第二十三届(2012年)初一“希望杯”全国数学邀请赛培训题-

合集下载

2012希望杯试题及答案

2012希望杯试题及答案

希望杯第二十三届(2012年)全国数学邀请赛初一第1试一、选择题(每小题4分,共40分)1.计算:4)1(4)2(122-⨯---+=( )(A)一2 (B)-1 (C)6 (D)4 2.北京景山公园中的景山的相对高度(即从北京的地平面到山顶的垂直距离)是45.7米,海拔高度是94.2米.而北京香山公园中的香炉峰(俗称“鬼见愁”)的海拔高度是557米.则香炉峰的相对高度是( )米.(A)508.5 (B)511.3 (C)462.8 (D)605.5 3.If rational numbers a ,b ,and c satisfy a <b <c ,then |a —b|+|b —c|+|c —a|=( ) (A)0 (B)2c 一2a (C)2c 一2b (D)2b 一2a4.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是( )(A)第一次向左拐40°,第二次向右拐40° (B)第一次向右拐50°,第二次向左拐130° (C)第一次向右拐70°,第二次向左拐110° (D)第一班向左拐70°,第二次向左拐1lO ° 5.某单位3月上旬中的1日至6日每天用水量的变化情况如图1所示.那么这6天的平均用水量是( )吨.(A)33 (B)32.5 (C)32 (D)316.若两位数ab 是质数,交换数字后得到的两位数ba 也是质数,则称ab 为 绝对质数.在大于11的两位数中绝对质数有( )个. (A)8 (B)9 (C)10 (D)11 7.已知有理数x 满足方程20121120121=--x x ,则49200994+-x x =( ) (A)一41 (B)一49 (C)41 (D)498.某研究所全体员工的月平均工资为5500元,男员工月平均工资为6500元,女员工月平均工资为5000元,则该研究所男、女员工人数之比是( )(A)2:3 (B)3:2 (C)1:2 (D)2:l9.如图2,△ABC 的面积是60,AD :DC=1:3,BE :ED=4:l ,EF :FC=4:5.则△BEF 的面积是( )(A)15 (B)16 (C)20 (D)3610.从3枚面值3元的硬币和5枚面值5元的硬币中任意取出1枚或多于1枚,可以得到n 种不同的面值和,则n 的值是( ) (A)8. (B)15. (C)23. (D)26. 二、A 组填空题(每小题4分,共40分) 11.若x=0.23是方程12.051=+mx 的解,则m=__________.12.如图3,梯形ABCD 中.∠DAB=∠CDA=90°,AB=5,CD=2,AD=4. 以梯形各边为边分别向梯形外作四个正方形.记梯形ABCD 的面积为S 1,四个正方形的面积和为S 2,则21S S =_____________. 13.若有理数a 的绝对值的相反数的平方的倒数等于它的相反数的立方的321,则a=_______. 14. lf a <-2,-1<b <O, H=-a -b ,O=a 2+b 2,P=-a+b 2, and E=a 2-b, then the magnitude relation of the four number H, O, P, and E is________________________.(英汉小词典:magnitude relation 大小关系 ) 15.某农民在农贸市场卖鸡.甲先买了总数的一半又半只.然后乙买了剩下的一半又半只.最后丙买了剩下的一半又半只 ,恰好买完.则该农民一共卖了___________只鸡.16.若(a 一2b +3c +4)2+(2a 一3b +4c 一5)2≤0,则6a 一10b +14c -3=________________. 17.如图4,在直角梯形纸片ABCD 中,AD ∥BC,AB ⊥BC,AB=10,BC=25,AD=15,现以BD 为折痕,将梯形ABCD 折叠,使AD 交BC 于点E .点A 落到点A 1,则△CDE 的面积是_______________.18.代数式5a 2十5b 2—4ab 一32a 一4b 十lO 的最小值是__________. 19.如图5,△ABC 中, ∠ACB=90°,AC=lcm .AB=2 cm .以B 为中心,将△ABC 顺时针旋转,使锝点A 落在边CB 延长线上的A 1点,此时点C 落到点C 1,则在旋转中,边AC 变到A 1C 1所扫过的面积为_________cm 2(结果保留π).20.在一条笔直的公路上,某一时刻,有一辆客车在前,一辆小轿车在后,一辆货车在客车与小轿车的正中间同向行驶,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,此后,再过t 分钟,货车追上了客车,则t=_________________. 三、B 组填空题(每小题8分,共40分)21.已知2x 一3y=z +56, 6y=91-4z -x ,则x ,y, z 的平均数是_____________,又知x>0并且(x 一3)2=36,则x=________ ,y=_________,z=__________.22.有长为lcm, 2cm, 3cm, 4cm, 5cm, 6cm 的六根细木条,以它们为边(不准截断或连接)可以构成_______个不同的三角形,其中直角三角形有____________个.23.已知11瓦(0.011千瓦)的节能灯与60瓦(即0.06千瓦)的白织灯的照明效果相同,使用寿命都越过3000小时.而节能灯每只售价为27元,白炽灯每只售价为2.5元.电费为0.5元/千瓦时.若用一只11瓦节能灯照明1500小时,则电费为_________元.对于11瓦的节能灯和60瓦的白炽灯,当照明时间大于_______小时时,买节能灯更划算.24.已知正整数a ,b 的最大公约数是3,最小公倍数是60,若a >b,则abb a 222 =_____________.25.如图6,在△ABC 中,∠ACB=90°,M 是∠CAB 的平分线AL 的中点. 延长CM 交AB 于K ,BK=BC .则∠CAB=_______°,∠KCB∠ACK=_________.第二十三届“希望杯”全国数学邀请赛第1试答案题号 1 2 3 4 5 6 7 8 9 10 答案 CABDCAACBC题号 11 1213 1415 16 17181920 答案 238- 51 -2E O H P <<<7-16570-58 125π 15题号 2122232425 答案 79;39;9;349- 7;1 8.25;100040399或40945°;319、(1)面积公式:S=底边×高÷2,直接计算:AD:DC=1:3,高相同,则面积比也为1:3,因此,S △BDC =S △ABC ×3/4,即60×3/4=45。

第23届2012希望杯初一培训题答案

第23届2012希望杯初一培训题答案

2012 年第二十三届希望杯初一数学培训题 参考答案
105+21+21=147.选(B)。 14. 若 a,b 同为正数,则
a b ab + + =3; | a | | b | | ab |
若 a 为正数,b 为负数,或 a 为负 数, b 为正数, 都有
a b ab + + =-1; | a | | b | | ab |
18. 由题意知 3x a 3≤ <4, 2 所以 6≤3x+a<8, 因为有正整数 x 满足上式,易见,x 只 能取 1,2. 若 x=1 时,则 3≤a<5; 若 x=2 时,注意 a 为正数,则 0<a<2 故选(D)。 19. 依题意, 2008 年的平均房价是 每平方米(6800-3000)元,3 年后,即 2011 年上涨到每平方米 6800 元。 所以 关于 x 的方程是 3 (6800-3000)(1+x) =6800. 故选(D)。 20. 不妨设△ABC 中 A=2(B+C),则 A B+C= 2 由 三 角 形 的 内 角 和 定 理 知 A+B+C=180°, A 于是 A+ =180°,A=120°. 2 显然 A 是最大角, 于是此三角形的最大角是 120 度。选 (C)。 2 1 21. 因为 2012=2 ×503 , 所 以 2012 约 数 共 有 (2+1)(1+1)=6(个)。 它们分别是: 1 , 2 , 4 , 503 , 1006 , 2012. 其和为 1+2+4+503+1006+2012=3528. 故选(A)。 22. 因 为 △ ABC 的 一 个 外 角 是 100°,所以与这个外角相邻的内角是 80°.

2012-2013年希望杯初一数学竞赛试题[1]2总结

2012-2013年希望杯初一数学竞赛试题[1]2总结

希望杯第二十三届(2012年)全国数学邀请赛初一第1试一、选择题(每小题4分,共40分)1.计算:4)1(4)2(122-⨯---+=( ) (A)一2 (B)-1 (C)6 (D)42.北京景山公园中的景山的相对高度(即从北京的地平面到山顶的垂直距离)是45.7米,海拔高度是94.2米.而北京香山公园中的香炉峰(俗称“鬼见愁”)的海拔高度是557米.则香炉峰的相对高度是( )米.(A)508.5 (B)511.3 (C)462.8 (D)605.53.If rational numbers a ,b ,and c satisfy a <b <c ,then |a —b|+|b —c|+|c —a|=( )(A)0 (B)2c 一2a (C)2c 一2b (D)2b 一2a4.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是( )(A)第一次向左拐40°,第二次向右拐40° (B)第一次向右拐50°,第二次向左拐130°(C)第一次向右拐70°,第二次向左拐110° (D)第一班向左拐70°,第二次向左拐1lO °5.某单位3月上旬中的1日至6日每天用水量的变化情况如图1所示.那么这6天的平均用水量是( )吨.(A)33 (B)32.5 (C)32 (D)316.若两位数ab 是质数,交换数字后得到的两位数ba 也是质数,则称ab 为绝对质数.在大于11的两位数中绝对质数有( )个.(A)8 (B)9 (C)10 (D)117.已知有理数x 满足方程20121120121=--x x ,则49200994+-x x =( ) (A)一41 (B)一49 (C)41 (D)498.某研究所全体员工的月平均工资为5500元,男员工月平均工资为6500元,女员工月平均工资为5000元,则该研究所男、女员工人数之比是( )(A)2:3 (B)3:2 (C)1:2 (D)2:l9.如图2,△ABC 的面积是60,AD :DC=1:3,BE :ED=4:l ,EF :FC=4:5.则△BEF 的面积是( )(A)15 (B)16 (C)20 (D)3610.从3枚面值3元的硬币和5枚面值5元的硬币中任意取出1枚或多于1枚,可以得到n 种不同的面值和,则n 的值是( )(A)8. (B)15. (C)23. (D)26.二、A 组填空题(每小题4分,共40分)11.若x=0.23是方程12.051=+mx 的解,则m=__________.12.如图3,梯形ABCD 中.∠DAB=∠CDA=90°,AB=5,CD=2,AD=4.以梯形各边为边分别向梯形外作四个正方形.记梯形ABCD 的面积为S 1,四个正方形的面积和为S 2,则21S S =_____________. 13.若有理数a 的绝对值的相反数的平方的倒数等于它的相反数的立方的321,则a=_______. 14. lf a <-2,-1<b <O, H=-a -b ,O=a 2+b 2 ,P=-a+b 2, and E=a 2-b, then the magnituderelation of the four number H, O, P, and E is________________________.(英汉小词典:magnitude relation 大小关系 )15.某农民在农贸市场卖鸡.甲先买了总数的一半又半只.然后乙买了剩下的一半又半只.最后丙买了剩下的一半又半只 ,恰好买完.则该农民一共卖了___________只鸡.16.若(a 一2b +3c +4)2+(2a 一3b +4c 一5)2≤0,则6a 一10b +14c -3=________________.17.如图4,在直角梯形纸片ABCD 中,AD ∥BC,AB ⊥BC,AB=10,BC=25,AD=15,现以BD 为折痕,将梯形ABCD 折叠,使AD 交BC 于点E .点A 落到点A 1,则△CDE 的面积是_______________.18.代数式5a 2十5b 2—4ab 一32a 一4b 十lO 的最小值是__________.19.如图5,△ABC 中, ∠ACB=90°,AC=lcm .AB=2 cm .以B 为中心,将△ABC 顺时针旋转,使锝点A 落在边CB 延长线上的A 1点,此时点C 落到点C 1,则在旋转中,边AC 变到A 1C 1所扫过的面积为_________cm 2(结果保留π).20.在一条笔直的公路上,某一时刻,有一辆客车在前,一辆小轿车在后,一辆货车在客车与小轿车的正中间同向行驶,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,此后,再过t 分钟,货车追上了客车,则t=_________________.三、B 组填空题(每小题8分,共40分)21.已知2x 一3y=z +56, 6y=91-4z -x ,则x ,y, z 的平均数是_____________,又知x>0并且(x 一3)2=36,则x=________ ,y=_________,z=__________.22.有长为lcm, 2cm, 3cm, 4cm, 5cm, 6cm 的六根细木条,以它们为边(不准截断或连接)可以构成_______个不同的三角形,其中直角三角形有____________个.23.已知11瓦(0.011千瓦)的节能灯与60瓦(即0.06千瓦)的白织灯的照明效果相同,使用寿命都越过3000小时.而节能灯每只售价为27元,白炽灯每只售价为2.5元.电费为0.5元/千瓦时.若用一只11瓦节能灯照明1500小时,则电费为_________元.对于11瓦的节能灯和60瓦的白炽灯,当照明时间大于_______小时时,买节能灯更划算.24.已知正整数a ,b 的最大公约数是3,最小公倍数是60,若a >b,则abb a 222 =_____________. 25.如图6,在△ABC 中,∠ACB=90°,M 是∠CAB 的平分线AL 的中点.延长CM 交AB 于K ,BK=BC .则∠CAB=_______°,∠KCB∠ACK =_________.第二十三届“希望杯”全国数学邀请赛第1试答案 题号 12 3 4 5 6 7 8 9 10 答案 CA B D C A A C B C题号 1112 13 14 15 16 17 18 19 20 答案238- 51 -2 E O H P <<< 7 -1 6570 -58 125π 15题号21 22 23 24 25 答案79;39;9;349- 7;1 8.25;1000 40399或409 45°;319、(1)面积公式:S=底边×高÷2,直接计算:AD:DC=1:3,高相同,则面积比也为1:3,因此,S △BDC =S △ABC ×3/4,即60×3/4=45。

第二十三届(2012年)初一“希望杯”全国数学邀请赛培训题(含答案)

第二十三届(2012年)初一“希望杯”全国数学邀请赛培训题(含答案)

第二十三届(2012年)“希望杯”全国数学邀请赛培训题初中一年级“希望杯”命题委员会一、选择题(以下每题的四个选项中,仅有一个是正确的。

请将表示正确答案 的英文字母填在每题后面的圆括号内)1. 计算:1-(-2)2+2)1(22-⨯-=( )A.-2B.-1C.-4D.42. 某堰塞湖的水位是730.13米,若以“千米”为计量单位,则该水位的科学记数法表示是( )A.7.3013×102B.0.073013×102C.7.3013×10-1D. 0.73013×10-13. 如图,半径为r 的小圆在半径为R 的大圆内。

已知阴影部分面积是小圆 面积的3倍。

则Rr=( ) A.107B.31 C. 2011 D. 21 4. 若有理数a ,b 在数轴上的位置如图所示:则下列各式中正确的是( ) A. -a >b B.ba 11> C. a +b >1 D. 1>-a b5. 已知分数a 的分母是2012,分子是整数,为使|53-a |的数值最小,a 的分子应当是( )A. 1206B. 1207C. 1205D. 12086. 若一个绝对值不等于0或1的有理数的相反数的负倒数是a ,则这个有理数是()A.a1 B. -a C. a 1- D. a7. 计算:2012+2011-2010-2009+2008+2007-2006-2005+…+4+3-2-1=( )A. 2011B. 2012C. 0D. 18. If a <-2,-1<b <0,H =-a -b ,O =a 2+b 2,P =-a +b 2,and E =a 2-b ,then themagnitude relation of the four number H ,O ,P ,and E is (A. H <O <P <EB. P <H <O <EC. H <E <P <OD. O <P <E <H)(英汉小词典:magnitude relation :大小关系) 9. 定义符号“☆”的意义是:a ☆b =(a +1)°b ,如果(x ☆2)☆3=27,那么x 的值等于( )A. 1B. 2C. 3D. 410. 如图所示,其中∠A +∠B +∠C +∠D +∠E +∠F +∠G =( )A. 180°B. 225°C. 360°D . 120°11. 已知a ,b 均为非零有理数,5a 与7b 互为相反数,那么ba=( ) A.75 B. -75 C.57 D. -5712. 下面四句关于约数和倍数的话中正确的是(A. 正整数a 和b 的最小公倍数一定小于abB. 正整数a 和b 的最大公约数一定不大于aC. 正整数a 和b 的最小公倍数一定不小于abD. 正整数a 和b 的最大公约数一定大于a )13. 如图,△ABE 是边长为21的正三角形。

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯初一组试题及答案

希望杯初一组试题及答案

希望杯初一组试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A3. 如果一个数的绝对值是4,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C4. 计算下列算式的结果:A. 2 + 3 = 5B. 2 × 3 = 6C. 2 - 3 = -1D. 2 ÷ 3 = 0.67答案:C5. 下列哪个选项是正确的不等式?A. 3 > 2B. 3 < 2C. 3 = 2D. 3 ≥ 2答案:A6. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是:A. 15B. 20C. 25D. 不能构成三角形答案:D7. 一个圆的半径是3厘米,那么它的面积是:A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:B8. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24 cm³B. 26 cm³C. 28 cm³D. 30 cm³答案:A9. 一个数的立方根是2,那么这个数是:A. 6B. 8C. 4D. 2答案:C10. 下列哪个选项是正确的因式分解?A. x² - 4 = (x + 2)(x - 2)B. x² - 4 = (x + 4)(x - 4)C. x² - 4 = (x + 2)(x + 2)D. x² - 4 = (x - 2)(x - 2)答案:A二、填空题(每题4分,共40分)11. 一个数的平方是16,这个数是______。

答案:±412. 一个数的倒数是2,这个数是______。

答案:1/213. 一个数的绝对值是5,这个数可能是______。

2010-2012年第21-23届_“希望杯”全国数学邀请赛_初一_第2试_试题与答案(word版)

第二十一届“希望杯”全国数学邀请赛初一第2试2010年4月11日上午9:00至11:00 得分一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.若a-b的相反数是2b-a,则b=( )(A)-1. (B)0. (C)1. (D)2.2.某工厂3月份的产值比2月份增加10%,4月份的产值比3月份减少10%,则( )(A)4月份的产值与2月份相等.(B)4月份的产值比2月份增加.(C)4月份的产值比2月份减少. (D)4月份的产值比2月份减少.3.如图1,△ABC中,∠A、∠B、∠C的外角分别记为α,β,γ,.若α:β:γ,=3:4:5,则∠A:∠B:∠C=( )(A)3:2:1. (B)1:2:3. (C)3:4:5. (D)5:4:3.4.若m=,则m是( )(A)奇数,且是完全平方数. (B)偶数,且是完全平方数.(C)奇数,但不是完全平方数. (D)偶数,但不是完全平方数.5.有两个两位数的质数,它们的差等于6,且它们平方的个位数字相同,这样的两位质数的组数是( )(A)1. (B)2. (C)3. (D)4.6.As in figure 2,the area of square ABCD is l69cm2,and the area ofthombus BCPQ is 156cm2. Then the area of the shadow part is ( )(A) 23cm2. (B) 33cm2. (C) 43cm2. (D) 53cm2.(英汉词典:square正方形;thombus菱形)7.要将40kg浓度为16%的盐水变为浓度为20%的盐水,则需蒸发掉水( )(A) 8kg. (B) 7kg. (C) 6kg. (D) 5kg.8.如图3,等腰直角△ABC的腰长为2cm.将△ABC绕C点逆时针旋转90。

第1-23届希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题......................018-0204.希望杯第二届(1991年)初中一年级第二试试题......................024-0265.希望杯第三届(1992年)初中一年级第一试试题......................032-0326.希望杯第三届(1992年)初中一年级第二试试题......................038-0407.希望杯第四届(1993年)初中一年级第一试试题......................048-0508.希望杯第四届(1993年)初中一年级第二试试题......................056-0589.希望杯第五届(1994年)初中一年级第一试试题......................064-06610.希望杯第五届(1994年)初中一年级第二试试题.....................071-07311.希望杯第六届(1995年)初中一年级第一试试题.....................078-080 12希望杯第六届(1995年)初中一年级第二试试题.....................085-08713.希望杯第七届(1996年)初中一年级第一试试题.....................096-09814.希望杯第七届(1996年)初中一年级第二试试题.....................103-10515.希望杯第八届(1997年)初中一年级第一试试题.....................111-11316.希望杯第八届(1997年)初中一年级第二试试题.....................118-12017.希望杯第九届(1998年)初中一年级第一试试题.....................127-12918.希望杯第九届(1998年)初中一年级第二试试题.....................136-13819.希望杯第十届(1999年)初中一年级第二试试题.....................145-14720.希望杯第十届(1999年)初中一年级第一试试题.....................148-15121.希望杯第十一届(2000年)初中一年级第一试试题...................159-16122.希望杯第十一届(2000年)初中一年级第二试试题...................167-16923.希望杯第十二届(2001年)初中一年级第一试试题...................171-17424.希望杯第十二届(2001年)初中一年级第二试试题...................176-17825.希望杯第十三届(2002年)初中一年级第一试试题...................182-18426.希望杯第十三届(2001年)初中一年级第二试试题...................186-18927.希望杯第十四届(2003年)初中一年级第一试试题...................193-19628.希望杯第十四届(2003年)初中一年级第二试试题...................198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题...................213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题...................228-23334.希望杯第十七届(2006年)初中一年级第二试试题...................234-23835.希望杯第十八届(2007年)初中一年级第一试试题...................242-246 26.希望杯第十八届(2007年)初中一年级第二试试题...................248-25137.希望杯第十九届(2008年)初中一年级第一试试题...................252-25638.希望杯第十九届(2008年)初中一年级第二试试题...................257-26239.希望杯第二十届(2009年)初中一年级第一试试题...................263-26620.希望杯第二十届(2009年)初中一年级第二试试题...................267-27121.希望杯第二十一届(2010年)初中一年级第一试试题.................274-27622.希望杯第二十二届(2011年)初中一年级第二试试题.................285-28823.希望杯第二十三届(2012年)初中一年级第二试试题.................288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____.7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,此时,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回离出发地点最远的那辆车一共行驶了多少公里2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.×+×的值是( ) A..B..C..D..7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )11 20;413;316;617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43 x;C. 甲方程的两边都乘以43;D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,,与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A .225. B ..C .. D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. >-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

希望杯初一数学竞赛培训题选编1(含答案)

希望杯初一数学竞赛培训题选编11.若有理数a ,b 满足0a b <<,则以下不等式中成立的是( )①a b a b +<-; ②a b b a +<-; ③a b a b +>-; ④a b a b ->+ A.①②③. B.①③④. C.①②④. D.②③④2.如图2,一副三角板在同一平面上,且两直角顶点重合,若140ABE ∠=,则CBD ∠的大小是( )A.45B.40C.35D.303.若a ,b 都是正整数,且a 除以5余2,b 除以5余3,则24a b+除以5,得到的余数是( )A.1B.2C.3D.4 4.如图4,点C 、D 分别在AOB ∠的两边上,ACD ∠的平分线和BDC ∠的平分线交于点E ,若AOB ∠=40,则CED ∠=( ) A.90 B.80 C.70 D.605.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜1x 局,负1y 局;第二名胜2x 局,负2y 局;……;第十名胜10x 局,负10y 局.若记2221210M x x x =+++,2221210N y y y =+++,则( ) A.M N < B.M N > C.M N = D.M ,N 的大小关系不确定. 6.在m 千克的浓度为%p 的盐水中,先加入n 千克的浓度为%q 的盐水的一半,然后再加入所剩盐水的一半,这样所得到的盐水的浓度是( ) A.%24q q p ⎛⎫++ ⎪⎝⎭ B.43%43mp nq m n ++ C.%24nq nq mp ⎛⎫++ ⎪⎝⎭ D.43%43p q m n ++ 7. 形如21p-(其中p 为素数)的素数称为为梅森素数,最近发现了第47个梅森素数,该素数为“4264380121-”,它有12837064位数,如果用普通字号将这个巨数连续写下来,它的长度超过50公里,这个梅森素数的个位数字是( )A.1.B.3.C.5.D.7.8.方程组126x y x y ⎧+=⎪⎨+=⎪⎩的解(),x y 共有( )组.A.1B.2C.3D.49.某商店有5袋不同重量的杂粮,各袋重量在25~30公斤之间,店里有一架磅秤,它只有能称50~70公斤重量的秤砣,要确定各袋杂粮的重量,至少要称( )次.D图4DCAA.4B.5C.6D.7 10.设2221114834441004A ⎛⎫=⨯+++⎪---⎝⎭,则与A 相差最小的正整数是( ) A.18. B.20. C.24. D.25. 二填空题11.在数轴Ox 上(O 为原点),点B 的坐标为6,且AB =8,P 点在Ox 上,且AP =5,则点P 的坐标是___________. 12.计算:()()()2433310.252352168⎧⎫⎡⎤⎡⎤⎛⎫---⨯-÷⨯-+÷-⎨⎬ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎩⎭⎣⎦=____________. 13.如果四个互不相同的整数m ,n ,p ,q 满足()()()()99999m n p q ++++=,那么m n p q +++=____________14.已知当10x <时,25a xbx +=--成立,则22a b -=_______ 15.图8是一个平行四边形,其中74BF FC =,ACE ∆的面积与BFD ∆的面积比是3335,则AE ED =_____________.16.边长为1的正ABC ∆的顶点A 与线段MN 的端点M 重合(图9),AB 在MN 上.将ABC ∆沿着线段MN 顺时针翻转,当边CA 第三次落在线段MN 上时,点A 与N 重合,则线段MN 的长度是______,在翻转过程中点A 经过的路程是_______.17.若3个质数的和为26,其中任意2个的差的绝对值不小于5,则这3个质数是__________.18.在图10所示的各边相等的正五角星中,A α∠=,CGH β∠=,HIJ γ∠=,则::αβγ=____________.19.For integer numbersx and y ,define x ☆y =()()x y x y +-,then 3☆(4☆5)=___________. (英汉小字典:integer numbers 整数;define 定义) 20.若有理数x ,y ,z 满足()()()12131218x x y y z z ++--+--++=,则23x y z ++的最小值是____________,最大值是___________.F图8 图9 NB 图1021.如图11,点D 和点E 在ABC ∆的边BC 上,若BD =AD =AE =EC ,且2B D A E ∠=∠,则BAC ∠=_____________.22.沿图12中的网线从O 到Z ,经过的最短路程的不同的走法共有_________种.23.若14x -≤,│y+1│≤4,则23x y -的最大值是____,223x y -的最小值是___.24.计算:()432201120102011201120112-⨯++-=______________.25.某工厂有离休职工182人,退休职工2674人,离休人员的年龄都在70岁以上,其中80岁以上者68人.退休人员中70岁以下者1326人,80岁以上者102人.试统计,在70岁以上的人群中,80岁以上人员所占比例为______.E D C B A 图11 ZO 图12希望杯2012年初一数学竞赛培训题选编1答案一、DBACC BAABD11.3,-7,9,19 12. 87 13.-36 14. 99.75 15. 3216.9, 4π 17.2,7,17 18.1:2:3 19.-72 20.-5,11 21.100︒ 22. 10 23. 25,-81 24. 6031 25. 19提示:3.取特殊数,a=7,b=8,则a 2+4b=49+32=81,除以5余1,结果是A.4. 角CED=180°-(角DCE+角CDE )=180°-(角DCA+角CDB )/2=180°-(角O+角ODC+角O+角OCD )/2=180°-(角O+180°)/2=180°-110°=70°5. 假定1号运动员9局全胜,2号运动员只负1局,3号负2局,以此类推,9号运动员9由上表可以看出:x1=9,y1=0,x2=8,y2=1,……, x10=0,y10=9. 即 xi+yi=9,且∑xi=∑yi.由对称性得知:M=∑(xi )2=∑(yi )2=N7. 通过观察2的n 次幂,其个位的变化有如下规律:21=2,22=4, 23=8, 24=16, 25=32,26=64, …….每4个循环一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三届(2012年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会初中一年级一. 选择题(以下每题的四个选项中,仅有一个是正确的。

请将表示正确答案 的英文字母填在每题后面的圆括号内)1. 计算:1-(-2)2+2)1(22-⨯-=( )A .-2B .-1C .-4D .42. 某堰塞湖的水位是730.13米,若以“千米”为计量单位,则该水位的科 学记数法表示是( )A .7.3013×102B .0.073013×102C .7.3013×10-1D . 0.73013×10-13. 如图,半径为r 的小圆在半径为R 的大圆内。

已知阴影部分面积是小圆面积的3倍。

则Rr=( )A . 107B . 31C . 2011D . 214. 若有理数a ,b 在数轴上的位置如图所示:则下列各式中正确的是( )A . -a >bB . ba 11> C . a +b >1D . 1>-ab 5. 已知分数a 的分母是2012,分子是整数,为使|53-a |的数值最小,a 的分子应当是( )A . 1206B . 1207C . 1205D . 12086. 若一个绝对值不等于0或1的有理数的相反数的负倒数是a ,则这个有 理数是( )A . a 1B . -aC . a1- D . a7. 计算:2012+2011-2010-2009+2008+2007-2006-2005+…+4+3-2-1=( ) A . 2011 B . 2012 C . 0 D . 18. If a <-2,-1<b <0,H =-a -b ,O =a 2+b 2,P =-a +b 2,and E =a 2-b ,then themagnitude relation of the four number H ,O ,P ,and E is (A . H <O <P <EB . P <H <O <EC . H <E <P <OD . O <P <E <H ) (英汉小词典:magnitude relation :大小关系) 9. 定义符号“☆”的意义是: a ☆b =(a +1)°b ,如果(x ☆2)☆3=27,那么x 的值等于( ) A . 1 B . 2 C . 3 D . 4 10. 如图所示,其中∠A +∠B +∠C +∠D +∠E +∠F +∠G =( )A . 180°B . 225°C . 360°D . 120° 11. 已知a ,b 均为非零有理数,5a 与7b 互为相反数,那么ba=( )A .75 B . -75 C . 57 D . -57 12. 下面四句关于约数和倍数的话中正确的是(A . 正整数a 和b 的最小公倍数一定小于abB . 正整数a 和b 的最大公约数一定不大于aC . 正整数a 和b 的最小公倍数一定不小于abD . 正整数a 和b 的最大公约数一定大于a) 13. 如图,△ABE 是边长为21的正三角形。

已知四边形BCDE 的周长是△ABE 周长的两倍。

则五边形ABCDE 的周 长是( )A . 137B . 147C . 157D . 16714. 若有理数a 和b 都不等于0,且1-=++ab abb b a a ,则a ,b ()A . 异号B . 同号C . 不能同为正数D . 不能同为负数15. If a +b =0,then the equation ax +b =0 for x has (A . only one rootB . only one root or no rootC . only one root or infinite rootsD . no root or infinite roots ) (英汉小词典:infinite roots :无穷多个根)16. 某个星期中,从周一到周五这五天的日历号数之和为70,则这一周的星 期六的日历号数是( )A . 15B . 16C . 17D . 1817. 图中的直线MN ∥PQ ,在PQ 上取点O ,画出射线OA 与射线OB 垂直,且使得∠BOQ =30°,在 以点O 为旋转中心,射线OA 逆时针旋转30°的位置上再画射线OA ′,这时 图中30°的角共有( )个 A . 4 B . 5 C . 6 D . 718. 对于数x ,符号[x ]表示不大于x 的最大整数。

若[23ax ]=3有正整数解,则正数a 的取值范围是( )A . 0<a <2或2<a ≤3B . 0<a <5或6<a ≤7C . 1<a ≤2或3≤a <5D . 0<a <2或3≤a <519. 某市2011年9月份的平均房价是每平方米6800元,比2008年同期的房 价平均每平方米上涨了3000元,假设这三年该市房价的平均增长率都是x ,则 关于x 的方程是( )A . (1+x )3=3000B . 3000(1+x )3=6800C . (6800-3000)(1+x )2=6800D . (6800-3000)(1+x )3=680020. 若三角形的一个内角等于另两个内角和的2倍。

则此三角形的最大角是( )度A . 90B . 115C . 120D . 135 21. 2012的所有正约数的和是( )A . 3528B . 2607C . 2521D . 201222. 等腰△ABC 的一个外角度数是100°,则这个三角形的三个内角中最大角 与最小角的度数差是( )A . 30°B . 20°或50°C . 60°D . 30°或60°23. 已知a (b +2)是一个不为0的常数,且当a =2时,b =1;那么当b =4时, a =( )A . 1B . 2C . 3D . 4 24. 满足x 2-4y 2=2011的整数对(x ,y )的组数是( ) A . 0 B . 1 C . 2 D . 325. 若一个凸多边形的边数恰好是从某个顶点引出的对角线的条数的34倍,则这个多边形的内角和是( )A . 1080°B . 1540°C . 1800°D . 2160°26. 设五个数 a ,b ,c ,d ,e 均在 0,1,2 中取值,且 a +b +c +d +e =6, a 2+b 2+c 2+d 2+e 2=10,则a 3+b 3+c 3+d 3+e 3的值是( ) A . 14 B . 16 C . 18 D . 2027. 如图,△ABC 中,EF ∥BC ,∠A 的平分线交EF 于H ,交BC 于D ,记∠ADC = α ,∠ACB 的一个邻补角为β ,∠AEF = γ 。

则α ,β ,γ 的关系是( ) A . α-β=γ C . 3 α-β=γ B . 2 α-β =γ D . 4 α-β =γ28. 方程|x +1|+|x -2|=3的正整数解共有() 个A . 1B . 2C . 3D . 4 29. 已知数串: ,51,42,33,24,15,41,32,23,14,31,22,13,21,12,11依照这前15个数的分子、分母的构成规律排列下去,第100个数是( ) A . 84 B . 96 C . 108 D . 111030. 甲、乙、丙三人用擂台赛形式进行训练。

每局两人单打比赛,另一人当裁判。

每一局输者当下一局的裁判,而原来的裁判与赢者比赛。

一天训练结束时, 统计甲共打12局,乙共打21局,而丙共当裁判8局。

那么整个比赛中第10局 的输者( )A . 必是甲B . 必是乙C . 必是丙D . 不能确定 二. 填空题31. 计算:[(0.125-43)2-(0.125)2]2= 。

32. 若一个角的余角比这个角的补角的31小10°,则这个角的余角是 °,这个角的补角是 °33. 计算420092006802040102008200620062008222-⨯-⨯-+= 34. 某人若在同一斜坡上往返,上坡速度为v 1 m /s ,下坡速度为v 2 m /s ,则往返一次的平均速度v =35. 若|x -y +1|+(y +5)2=0,则xy =。

36. 如图7,矩形纸带MLPN 中,∠BAP =30°,沿虚线AB 将纸带折起来压平 成图8,则∠BEA =37.一辆汽车从A 地驶往B 地,前41路段为普通公路,速度是60km /h ;其余 路段为高速公路,速度为90km /h 。

汽车从A 地到B 地一共行驶了5小时,则A , B 两地的距离是 km 。

38. 已知一个直角三角形两条直角边之差是1,斜边长为5,则这个直角三角 形 的面积等于 。

39. 已知mn ≠0,且31+m 与93-n 互为相反数,则n m 11-= 。

40. 如图,共6个同样的小正方体码放在5乘5的方格纸上,则正视图41. 某经济技术开发区到2001年累计投资总额已达到36.23亿美元。

从2001年到2007年,累计投资总额依次为36.23;42.99;63.31;88.13;109.13;140.48; 168.62(亿美元)。

则2007年比上一年的投资增长了 %(取二位小数)。

42. 在一条公路上汽车A 、B 、C 分别以每小时80km ,70km ,50km 的速度行驶。

早上8时,汽车A 、C 从甲站开往乙站,同时,汽车B 从乙站开往甲站,途中车 B 与车A 相遇两个半小时后再与车C 相遇,则甲、乙两站的距离是 km 。

43. 若30030的质因数的(算术)平均数为M ,则与M 最接近的整数是 。

44. 若等式z y x 45545313=⨯中的x ,y ,z 为0~9的数字,则x = ,xyz =45.若(x+1)2+(x-3)2=16,则(3-x)2(1+x)2= 。

46.If rational number a,b,and c satisfy a<b<c,then|a-b|+|b-c|+|c-a|= 。

47.若x+y=5,xy=-11,则(x-y)2= ,x3+y3= 。

48.For integer number x and y,define x&y=(x+y)(x-y),then3&(4&5)=49.有一个正方体在它的各个面上分别标上字母A,B,C,D,E,F,甲,乙,丙,三位同学从不同的方向去观察这个正方体,观察结果如图所示,则F的对面是。

相关文档
最新文档