载的具体条件,并认为物体处于简单加载状态,即当外荷载从一开始即按同一比例系数增加时,由形变理论计算的结果是正确的。
满足简单加载的四个具体条件是:(1) 小变形,即塑性变形和弹性变形属于同一量级; (2) 12ν=,即材料为不可压缩体;(3) 荷载(包括体力)按比例单调增长,变形体处于主动变形过程,即应力强度不断增加,在变形过程中不出现中间卸载的情况,如有位移边界条件,只能是零位移边界条件;(4) 材料的应力——应变曲线具有n e e A σε=的幂函数形式。
4.2.3全量理论和增量理论的关系既然全量理论和增量理论都适用于简单加载(比例加载),那么,这两种理论在比例加载条件下的结果应该是一致的。