2.2 抛物型方程的差分解法
抛物型方程的差分格式

a umn 1 umn 1 2h
a
umn 1
2umn h2
umn 1
抛物型方程的古典显格式
整理得方程(2.38)的显式格式(2.39)
U n1 m
(1
2ra)U
n m
r
(a
1 2
ha)U
n m1
r
(a
1 2
ha)U
n m1
截断误差为 O(k h2 ).
tn x
抛物型方程的古典显格式
三、算子
Dx
x
为 x 方向偏导数算子
Tx为 x 方向位移算子
Txumn umn 1, Tx1umn umn 1
μ x 为 x 方向平均算子
xu
n m
1 2
un
m
1 2
un
m
1 2
抛物型方程的古典显格式
x 方向差分算子
边界条件为 u(0,t) 1(t) 0, 0 t 0.20 u(1,t) 2(t) 0, 0 t 0.20
取步长⊿x = h = 0.2 , ⊿t = k = 0.02 。
抛物型方程的古典显格式
解 r = k / h2 = 0.02 / 0.22 = 0.5, 古典显式格式为
n m
umn
h
h 2!
2u x2
n
m
h2 3!
3u x3
n
m
微分方程数值解法课程设计---抛物型方程问题的差分格式[9页].doc
![微分方程数值解法课程设计---抛物型方程问题的差分格式[9页].doc](https://img.taocdn.com/s3/m/01f50aa57cd184254a353588.png)
目录一、问题的描述 (1)二、算法设计及流程图 (1)2.1 算法设计 (1)2.2 流程图 (2)三、算法的理论依据及其推导 (2)3.1 截断误差分析 (2)3.2 稳定性分析 (3)四、数值结果及分析 (3)五、总结 (5)六、附件(源代码) (6)抛物型方程问题的差分格式一、问题的描述有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。
此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
偏微分方程边值问题的差分法是物理上的定常问题,其定解问题为各种边值问题, 即要求解在某个区域内满足微分方程,在边界上满足给定的边界条件。
常系数扩散方程的差分解法可归结为选取合理的差分网格,建立差分格式求解。
常系数扩散问题的有限差分格式求常系数扩散问题为正常数其中a ,0,,22>∈∂∂=∂∂t R x xua t u (1.1) 的近似解,其初始条件为R x x g x u ∈=),()0,(二、算法设计及流程图2.1 算法设计运用加权隐式格式求解常系数扩散问题(1.1)02)1(22111112111=⎥⎥⎦⎤⎢⎢⎣⎡+--++-------+-+-h u u u h u u u a u u n j n j n j n j n j n j n jn j θθτ,(1.6) 10≤≤θ,h τ其中分为时间步长和空间步长。
步骤1 输入初始值,确定加权隐式格式的参数;步骤2 定义向量A ,把初边值条件离散,得到0j u ,j=0,1,…,J 的值存入向量A 步骤3 利用加权隐式差分格式由第n 层计算第n+1层,建立相应线性方程组,求解并且存入向量A;步骤4 计算到t=1,输出u2.2 流程图三、算法的理论依据及其推导3.1 截断误差分析常系数扩散问题(1.1)的加权隐式格式如下:02)1(22111112111=⎥⎥⎦⎤⎢⎢⎣⎡+--++-------+-+-h u u u h u u u a u u n j n j n j n j n j n j n jn j θθτ,(1.6) 其中10≤≤θ,,h τ其中分为时间步长和空间步长。
抛物型方程的差分方法

抛物型方程的差分方法抛物型方程是描述物理现象中的薄膜振动、热传导、扩散等过程的方程,具有非常重要的应用价值。
差分方法是一种常用的数值计算方法,用于求解微分方程,对于抛物型方程的数值求解也是非常有效的方法之一、本文将介绍抛物型方程的差分方法,并具体讨论用差分方法求解抛物型方程的一些具体问题。
首先,我们来介绍一下抛物型方程的一般形式。
抛物型方程一般可以表示为:∂u/∂t=α(∂^2u/∂x^2+∂^2u/∂y^2)其中,u(x,y,t)是待求函数,t是时间,x和y是空间变量,α是常数。
这个方程描述的是物理过程中的扩散现象,如热传导过程、溶质的扩散过程等。
差分方法的基本思想是将求解区域离散化为一个个网格点,然后在每个网格点处用近似的方式来计算待求函数的值。
差分方法的求解步骤主要包括以下几个方面:1.选择适当的网格和步长。
在求解抛物型方程时,需要确定空间变量x和y所在的网格点以及步长,同时也需要确定时间变量t所在的网格点和步长。
通常,我们会选择均匀网格,步长选择合适的值。
2.建立差分格式。
差分格式是差分方法的核心部分,它包括对方程进行近似处理和离散化。
对于抛物型方程,常用的差分格式有显式差分格式和隐式差分格式等。
其中,显式差分格式的计算速度快,但是有一定的稳定性限制,而隐式差分格式的稳定性较好,但是计算量较大。
因此,在具体问题中需要根据实际情况选择适当的差分格式。
3.编写计算程序。
在建立差分格式后,需要编写计算代码来求解离散方程。
具体编写的过程包括定义初始条件、建立迭代计算过程、以及计算结果的输出等。
4.计算结果的验证与分析。
求解方程后,需要对计算结果进行验证和分析,主要包括对数值解和解析解的比较、对误差的估计和控制等。
在具体求解抛物型方程时,还会遇到一些问题,例如边界条件的处理、稳定性和收敛性的分析等。
下面将对其中一些问题进行详细讨论。
1.边界条件的处理。
边界条件对差分格式的求解结果有着重要的影响,常见的边界条件包括固定端(Dirichlet)边界条件和自由端(Neumann)边界条件等。
10_抛物型方程的有限差分方法

10_抛物型方程的有限差分方法抛物型方程是一类常见的偏微分方程,广泛应用于自然科学和工程学的领域中。
有限差分方法是一种常用的数值求解抛物型方程的方法之一、本文将介绍抛物型方程的有限差分方法(II)。
有限差分方法主要基于离散化的思想,将偏微分方程转化为差分方程,进而求解差分方程的数值解。
对于抛物型方程,其一般形式可以表示为:∂u/∂t=Δu+f(x,t)其中,u(x, t)是未知函数,表示空间位置x和时间t上的解,Δu表示Laplace算子作用于u的结果,f(x, t)是已知函数。
有限差分方法的基本思想是将空间和时间域进行离散化,将连续的空间和时间划分为有限个网格点,然后使用差分近似代替偏导数,得到差分方程。
假设空间域被划分为Nx个网格点,时间域被划分为Nt个网格点,对于每个网格点(i,j),可以表示为(x_i,t_j),其中i=0,1,...,Nx,j=0,1,...,Nt。
在有限差分方法中,我们使用中心差分近似来代替偏导数。
对于时间导数,可以使用向前差分或向后差分,这里我们使用向前差分,即:∂u/∂t≈(u_i,j+1-u_i,j)/Δt对于空间导数,可以使用中心差分,即:∂^2u/∂x^2≈(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2将上述差分近似代入抛物型方程中,可以得到差分方程的离散形式:(u_i,j+1-u_i,j)/Δt=(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2+f_i,j其中,f_i,j=f(x_i,t_j)。
重排上式,可以得到递推关系式:u_i,j+1=αu_i-1,j+(1-2α)u_i,j+αu_i+1,j+Δt*f_i,j其中,α=Δt/Δx^2通过设置初始条件和边界条件,可以利用以上递推关系式得到抛物型方程的数值解。
总结来说,抛物型方程的有限差分方法(II)是一种常用的数值求解抛物型方程的方法。
它基于离散化的思想,将偏微分方程转化为差分方程,然后利用中心差分近似代替偏导数,得到差分方程的离散形式。
抛物型方程的计算方法

分类号:O241.82本科生毕业论文(设计)题目:一类抛物型方程的计算方法作者单位数学与信息科学学院作者姓名专业班级2011级数学与应用数学创新2班指导教师论文完成时间二〇一五年四月一类抛物型方程的数值计算方法(数学与信息科学学院数学与应用数学专业2011级创新2班)指导教师摘要: 抛物型方程数值求解常用方法有差分方法、有限元方法等。
差分方法是一种对方程直接进行离散化后得到的差分计算格式,有限元方法是基于抛物型方程的变分形式给出的数值计算格式。
本文首先给出抛物型方程的差分计算方法,并分析了相应差分格式的收敛性、稳定性等基本理论问题.然后,给出抛物型方程的有限元计算方法及理论分析。
关键词:差分方法,有限元方法,收敛性,稳定性Numerical computation methods for a parabolic equationYan qian(Class 2, Grade 2011,College of Mathematics and Information Science)Advisor: Nie huaAbstract:The common methods to solve parabolic equations include differential method,finite element method etc。
The main idea of differential method is to construct differential schemes by discretizing differential equations directly. Finite element scheme is based on the variational method of parabolic equations。
In this article, we give some differential schemes for a parabolic equation and analyze their convergence and stability. Moreover,the finite element method and the corresponding theoretical analysis for parabolic equation are established.Key words:differential method,finite element method, convergence,stability1 绪 论1。
抛物方程的有限差分法

抛物方程的有限差分法作者:李娜来源:《科技视界》2014年第32期【摘要】抛物方程是描述物理现象的一类重要方程,其中差分方法和有限元方法是求其数值解的两类主要方法。
本文主要介绍有限元方法中的向前差分法,首先简单介绍向前差分法,给出稳定性和收敛性的概念,然后以一维热传导方程为例进行求解,同时给出收敛性和稳定性分析,并利用Matlab软件做出了误差分析图。
【关键词】抛物方程;有限元方法;向前差分法;误差分析0 引言由于抛物型方程与时间t有关,称为非驻定问题。
非驻定问题可用差分法,也可用有限元法求解。
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
热传导在三维等方向均匀介质里的传播可用方程式u■=kΔu表示,其中u■=u (t,x,y,z)表示温度,它是时间变量t与空间变量(x,y,z)的函数,■是空间中一点的温度对时间的变化率,uxx、uyy和uzz是温度对三个空间坐标轴的二次导数。
k决定于材料的热传导率、密度与热容。
求解方程时,如果考虑的介质不是整个空间,则为了得到方程唯一解,必须指定的边界条件。
如果介质是整个空间,为了得到唯一解,必须假定解的增长速度有一个指数型的上界,并且此假定与实验结果相吻合。
1 本文研究的方程本文主要研究一维热传导方程的有限差分解法,下面给出了各向同性介质中无热源的一维热传导方程及初始条件:■=a(x,t)■a>0 0<x<1,0<t<Tux,0=?覫x=sin(πx) 0<x<1u0,t=u(1,t)=0 0≤t≤T (1)在此,本文利用有限元方法中的向前差分法求解偏微分方程式(1),首先需要建立差分格式,而在建立差分格式时通常取空间步长和时间步长为常量。
下面介绍向前差分的概念以及如何利用该方法对其进行收敛性、精确性和稳定性分析。
1.1 向前差分格式有限差分法和有限元方法是求解偏微分方程的两种主要的数值方法。
抛物型方程的有限差分法

证明 因谱半径不超过任何一 种范数
k (C )
Ck
K ,0
k
T
,0
0.
K 0k [T ]
(C )
K
1 k
K
( T )
log K
e (T )
1 0( )
命 题 2.2( 充 分 条C(件 )是 )正 若规 矩(2阵 .13),
(1.8)1
令
L(h3)ukj
ukj 1 ukj
a 2
[
uk1 j1
2ukj 1 h2
uk1 j1
ukj1
2ukj h2
ukj1 ]
将截断误差
Rkj (u) L(h3)u( xj , tk ) [Lu]kj
于(
x
j
,
t
k
1
)(t
k
1
2
2
(k
1) )展
2
开
,
则
得
Rkj (u) 0( 2 h2 ). (1.9)
(四) Richar格 dso式n, 即
ukj1ukj1
2
aukj12hu2kj
ukj1
fj
(1.10)
或ukj1 2r(ukj12ukj ukj1)ukj12fj.(1.10)
衡 量 一 个 差 分 格经式济是实否用 , 由 多因方数面 的 决 定 , 主 要 : 有 (1)计 算 简 单 (2) 收 敛 性 和 收 敛 速 度 。 (3) 稳 定 性 。
k1
k
u u a[u 2u u u 2u u f j
j
k1 j1
k1
k1
有限差分法求解抛物型方程说明

有限差分法求解抛物型方程偏微分方程只是在一些特殊情况下,才能求得定解问题解的解析式,对比较复杂的问题要找到解的解析表达式是困难的,因此需采用数值方法来求解.有限差分法是一种发展较早且比较成熟的数值求解方法,只适用于几何形状规则的结构化网格.它在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值.本章主要介绍有限差分法的基本思想,并给出一些具体的数值实例.§1 差分方法的基本思想有限差分法把偏微分方程的求解区域划分为有限个网格节点组成的网格,主要采用Taylor 级数展开等方法,在每个网格节点上用有限差分近似公式代替方程中的导数,从而建立以网格节点上的函数值为未知数的代数方程组.有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式.从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式和显隐交替格式等.目前常见的差分格式,主要是上述几种格式的组合,不同的组合构成不同的差分格式.泰勒级数展开法对有限差分格式的分类和公式的建立起着十分重要的作用.下面采用泰勒展开式导出一个自变量系统的若干有限差分表达式.首先考虑单变量函数()u x ,如图1把区域x 离散为一批结点,记0()(), =0,1,2,i i u x u x ih u i =+=图1 单变量函数离散化函数()u x 在点i x 处的泰勒展开式为23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''+=++++ (1)或23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''-=-+-+ (2)式(1)和(2)重新整理可得2()()()()()2!3!i i i i i u x h u x u x u x u x h h h '''''+-'=---(3)和2()()()()()2!3!i i i i i u x u x h u x u x u x h h h '''''--'=+++(4)于是给出在点i x 处函数u 的一阶导数的两个近似公式1()()()i i i ii u x h u x u u u x h h ++--'≈= (5)1()()()i i i i i u x u x h u u u x h h----'≈= (6)因为级数被截断,这两个近似公式肯定要产生误差,此误差与h 同阶,形式分别为()(), ,2()(), .2i i i i i i hE u O h x x h hE u O h x h x ξξξξ''=-=≤≤+''==-≤≤ 若把式(3)和(4)相加并求()i u x ',可得11()()()22i i i i i u x h u x h u u u x h h+-+---'≈= (7)其截断误差与2h 同阶,形式为22()(), ,6i i i h E u O h x h x h ξξ''=-=-≤≤+若把式(3)和(4)相减并求()i u x '',可得1122()2()()2()i i i i i i i u x h u x u x h u u u u x h h +-+-+--+''≈= (8)其截断误差与2h 同阶,其形式为22()(), ,12i i i h E u O h x h x h ξξ''=-=-≤≤+我们可继续用这种方式来推导更复杂的公式,类似的公式还有很多,这里不再一一列举.公式(5)、(6)分别称为一阶向前、向后差分格式,这两种格式具有一阶计算精度,公式(7)、(8)分别称为一阶、二阶中心差分格式,这两种格式具有二阶计算精度.图2 二维区域网格剖分上面的结果可直接推广使用于导出二元函数(,)u x y 的许多有限差分近似公式.如图7.2,把求解区域进行网格剖分,使12(,)(,), ,=0,1,2,i j ij u x y u ih jh u i j ==其中x 方向的网格间距为1,h y 方向的网格间距为2,h 整数i 和j 分别表示函数(,)u x y 沿x 坐标和y 坐标的位置.二元函数(,)u x y 对x 求偏导时y 保持不变,对y 求偏导时x 保持不变,根据向前差分公式(7.5)可以给出在点(,)i j x y 处函数(,)u x y 的一阶偏导数的两个近似公式1,,1(,)i j i j i ju x y u u xh +∂-≈∂ (9),1,2(,)i j i j i ju x y u u yh +∂-≈∂ (10)相类似地,根据二阶中心差分格式(8)可以得到函数(,)u x y 的二阶偏导数的近似公式21,,1,221(,)2i j i j i j i ju x y u u u x h +-∂-+≈∂ (11)2,1,,1222(,)2i j i j i j i j u x y u u u yh+-∂-+≈∂ (12)下面我们推导函数(,)u x y 的二阶混合偏导数2ux y∂∂∂在(,)i j x y 的有限差分表达式.根据一阶中心差分格式(7),112111,11,11,11,122121221,11,1(,)(,)(,)1()21 ()()222 i j i j i j i j i j i j i j i j i j i u x y u x y u x y O h x y h y y u u u u O h O h h h h u u u +-+++--+--+++-∂∂∂⎡⎤⎡⎤∂=-+⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦--⎡⎤=-++⎢⎥⎣⎦--≈1,11,1124j i j u h h -+--+二维有限差分近似可以直接推广到三维空间或三维空间加一维时间的情形.定义1 当步长趋于零时,差分方程的截断误差趋于零,则称差分格式与微分方程是相容的.定义2 当步长趋于零时,差分方程的解收敛于微分方程的解,则称差分格式是收敛的. 定义3 当差分方程的解由于舍入误差的影响,所产生的偏差可以得到控制时,则称差分格式是稳定的.§2 抛物型方程的有限的差分法为了说明如何使用有限差分法来求解偏微分方程,本节我们给出以下几个数值实例.算例1 考虑一维非齐次热传导方程的初边值问题:2212(,), 01,01,(,0)(), 01,(0,)(), (1,)(), 0 1.u ua f x t x t t x u x q x x u t g t u t g t t ⎧∂∂=+<<<≤⎪∂∂⎪⎪=≤≤⎨⎪==<≤⎪⎪⎩(7.13),其中2,a =函数11(,)[cos()2sin()],22xf x t e t t =--+-初始条件1()sin,2xq x e =左、右边界条件分别为11()sin(),2g t t =-21()sin()2g t e t =-.该定解问题的解析解为1(,)sin(),(,)[0,1][0,1].2xu x t e t x t =-∈⨯将求解区域{(,)|,0}x t a x b t T Ω=≤≤≤≤进行网格剖分,[,]a b 作m 等分,[0,]T 作n 等分,记,,b a Th m nτ-==则 ,0,,0i k x a ih i M t k k n τ=+≤≤=≤≤对该问题建立如下向前差分格式:11122, 11, 11,k kk k k k i i i i i i u u u u u a f i m k n hτ+-+--+=+≤≤-≤≤-(14) (,0)(),1,i i u x q x i m =≤≤ (15) 12(,)(), (,)(),1.k k k k u a t g t u b t g t k n ==≤≤ (16)令2r ah τ=,差分格式(7.14)整理得111(12), 11, 1 1.k k k k k i i i i i u ru r u ru f i m k n τ+-+=+-++≤≤-≤≤- (17)显然时间在1k t +上的每个逼近值可独立地由k t 层上的值求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(22)
n+1 n
j-1
j
j+1
注意:
① 泰勒展开点在格边上,不是在结点上,但在格式中未出现格边量。 ② ③
O( 2 h2 ) ——全二阶精度。 1 在 ( j, n ) 点展开时,用到了周围6个结点上的量,该格式又称为六点格式。 2 Rj
2u idea:是将微分方程中的 2 项以 u ( x, t ) x
n un j 1 u j
h
1 un un j j
( forward space difference)
(forward time difference)
u n j
(2)向后差分 (backward difference)
n un u j j 1
hu n j
h
n 1 un u j j
网格节点上的函数值 u( x j , tn ) 简记为u (j, n) 。
在有限差分离散化时应该注意以下几点: ① 根据问题求解的需要,在x,t方向上离散网格时x 和 t可以是等分, 也可以是不等分,既可以按一定规律来离散,也可以对网格进行局部 加密。 ② 对于双曲型和抛物型等发展方程在有限差分离散化时,网格的 t 件等。
(j,n+1) (j ,n) (j+1,n) (j,n-1)ຫໍສະໝຸດ jx定义:
网格节点上的值:
tn n , n 0,1,, M
x j jh, j 0,1,, N
半网格节点上的值:
1 tn 1/ 2 n , n 0,1,, M 1 2 1 x j 1/ 2 j h, j 0,1,, N 1 2
2 hu
n j
u
n j 1
u
n j 1
2h
2 u n j
2
(4)二阶中心差分(central difference)
h u j
2 n
u
n j 1
2u u h
n j 2
n j 1
22hu n j
n n un 2 u u j 2 j j 2
j-1 j j+1
n-1
3)格式Ⅲ Crank—NicoLson 格式(CTCS)
1 对时间和空间都用中心差分,在 ( j , n ) 点对u作泰勒展开,得: 2
1 2 1 3 u( j, n 1) (u ut utt ( ) uttt ) 1 (13) j ,n 2 2! 4 3! 2 2
1 2 1 u( j, n) (u ut utt ( )3 uttt ) 1 j ,n 2 2! 4 3! 2 2
(14)
1 u( j, n 1) u( j, n) 2 1 ut j, n uttt ( j, n ) 2 24 2
称为截断误差(Truncation error),它不仅反映了差分算子对微分算子的逼
近,也反映了差分解和方程解的误差。截断误差的阶数:就是截断误差中最 低阶导数项中 或h的幂次数。
用 u j 表示u(j ,n)的近似值;用差商近似代替式(1)中的微商后,可得相应 的差分方程
n
LIh , u n j
u j n u j n 1
u j 1n 2u j n u j 1n h
2
0
(12)
n n n1 (1 2r )un ru ru u j j 1 j 1 j
注意:由(12)式不能直接计算出解,而要联立求解代数方程,故 称之为隐式格式。
n
Rj n O( h2 )
在第n层和第n+1层上关于x的二阶中
n
1 2
④ 隐式格式。 ⑤
心差商的算术平均值来逼近,这一思想已被广泛地应用于一般微分方程,以建
立其差分格式。
4)格式(IV)(CTCS)(Richardson 格式)
对时间中心差分步长放大一倍,空间也中心差分。
Lh, IVu j n
注意: ①R ②
n j
4h 2
2u n j
1 n n 1 un 2 u u j j j
2
1)格式 I显示格式 (FTCS格式)
由(4)、(7)代入(1),有
u ( j , n) 2 Lu 2 u ( j , n) x t u ( j , n 1) u ( j , n)
格和无网格的有限差分算法,它们的计算网格就更为复杂。
⑤
对于复杂外形飞行器流场的计算,一般需要通过坐标变 换,可以把物理平面上的复杂的、非正交的网格转换成 在计算平面上的简单、而正交的网格,这就是网格生成
技术。特别要指出的是,网格生成技术在网格设计和编
程中往往占有很大的工作量,网格生成技术好坏直接影 响到数值计算结果的精度,网格生成技术已成为计算流 体力学中的一个重要分支。
计算力学基础
第二章 有限差分方法
2.2 抛物型方程的差分解法
2.2 抛物型方程的差分解法
一维热传导方程为:
u 2u Lu 2 0 t x
或
0 x 1, 0 t T
(1)
u ( x, 0) ( x)
Lu ut uxx 0
对这样一个问题的求解,分为以下三个步骤来离散。
u j n1 u j n 1 2
u j 1n 2u j n u j -1n h2
0 (23)
(24)
u j n1 2r(u j 1n - 2u j n u j 1n ) u j n1
O( 2 h2 )
——全二阶精度格式。
n+1
三层显示格式。
n
n-1
(10)
注意:由(10)可知,当第n层u已知时,可以直接求出第 n+1层上的值,故称之为显式格式。
Rj n O( h2 )
n+1
n
j-1
j
j+1
2)格式Ⅱ(BTCS)隐式格式
对时间向后差分,对空间用中心差分,得:
2 n Lh, u j n un j hu j 0
(4)
其中 O( ) 表示 一次和一次以 上的小量项. 由(3)得:
u( j, n) u( j, n) u( j, n 1) 2 u( j, n) 2 t 2 t
(5)
(4)-(5)得:
2 u( j, n 1) 2u( j, n) u( j, n 1) 2 2 4 u( j, n) u( j, n) 2 2 4 t 4! t
2.2.2 控制方程的离散
节点(j, n+1)的函数值在(j, n)点作泰勒展开:
u ( j , n) 2 2u ( j , n) 3 3u ( j , n) u ( j , n 1) u ( j , n) 2 3 t 2! t 3! t 1 u ut 2utt 2 j ,n
j-1
j
j+1
1)推广Crank—Nicolson (格式III)
格式III将差分格式建立在( j , n 1) 和 ( j , n) 的中点( j , n ) 基础上的。现进 一步推广,将差分格式建立在( j, n 1) 和 ( j , n) 中间任意一点上,即( j , n ) ,
2 2
u ( j 1, n) 2u ( j , n) u ( j 1, n) u 2h 4 ( j , n) u ( j , n) 2 2 4 h 2 t 4! x
n
(8)
0
Lu j
n
Lh, u j R j n
式中:
2 4 2 2 h 2 Rn u ( j , n ) u ( j , n ) O ( h ) j 4 2 4! x 2 t
1 1 ( j , n ) 对 uxx 点作泰勒展开: u ( j , n ) 下面来求 xx 。在 2 2
(15)
uxx ( j, n 1) (uxx
2
uxx ,t
2
8
uxx ,tt )
j ,n
1 2
(16)
(17)
uxx ( j, n) (uxx
上两式相加,
2.2.1定解区域的离散
在x-t平面上,取 h x 和 量,由 ( j=0,1,…N, h=
t分别为函数 u ( x, t ) 的自变量x和t的改变
1 , n=0,1,…M, T )两组平行线构成的矩形网格覆盖 N M
x-t平面。h为空间步长, 为时间步长。
t n
(j-1,n)
n 1
2u j n 1 u j -1n 1 h2
u j 1n 2u j n u j -1n 0 2 h
(21)
或:
uj
n 1
r n 1 n 1 n 1 n n n uj u 2 u u ( u 2 u u ) j 1 j j 1 j 1 j j 1 2
n
Lh , u j 表示用准确值 u( x j , tn ) 构造差商;
Lh, u j n
表示用近似值 u
n j
构造差商;
Rjn
表示差商近似微商所产生的截断误差。
令 r
h2
,则(9)式可化为:
1 n n n un (1 2 r ) u r ( u u j j j 1 j 1 )
t 和x 不能随意选取, 需要满足一定的条件,如稳定性的CFL条 x