常用电液比例阀
第8讲 电液比例压力阀

当电磁换向阀通电使电梯下降时,阀芯运动很快,这表明 液压缸活塞很快加速到其最大速度(最大速度通过设定流 量控制阀F来确定)。电梯的这种突然启动会使乘客感到非 常不舒服。
F
同样,当电梯到达目的地时,因电磁换向阀的很快关闭,也会使电梯突 然停止,从而再次使乘客感到不舒服。在实际液压系统中,由执行元件 的突然启停而产生的冲击还会造成压力尖峰,这也是容易引起系统泄漏 的情况之一。
力
时间
在这种情况下, 不仅需要控制执 行元件的最大压 力,而且还需控 制施加或消除压 力的速率。
力
时间
实际上,机器 工作循环由一 系列斜坡和保 持周期组成, 这些周期都可 以通过比例阀 来实现。
力
时间
在机器工作循环末段,对许多过程 来说,压力下降速率也是非常关键 的。
力
因此,采用比例阀可 以实现运动和力控制 ,且在有些场合,同 一种比例阀既可用于 运动控制,也可用于 力控制。这通常涉及 到 “ PQ” 控 制 , 如 控 制 压 力 (P) 和 流 量 (Q) 。
三、电子控制
通常,比例电磁铁的线圈电流由功率放
大器(电子放大器)来控制。功率放大 器本身需要一个电源(一般为12 或 24 VDC )和一个输入信号。
功率放大器输出(电流)由输入信号控制,当输 入信号为零时,输出信号也为零。
24 V DC
当输入信号增大时,功率放大器的输出信号也相 应地增大。
24 V DC
距离
加速度
时间
2. 控制执行元件速度,若有必要,对于变负载, 应保持其恒定。
距离
速度
加速度
时间
3. 平滑减加速度,并使压力峰值最小。
距离
减速度 速度
加速度
电液伺服阀和电液比例阀的概述

电液伺服阀和电液比例阀的概述摘要 介绍了电液伺服阀和电液比例阀的组成及功能特点,同时对两种阀进行了比较,得出两种阀的使用特点和使用场合。
关键词 电液伺服阀 电液比例阀 闭环控制 力矩马达 比例电磁铁 反馈装置1.前沿阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流、压力控制。
2.电液伺服阀电液伺服阀是一种自动控制阀,它既是电液转换组件,又是功率放大组件,其功用是将小功率的模拟量电信号输入转换为随电信号大小和极性变化、且快速响应的大功率液压能[能量(或)和压力]输出,从而实现对液压执行器位移(或转速)、速度(或角速度)、加速度(或角加速度)和力(或转矩)的控制。
电液伺服阀通常由电气-机械转换器、液压放大器(先导阀和功率级主阀)和检测机构组成。
电液伺服阀的基本组成有前置级液压放大器的伺服阀,无论是射流放大器还是喷嘴挡板放大器,其产生阀芯驱动力都要比比例电磁铁大得多(高一个数量级)。
就这个意义上讲,伺服阀阀芯卡滞的几率比比例阀小。
特别是射流管伺服阀的射流放大器因为没有压力负反馈,前置级流量增益与压力增益都较高,推动阀芯的力更大,所以伺服阀有更高的分辨率和较小的滞环。
简单地说,所谓伺服系统就是带有负反馈的控制系统,而伺服阀就是带有负反馈的控制阀。
伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。
伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。
常用电液比例阀

滞环%
重复精度% 频宽-3dbHz
1~3
0.5 20~200
1~3
0.5 1~30
4~7
±1 1~5
无
<0.1% 5 有 0.5
线圈功率W
中位死区 价格因子
0.05~5
无 3
10~24
有 1
10~30
有 1
1.电液比例压力阀
比例压力阀用来实现压力控制,压力的升降随时可以通过电信号加以改
变。
工作系统的压力可根据生产过程的需要,通过电信号的设定值来加以变 化,这种控制方式常称为负载适应控制。 根据在液压系统中的作用不同,可分为比例溢流阀,比例减压阀和比例 顺序阀。根据控制的功率大小不同,可分为直动式和先导式两种,根据是否 带位置检测反馈,可分为:带位置检测和不带位置检测比例压力阀两种。
FD F f
p d 2 C d Cv dx sin 2 4
从上式可以看出,当忽略运动摩擦力和稳态液动力时,锥阀的开启压力 p 与 输入电流 I 成正比,因此连续地按比例控制输入电流 I 的大小,便可连续地按比 例调控先导阀的开启压力 p。 由于比例电磁铁有磁滞和摩擦力 Ff 的存在,因此当电流增加和减小时,电流 I 与压力 p 的关系曲线不能重合,为了减少滞环,除在设计时应尽量减小磁滞和 摩擦力外,在使用时,常在电控器中叠加一个频率为 100HZ 的颤振信号到直流 电源。
坏。
12
1
13
6
2
9 8 3
11 10
4 5
X
7
A
B
先导式比例益流阀机构图(DBEM 型) 1-先导阀体;2-比例电磁铁;3-限压阀;4-主阀体;5-主阀芯;6-先导阀 芯; 8、9-阻尼;10-控制油通道;11-主阀弹簧;12-先导阀;13-泄油孔
电液比例溢流阀的工作原理

电液比例溢流阀的工作原理电液比例溢流阀是一种常见的液压元件,它通过控制液压系统中的流量来实现对液压执行元件的控制。
它是利用电磁阀和液压阀相结合的一种技术,可以根据电信号的大小来控制液压系统中的流量大小。
电液比例溢流阀的工作原理可以简单描述为:当控制电压信号作用于电磁阀时,电磁阀会打开或关闭,从而改变液压阀的开度。
液压阀的开度决定了液压系统中流过的流量大小。
当电磁阀打开时,液压阀开度增大,流过的流量也相应增大;当电磁阀关闭时,液压阀开度减小,流过的流量也相应减小。
通过不断调节电磁阀的开闭状态,就可以实现对液压系统中流量的精确控制。
电液比例溢流阀的核心部件是电磁阀和液压阀。
电磁阀通常由铁芯、线圈、阀芯和弹簧等组成。
当控制电压信号作用于线圈时,电磁阀的铁芯会受到电磁力的作用,从而使阀芯打开或关闭。
液压阀由阀芯和阀座组成,当阀芯向开口方向移动时,流经阀座的液体流量增大;当阀芯向关闭方向移动时,流经阀座的液体流量减小。
通过调节阀芯的位置,就可以实现对流量的调节。
电液比例溢流阀广泛应用于工程机械、冶金设备、船舶、航空航天等领域。
它具有以下几个特点:1. 精确控制:电液比例溢流阀可以根据电信号的大小来控制液压系统中的流量大小,具有精确的控制性能。
2. 灵活性:电液比例溢流阀可以根据实际需要对流量进行调节,适应不同工况的要求。
3. 高效性:电液比例溢流阀的控制方式可以实现对系统流量的准确控制,从而提高系统的工作效率。
4. 可靠性:电液比例溢流阀采用了先进的电磁阀和液压阀技术,具有较高的可靠性和稳定性。
总结起来,电液比例溢流阀通过控制液压系统中的流量来实现对液压执行元件的精确控制。
它具有精确控制、灵活性、高效性和可靠性等特点,广泛应用于各个领域。
随着科技的不断进步,电液比例溢流阀的性能将会不断提升,为液压系统的控制提供更加可靠和高效的解决方案。
第三章 电液比例控制阀

图3-2 直动式比例溢流阀 1.插头;2.衔铁推杆;3.传力弹簧;4.锥阀芯; 插头; 衔铁推杆 衔铁推杆; 传力弹簧 传力弹簧; 锥阀芯 锥阀芯; 插头 5.防振弹簧;6.阀座;7.阀体 防振弹簧; 阀座 阀座; 阀体 防振弹簧
图3-3 带位置反馈的直动溢流阀 1. 位移传感器;2. 传感器插头;3.放气螺钉;4.比例电磁铁;5.线圈插头; 位移传感器; 传感器插头; 放气螺钉 放气螺钉; 比例电磁铁 比例电磁铁; 线圈插头 线圈插头; 6. 弹簧座;7.调压弹簧;8.防振弹簧;9.锥阀芯;10.阀体;11.阀座;12.调节螺塞 弹簧座; 调压弹簧 调压弹簧; 防振弹簧 防振弹簧; 锥阀芯 锥阀芯; 阀体 阀体; 阀座 阀座; 调节螺塞
带位置反馈先导型比例溢流阀结构如图3-6所示。 带位置反馈先导型比例溢流阀结构如图 所示。 所示
图3-6 带位置调节型比例电磁铁的先导型比例溢流阀 1.位移传感器;2.行程控制型比例电磁铁;3.阀体;4.弹簧;5.锥阀芯; 位移传感器; 行程控制型比例电磁铁 行程控制型比例电磁铁; 阀体 阀体; 弹簧 弹簧; 锥阀芯 锥阀芯; 位移传感器 6.阀座;7.主阀芯;8.节流螺塞;9.主阀弹簧;10.主阀座(阀套) 阀座; 主阀芯 主阀芯; 节流螺塞 节流螺塞; 主阀弹簧 主阀弹簧; 主阀座 阀套) 主阀座( 阀座
图3-1 闭环的电液比例控制系统及比例阀框图
上图所示框图为一个闭环比例系统框图, 上图所示框图为一个闭环比例系统框图,红色方框内为电液比例阀 的组成部分。从图中可以看出比例阀在系统中所处的地位以及与电控器、 的组成部分。从图中可以看出比例阀在系统中所处的地位以及与电控器、 液压执行其之间的关系。 液压执行其之间的关系。 从电液比例阀的原理框图中可以看出,它主要有以下几部分组成: 从电液比例阀的原理框图中可以看出,它主要有以下几部分组成: 1)电—机械转换元件; ) 机械转换元件; 机械转换元件 2)液压先导级; )液压先导级; 3)液压功率放大级; )液压功率放大级; 4)检测反馈元件。 )检测反馈元件。
电液比例控制阀概述

电液比例控制阀概述电液比例控制阀(Electric-Hydraulic Proportional Valve)是一种用电信号控制液压流量的装置。
它由一个电磁阀和一个液压阀组成,通过精确控制电流信号来调节液压流量,实现对液压系统的精确控制。
电液比例控制阀主要包括两个部分:电磁阀和液压阀。
电磁阀负责接收控制信号,并将电信号转换为机械运动,控制液压阀的打开和关闭。
液压阀负责调节液压系统的流量和压力,并将其转化为机械力或工作输出。
这两个部分通过连接杆、阀芯、弹簧等机械结构相互配合,形成一个控制系统。
电液比例控制阀的工作原理是基于电液转换技术。
当输入一个电信号时,电磁阀内的线圈产生磁场,使得铁芯被吸引或推动。
吸引或推动铁芯时,通过连接杆的作用,将液压阀的阀芯推动到不同的位置。
阀芯的不同位置决定了溢流口的大小,从而控制了液压系统中的流量。
当电信号的大小发生变化时,液压阀的阀芯位置也会改变,进而改变液压系统的流量和压力。
电液比例控制阀具有多种优点。
首先,由于采用了电信号控制,其控制精度高,可以实现非常精确的流量和压力控制。
其次,由于采用了电信号输入,可以实现远程和自动控制,减少了人工操作的繁琐和工艺参数的调整。
此外,电液比例控制阀响应速度快,动态性能好,适用于对速度和位置等变量要求较高的系统。
另外,电液比例控制阀在工程实践中有着广泛的应用。
它可以用于工业生产中的自动化设备、大型机械工程、航空航天、船舶、冶金、石油、矿山等领域。
例如,在塑料注射成型机上,电液比例控制阀可以控制液压缸的流量,实现对注射过程的精确控制,从而保证产品的质量和稳定性。
在液压机械中,电液比例控制阀可以实现对液压缸运动的精确控制,提高工作效率和产品质量。
在航空航天领域,电液比例控制阀可以用于飞机起落架的液压系统,实现对起落架的顺畅升降。
需要注意的是,电液比例控制阀的使用需要遵循一定的操作规范和维护保养要求。
首先,操作人员需要了解并熟悉控制系统的工作原理和操作规程,正确使用和调整电液比例控制阀。
电液比例控制阀结构及原理

电液比例控制阀结构及原理电液比例控制阀(Electro-hydraulic proportional control valve)是一种通过电信号控制液压工作机构运动的装置。
它将电信号转化为液压信号,通过控制液压系统的液压阀门来调节油液的流量和压力,从而达到对液压系统运动进行精确控制的目的。
首先是电磁比例阀部分,它是通过电磁线圈的磁性效应控制液压阀门的开启和关闭。
电磁比例阀由铁芯、阀芯、阀阀座和电磁线圈等组成。
电磁线圈环绕在铁芯上,在线圈中通电产生磁场时,铁芯会被磁化,吸引阀芯与阀座之间的间隙关闭。
电磁线圈通电后,油液进入阀芯的控制腔,从而控制阀芯的位置和开口大小,进而控制液压油的流量和压力。
当电磁线圈断电时,铁芯失去磁性,阀芯与阀座之间的间隙打开,油液再次流动。
其次是液压比例执行机构部分,它是通过液压油的力学性能将电信号转化为液压信号,并通过调节活塞的位移或液压系统的压力来控制液压工作机构。
液压比例执行机构由油缸、活塞和杆等组成。
当电磁线圈通电时,液压油从阀芯的控制腔进入液压比例执行机构的缸腔,使活塞移动,从而实现对液压工作机构的控制。
当电磁线圈断电时,液压油从液压比例执行机构的缸腔排出,活塞回到初始位置。
整个电液比例控制阀工作的原理是将电信号转化成了液压信号,通过控制液压系统的流量和压力,来精确控制液压工作机构的运动。
通常情况下,电液比例控制阀通过调节电磁比例阀的阀芯位置来控制油液的流量,通过调节液压比例执行机构的液压力来控制油液的压力。
通过不同的电信号输入可以实现对液压工作机构的精确控制,达到所需的运动参数。
2D电液比例换向阀(shanhai)

力反馈型比例换向阀 1-比例电磁铁 2-先导阀心 3-反馈杆 4-主 阀心 5-阻尼孔 6-弹簧 7-调节螺钉 8-阀体
电反馈型双级比例阀 1-比例电磁铁 2-先导控制阀阀心 3-主阀阀体 4-对中复位弹簧 5-主阀阀心 6-位移传感器
导控式电液比例换向阀由导阀控制主阀敏感腔的压力变化,产生较大的 液压静压力驱动主阀心运动,可以实现大流量控制,但其结构复杂,且 无法在零导控压力下工作
As the connection device between the handle and multi-way valve, PLC can improve the intelligent level of the valve; PLC作为手柄与多路阀的连 接设备,提高多路阀的智能 化水平;
According to the size of the input signal,A new type Loading port independent control twodimensional multi-way valve can accrate control Construction Machinery,and have remarkable Energy saving effect. 新型2D负载口独立控制电液多路 换向阀按手柄输入信号的大小,精 确控制挖掘机的运动,且节能效果 显著。
T
A1
P
B1
T
施振对象
x v1
Ⅰ
Ⅱ
Ⅲ
Ⅳ
x v1
Ⅰ
Ⅱ
Ⅲ
Ⅳ
阀芯
阀套 窗口
沟槽
(a) 2D高频激振阀的工作原理
(b)
2D高频激振阀(3000Hz)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般取 Cd=0.77
θ ——锥阀半锥角。
KI Ff
p
4
d
2
C
d
Cv
dx
sin
2
从上式可以看出,当忽略运动摩擦力和稳态液动力时,锥阀的开启压力 p 与
输入电流 I 成正比,因此连续地按比例控制输入电流 I 的大小,便可连续地按比
例调控先导阀的开启压力 p。
由于比例电磁铁有磁滞和摩擦力 Ff 的存在,因此当电流增加和减小时,电流
阀芯3上,对阀芯施加电磁力。系统压力P作用在
●
●
R2
●
●
●
●
主阀芯4的下端,流经阻尼孔R1后作用在锥阀芯3
●
●
R1
上。当系统工作压力达到比例电磁铁的调整压力
时,先导锥阀芯开启形成先导溢流。主阀芯4上端
5 4
●
●
的油压力降低,主阀芯开启而溢流。
p
限压阀5是一个开关型直动式微量溢流阀, 先导式比例溢流阀(DBE型)
检测元件
闭环控制原理框图
性能对照表
项目/类别 电液伺服阀 电液比例阀
介质过滤精度μ 3~10
25
阀内压降MPa
7~21
0.5~2
滞环%
1~3
1~3
重复精度%
0.5
0.5
频宽 Hz -3db
线圈功率W
20~200 0.05~5
1~30 10~24
中位死区
无
有
价格因子
3
1
早期电液阀 开关阀
25
25
0.25~0.5 4~7 ±1
工程机械液压元件及系统
(Hydraulic Component & System of Engineering Machine)
第三章 工程机械用阀
第二节 常用电液比例阀
电液比例压力阀 电液比例方向阀 电液比例流量阀
普通液压阀属开关式定值控制阀。由它们组成的系统属传统的开关 阀液压系统,大多采用机械式手动可调节手柄和普通的通断电磁铁、压 力继电器、行程开关来实现对液体压力、流量和方向的控制。运动部件 的加速或减速过程一般是通过机械凸轮曲线来实现。
0.25~5 无 <0.1%
1~5
5
10~30
有
有
1
0.5
1.电液比例压力阀
比例压力阀用来实现压力控制,压力的升降随时可以通过电信号加以改 变。
工作系统的压力可根据生产过程的需要,通过电信号的设定值来加以变 化,这种控制方式常称为负载适应控制。
根据在液压系统中的作用不同,可分为比例溢流阀,比例减压阀和比例 顺序阀。根据控制的功率大小不同,可分为直动式和先导式两种,根据是否 带位置检测反馈,可分为:带位置检测和不带位置检测比例压力阀两种。
FD=KI K——比例系数;
I——输入激磁线圈电流;
Ff——运动摩擦力;当电磁力 FD 由小到大时,Ff 取(-)号,FD 由 大到小时,取(+)号。一般情况下 Ff=0.15G(G 为铁芯重 量)
d——锥阀座直径;
p——先导阀开启压力;
Cd——锥阀流量系数; Cv——锥阀速度系数; x——锥阀开启高度;
比例电磁铁1接收电信号以后,产生推力经推杆2和弹簧3作用在锥阀4上。 它是依靠阀芯上的液压作用力与弹簧力相平衡的原理而工作的,当阀芯上的液 压作用力大于弹簧作用力时,锥阀开启而溢流。若按比例连续地改变输入电流
大小,就可按比例连续地调控阀的开启压力,获得所需的压力调定值。
12 3 4
d
F
p
p
T
T
(a)
1.1 直动式比例溢流阀
直动式比例压力阀与传统的开关型压力阀相比,只是用比例电磁铁取代 了手动调压手柄,由输入电信号调控阀的输出压力,而且输出压力与输入电 信号成正比。
直动式比例溢流阀使用方便,重复精度高,滞环小,响应速度快。但由 于受到电磁推力的限制,其输出流量不能太大。因此,直动式比例溢流阀主 要作先导控制级使用。与开关型压力控制阀的先导阀不同的是,弹簧在整个 工作过程中,不是用来调压而是用来传递推力的,故称为传力弹簧。传力弹 簧由于没有预压缩量,因此无弹簧力作用在锥阀上。
主要起安全阀作用,保护系统不受峰值压力的损
1-比例电磁铁 2-推杆 3-先导阀芯 4-主阀芯 5-限压阀
坏。
12
1
13
6
2
9
8
3
11
4
10
5
X7A
B
先导式比例益流阀机构图(DBEM 型)
1-先导阀体;2-比例电磁铁;3-限压阀;4-主阀体;5-主阀芯;6-先导阀 芯; 8、9-阻尼;10-控制油通道;11-主阀弹簧;12-先导阀;13-泄油孔比例电磁铁;2—推杆;3—弹簧;4—阀芯
(b)
(1)阀体(2)比例电磁铁(3)阀座(4)锥阀
传力弹簧由于没有预压缩量,因此无弹簧力作用在锥阀上,故作用在先导阀 芯上的力平衡方程式为:
FD F f
p
4
d
2
C
d
Cv
dx
sin
2
式中
FD——比例电磁铁产生的电磁力;
1.3先导式比例减压阀
3
R2 p3
21 6
R3
4
R1
p1 A
A p1
T p2
5
p2 B
(a)
(b)
先导式比例减压阀工作原理及职能符号(DRE 型)
1-比例电磁铁;2-推杆;3-先导锥阀芯;4-主阀芯;5-单向阀
由比例电磁铁输出的电磁力直接作用在先导阀的锥阀芯上,输出压力由 输入的电信号大小调定。
电液比例阀能按输入的电信号连续地、按比例地控制液压系统的压 力、流量和方向。
比例阀控制系统实质上是一种模拟式开关控制系统,使用各种比例 阀和相配套的电子放大器,根据给定的模拟电信号,按比例地对液体的 压力、流量和方向进行有效的连续的控制。
根据一个输入电压值的大小,通过电子放大器,将输入电压信号( 一般0~±10V之间)转换成相应的电流信号,如1mV=1mA。这个电流信号 作为输入量被送入电磁铁,从而产生和输入信号成比例的输出量——力 或位移。
I 与压力 p 的关系曲线不能重合,为了减少滞环,除在设计时应尽量减小磁滞和
摩擦力外,在使用时,常在电控器中叠加一个频率为 100HZ 的颤振信号到直流
电源。
1.2 先导式比例溢流阀
结构上主要由比例电磁铁,先导阀,主阀和
3
限压阀组成。
1 2
与开关型溢流阀不同的是:先导阀没有调压 p1
弹簧,比例电磁铁的推杆2直接作用在先导阀锥阀
该力或位移又作为输入量加给比例阀,使比例阀产生一个与输入量 成正比例的流量或压力。
电控放大器 电流I
油源 比例阀
压力p、 流量q
液压缸 液压马达
速度v、力F、 转速n、转矩T
负载
开环控制原理框图
油源
电控放大器
- 反馈信号
电流I
比例阀
压力p、 液压缸 流量q 液压马达
速度v、力F、
●
负载
转速n、转矩T