电催化还原二氧化碳.ppt
电催化还原二氧化碳知识讲解

Co、Sn、In、Bi等
甲酸
Au、Ag、Zn、Pd等 Cu、Cu-Au、Cu-Sn等
CO CO、醇、酸、烷烃等
Al、Ga、Pt、Fe等
催化效率很低
醇
金属材料——钯
3.7/6.2/10.3 nm尺寸Pd的TEM 图像和HRTEM图像
不同尺寸Pd还原CO2为CO的 法拉第效率和电流密度
Pd(111)、Pd(211)、Pd55和 Pd38还原CO2为CO的自由能
Au/CeOx界面上生成CO的法拉第效率远高于Au和Ce, 因为Au/CeOx界面促进了CO2在CeOx上的吸附和活化
J. Am. Chem. Soc. 2017, 139, 5652−5655
导电聚合物、生物酶等
用吡啶盐将二氧化碳 电催化还原为甲醇
用碳酸酐酶将二氧化 碳电催化还原为甲醇
J. AM. CHEM. SOC. 2010, 132, 11539–11551
金属/金属氧化物——Co/CoO
在四原子厚超薄钴/氧化钴纳米材料中, 氧化钴的存在提高了材料电催化还原 CO2为甲酸的活性和选择性
红线:四原子厚的部分氧化的钴层 蓝线:四原子厚的钴层 紫线:部分氧化的块状钴 黑线:块状钴
Nature.VOL 529. 7 January 2016
金属/金属氧化物——Au/CeOx
Journal of Power Sources 252 (2014) 85-89
J. Am. Chem. Soc. 2012, 134, 19969−19972
金属/金属氧化物——Cu/Cu2O
铜电极表面Cu2O的存在,可 以提高电催化还原CO2为甲醇、 甲酸等的法拉第效率和电流 密度,可以降低还原过电位
ACS Catal. 2014, 4, 3091−3095
电催化二氧化碳还原的反应物和中间体的富集

电催化二氧化碳还原的反应物和中间
体的富集
电催化二氧化碳还原(ECR)是一种将二氧化碳(CO2)转化为有价值的化学品和燃料的技术。
在这个过程中,反应物和中间体的富集对于提高反应效率和产物选择性至关重要。
反应物的富集是指提高二氧化碳和电解液中电解质的浓度,以增加反应物之间的接触机会,从而促进反应的进行。
这可以通过使用适当的气体扩散电极或电解液循环系统来实现。
中间体的富集则是指在电催化过程中,控制和优化中间体的生成和转化,以提高产物的选择性和收率。
这可以通过选择合适的催化剂、电解液和操作条件来实现。
例如,在电催化二氧化碳还原过程中,中间体如甲酸(HCOOH)、一氧化碳(CO)和甲烷(CH4)的富集对于产物的选择性和收率具有重要影响。
通过选择适当的催化剂和电解液,可以调控中间体的生成和转化途径,从而提高目标产物的选择性。
此外,反应物和中间体的富集还可以通过优化电解液组成、温度、压力和电流密度等操作条件来实现。
这些因素的调控可以影响反应物和中间体在电极表面的扩散和传质过程,从而影响反应的速率和产物的分布。
总而言之,电催化二氧化碳还原过程中反应物和中间体的富集是提高反应效率和产物选择性的关键因素。
通过合理的设计和优化,可以实现高效、选择性的二氧化碳转化,为可持续能源和化学品的生产提供有前景的技术途径。
最新二氧化碳电化学还原ppt课件

将闲散的非常规能量加以储存, 缓解能源危机,且没有新的CO2排放;
利用太阳能、风能、地热能、潮汐能等可再 生能源,以及核电站、水电站低谷用电时的 弃电;
阴极反应:CO2(g)+ne-=CO HCOOH HCHO CH3OH 阳极反应:4OH--4e-=2H2O+O2
9.小草和大树
贫苦中奋争 写作中受挫 思考中转型 努力中成功
• 夏洛蒂 •安恩 • 艾米莉
《呼啸山庄》 《简 ·爱》 《艾格尼斯 ·格雷》
三、名著便览——《简.爱》
《简.爱》写了一位灰姑娘的奋斗史。 一百多年来,无数人阅读这本书, 有一个 同样的原因——被简.爱的崇高精神和人格 魅力深深吸引;每个人都被这样的话语征 服:“我们是平等的……至少我们通过坟墓, 平等地站到上帝面前。“它几乎成为全世界 妇女必读的经典之作。
THANK YOห้องสมุดไป่ตู้ FOR
WATCHING
苏教版语文六年级上册复习要点 第三单元
9.小草和大树
一、生字词: 训诫 陡峭 寥寥无几 堪称 逆境 撇下 权衡 毅力 屹立 二、重点字音 脱颖而出(yǐng) 惴惴不安(zhuì) 驰骋(chěng) 桂冠(guān) 嗷嗷待哺(bǔ)
三、重点解释
要强好胜(喜欢)
02 硼掺杂金刚石(BDD) 在有机电解液(甲醇和高氯酸四丁铵的混合溶 液)中对于产物甲醛的 FE 最高达到了 74%
结构多样 环境友好 比表面积大 活性位点突出
导电性能良好 物理化学性能稳定 价格低廉及储量丰富
03
CO2RR电解质
.
电化学二氧化碳还原

电化学二氧化碳还原
电化学二氧化碳还原是一个新兴的技术,可将二氧化碳(CO2)
还原成可再利用的含有碳元素的产物。
它是一种技术,可将气态
二氧化碳分解、固定和利用,可用于生物、化学和工业制造上用途。
二氧化碳还原对环境保护和改善具有重要意义,可以将大量自然
界积累的碳分解、固定,减少CO2在大气中的含量,并使CO2
脱离大气环境,减少温室效应、改善空气质量和减少酸雨。
它可
以转化为碳循环的有机材料,以便存储,长期地把碳固定在有机
物中,减少CO2对环境的不良影响。
二氧化碳还原过程中,铂催化剂和电极可以激发还原反应,使二
氧化碳分子能够与另外的原料发生反应,从而产生含碳的有机物,被称为碳氟化物。
碳盐和碳源是反应的催化剂,可让CO2的原子以新的凝聚形式与其它原料结合,从而制备碳氟化物。
电化学二氧化碳还原技术一方面可以抑制和减少CO2排放,另一方面可以产生多种有用的有机产物,例如,氢气、甲醇和各种烃类,作为可再生化学原料。
因此,电化学二氧化碳还原既属于清洁能源开发技术,又可以降低温室气体排放,促进能源高效利用,实现可持续发展,值得深入研究和发展。
二氧化碳的电化学还原

小结
1.制备的CuO/TiO2 复合物修饰Cu电极对CO2的光电催 化还原表现较高的活性,还原的起始电位在-0.63 V。 2.制备的CuO/TiO2 复合物修饰Cu电极对CO2的光电催 化还原为羧酸类和醇类小分子有较好的选择性。 3. 制备的CuO/TiO2 复合物修饰Cu电极对CO2的光电 催化还原有较好的稳定性。
CO2 (g) + 4H+ + 4e → HCHO (aq) + H2O E0 = -0.48 V
CO2 (g) + 2H+ + 2e → CO (g) + H2O
E0 = -0.52 V
CO2 (g) + 2H+ + 2e → HCOOH (aq)
E0 = -0.61 V
2CO2 (g) + 2H+ + 2e → H2C2O4 (aq)
本文的设想和目的
利用纳米薄膜和具有特殊物理性质 的纳米复合物及催化剂修饰电极, 使得修饰电极对CO2电化学和光电化 学还原有较好的催化性。
1. CO2在CuO/TiO2-Cu修饰电极上
2.
的光电化学还原
本部分工作首先制备了CuO/TiO2复合物修 饰Cu电极,并对CO2在这种修饰电极上的 光电化学还原行为和催化活性进行了研究。
CO2电化学和光电化学还原的发展趋势
今后 CO2电化学和光电化学还原的研究将更多地集中在以下几个方面: (1)将更多地采用有机溶剂溶解CO2并且利用低温技术 (2)电极采用不同的金属,金属氧化物及合金并控制反应温度以选 择生成物 (3)利用气体扩散电极增加CO2的压强促进反应 (4)利用有机络合物多层膜修饰电极,使产物为更复杂的有机物 (5)对于光电化学还原,反应装置的设计能够大规模地聚集太阳光, 使之能充分利用光能。 (6)研究高效的分离技术,使得产物最好能及时从反应体系中分离 出来。
二氧化碳电化学还原[优质PPT]
![二氧化碳电化学还原[优质PPT]](https://img.taocdn.com/s3/m/b37d364c376baf1ffd4fad23.png)
Saveant 等人分别在一价离子(Li+,Na+)和二价离子(Mg2+,Ga2+,Ba2+)的电解 质中用铁(0)卟啉作为催化剂进行了 CO2 电还原。 通过实验他发现不同电解质中催化活性的顺序为 Mg2+=Ga2+>Ba2+>Li+>Na+。
3 镍(Ni)、铁(Fe)、铂(Pt)等
这类金属催化剂由于自身析氢过电位较低,所以主要产物为 H2;
4 铜(Cu)
研究表明铜箔在不同的条件下可以产生 16 种不同的 CO2 电还原产物,并且因为其 独特的电催化性能在反应过程中可以吸附和转化中间产物*CO,所以产物主要以 甲烷(CH4)和乙烯(C2H4)为主。
02 金属氧化物表现出更好的催化活性 MoO2 在乙腈和二甲基甲酰胺等有机溶剂中能够表现出 较强的 CO2 还原催化活性,Oh 等人发现 MoO2 在乙腈 与四丁基六氟磷氨酸(TBAPF6)中 CO2电还原的初始 点位小于 0.2 V,并且反应在-20℃下比在室温下表现出 更强的催化活性。
Chen Y., Kanan M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts [J]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989.
02 2 氧化金属催化剂
01 金属氧化物比金属单质拥有更高的电流密度和 基底上电沉积了一层 SnOx 薄膜, 通过测试发现相较于纯的锡箔拥有更独特的催化性能,与在表 面自然生长一层 SnOx 的 Sn 电极相比前者的电流密度是后者的 8 倍,并且法拉第效率也达到了 4 倍的提升。
二氧化碳电化学还原概述

二氧化碳电化学还原概述二氧化碳(CO2)电化学还原是一种将CO2转化为高附加值化学品的技术,它可以减少CO2的排放并促进可持续发展。
电化学还原是通过在电极上施加电压来引发氧化还原反应,将CO2从气体相转化为液体或固体产品。
CO2电化学还原的研究起源于20世纪50年代,当时科学家们开始探索将CO2作为一种廉价的原料转化为化学品的可能性。
然而,由于CO2分子的化学稳定性和高能量要求,这项技术的发展进展缓慢。
近年来,随着环境问题和可再生能源的重视,CO2电化学还原引起了越来越多的关注。
CO2电化学还原的关键是选择合适的电催化剂,以降低CO2的能垒并提高反应效率。
常用的电材料包括贵金属(如银、金、铜等)、过渡金属(如镍、铁等)以及有机分子(如多孔材料、碳纳米管等)。
贵金属是高效的CO2电催化剂,但存在成本高和资源稀缺的问题,因此研究人员一直在寻找更低成本的替代品。
CO2电化学还原的挑战之一是选择合适的溶液体系和电解质,以提供足够的反应活性和选择性。
一种常用的溶液体系是含有碱金属离子(如Na+、K+等)的溶液,它可以提供高电子导电性和电化学反应的碱度。
然而,这种体系中也存在碱金属的沉积问题,需要通过合适的电极材料和工艺进行有效地控制。
除了选择合适的电催化剂和溶液体系,CO2电化学还原还需要考虑反应动力学和传递过程等因素。
研究人员通过改变电极形貌、调节电解质浓度等方法来提高CO2电化学还原的效率和选择性。
此外,使用催化剂表面修饰、核-壳结构和多孔材料等技术,也有助于提高CO2电化学还原的效果。
目前,CO2电化学还原技术仍处于研究和开发阶段,尚未实现大规模商业化应用。
然而,随着科学家们对CO2电化学还原机理和反应动力学的深入理解,相信其可持续发展的前景是乐观的。
潜在的应用领域包括能源存储、化学品合成和环境保护等。
通过进一步研究和工程实践,CO2电化学还原有望成为一种可持续发展的解决方案,为减少碳排放和实现低碳经济做出贡献。
路易斯酸电催化二氧化碳还原

路易斯酸电催化二氧化碳还原
路易斯酸电催化二氧化碳还原是一种利用路易斯酸作为催化剂,通过电化学方法将二氧化碳还原为有用化合物的过程。
在这个过程中,路易斯酸作为催化剂,可以促进二氧化碳的还原反应。
同时,电化学方法提供了一个有效的能量来源,使得还原反应可以在较低的温度和压力下进行。
具体来说,路易斯酸电催化二氧化碳还原的过程可以分为以下几个步骤:
电解液中的路易斯酸与二氧化碳反应,生成相应的路易斯酸盐和碳正离子。
碳正离子在电极上发生还原反应,生成相应的有机化合物。
有机化合物在电极上进一步发生电化学反应,生成最终的产品。
需要注意的是,路易斯酸电催化二氧化碳还原的过程需要控制适当的反应条件,如温度、压力、电流密度等,以确保反应的顺利进行和产物的选择性。
此外,该过程还需要注意环保和安全性问题,避免对环境造成污染和危害。
因此,在实际应用中,需要综合考虑各种因素,选择合适
的催化剂和反应条件,以确保过程的可持续性和经济性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红线:四原子厚的部分氧化的钴层 蓝线:四原子厚的钴层 紫线:部分氧化的块状钴 黑线:块状钴
Nature.VOL 529. 7 January 2016
金属/金属氧化物——Au/CeOx
Au/CeOx界面上生成CO的法拉第效率远高于Au和Ce, 因为Au/CeOx界面促进了CO2在CeOx上的吸附和活化
CO CO、醇、酸、烷烃等
Al、Ga、Pt、Fe等
催化效率很低
醇
金属材料——钯
3.7/6.2/10.3 nm尺寸Pd的TEM 图像和HRTEM图像
不同尺寸Pd还原CO2为CO的 法拉第效率和电流密度
Pd(111)、Pd(211)、Pd55和 Pd38还原CO2为CO的自由能
J. Am. Chem. Soc. 2015, 137, 4288−4291
金属材料—铜
与电抛光法和溅射法得到的 Cu 电极表面相比, Cu 纳米颗粒覆盖的表面更容易电还原 CO2生成 碳氢化合物和CO
Phys. Chem. Chem. Phys., 2012, 14, 76–81
在Cu电极表面制备泡沫 铜,可以使还原CO2产 生 HCOOH的法拉弟电 流效率达到29%
ACS Catal. 2014, 4, 3091−3095
电催化还原二氧化碳
CO2的电化学还原过程可以通过使 CO2失
去 2e¯、4e¯、6e¯和 8e¯电子来完成。
CO
CO2的电还原过程比较复杂,反应速率较 慢。
在不同的电极材料、还原电位、电解质、
pH 等反应条件下,生成的产物也多种多样。
酸
CO2
酯
金属电极
主要产物
Co、Sn、In、Bi等
甲酸
Au、Ag、Zn、Pd等 Cu、Cu-Au、Cu-Sn等
J. Am. Chem. Soc. 2012, 134, 19969−19972
金属/金属氧化物——Cu/Cu2O
铜电极表面Cu2O的存在,可 以提高电催化还原CO2为甲醇、 甲酸等的法拉第效率和电流 密度,可以降低还原过电位
J. Am. Chem. Soc. 2012, 134, 72Leabharlann 1−7234金属材料——银
纳米孔银电极催化材料, 可以在过电位低于0.5V 的条件下,高选择性的把 CO2还原成CO
Nature Communications,2014,5:3242 - 3247.
金属材料——Cu/Au
Cu/Au合金纳米材料对CO2选 择性催化还原产生醇的法拉 第效率远高于铜电极
Journal of Power Sources 252 (2014) 85-89
J. Am. Chem. Soc. 2017, 139, 5652−5655
导电聚合物、生物酶等
用吡啶盐将二氧化碳 电催化还原为甲醇
用碳酸酐酶将二氧化 碳电催化还原为甲醇
J. AM. CHEM. SOC. 2010, 132, 11539–11551
Electrochem. Solid-State Lett.,2011, 14, E9–E13
金属/金属氧化物——Sn/SnOx
在 Sn/SnOx体系中,由于SnOx的作用, 与Sn电极相比,虽然还原CO2的过电 位相近,但反应电流密度高出数倍
J. Am. Chem.Soc. 2012, 134, 1986−1989
金属/金属氧化物——Co/CoO
在四原子厚超薄钴/氧化钴纳米材料中, 氧化钴的存在提高了材料电催化还原 CO2为甲酸的活性和选择性
面临的挑战: 1.催化活性低; 2.产物选择性低; 3.催化剂稳定性/耐久性不足; 4.对机理的理解研究不足; 5.电极和系统未能优化到可以用于实际。
未来研究的方向: 1.探索新的电催化剂以提高催化活性,优化金属电极的形态、尺寸、结 构等,制备金属/金属、金属/金属氧化物等复合材料; 2.通过实验和理论模拟进一步理解反应机理; 3.优化电极、反应器和系统设计以应用于实际。