【小初高学习]2018届高三数学一轮复习 第十二章 复数、算法、推理与证明 第二节 算法与程序框图夯

合集下载

2018版高考数学理一轮复习文档:第十二章 推理证明、算法、复数12-5 含解析 精品

2018版高考数学理一轮复习文档:第十二章 推理证明、算法、复数12-5 含解析 精品

1.条件概率及其性质(1)一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (A )P (B |A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n 次独立重复试验.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要; (2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427 D.227 答案 A解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所 求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________. 答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P (AB )P (A )=14. (2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14. 引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2017·青岛月考)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的分布列为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎫121×⎝⎛⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响,∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________.(2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18 答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012(38)10(58)2 B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2 答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2. 3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( )A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56 B.45 C.3132 D.12 答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件, P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州月考)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964. 10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134 =19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4, 因为利润=产量×市场价格-成本. 所以X 所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。

2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 课时跟踪检测72 理 新人教A版

2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 课时跟踪检测72 理 新人教A版

课时跟踪检测(七十二)[高考基础题型得分练]1.用数学归纳法证明“2n>2n +1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6答案:B解析:∵当n =1时,21=2,2×1+1=3,2n>2n +1不成立; 当n =2时,22=4,2×2+1=5,2n>2n +1不成立; 当n =3时,23=8,2×3+1=7,2n>2n +1成立, ∴n 的第一个取值n 0=3.2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案:D解析:由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+14.3.某个命题与正整数有关,如果当n =k (k ∈N *)时该命题成立,那么可以推出n =k +1时该命题也成立.现已知n =5时该命题成立,那么( )A .n =4时该命题成立B .n =4时该命题不成立C .n ≥5,n ∈N *时该命题都成立D .可能n 取某个大于5的整数时该命题不成立 答案:C解析:显然A ,B 错误,由数学归纳法原理知C 正确.4.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10答案:B解析:左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,利用归纳假设证明n =k +1时,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案:A解析:假设n =k 时,原式k 3+(k +1)3+(k +2)3能被9整除,当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3.6.对于不等式n 2+n <n +1(n ∈N *),某同学用数学归纳法证明的过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式k 2+k <k +1成立,当n =k +1时,k +2+k +1=k 2+3k +2<k 2+3k ++k +=k +2=(k +1)+1.∴当n =k +1时,不等式成立,则上述证法( ) A .过程全部正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确 答案:D解析:在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.7.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -n+ B.12nn +C.1n -n+D.1n +n+答案:C解析:当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5;当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7;故猜想a n =1n -n +.8.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1答案:B解析:当n =k (k ∈N *)时,左式为(k +1)(k +2)·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是k +k +k +1=2(2k +1).9.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.答案:1+12+13<2解析:∵n >1且n ∈N , ∴当n =2时,1+12+13<2.10.[2017·江苏无锡调研]利用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n >1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果为________.答案:12k +1-12k +2解析:当n =k 时,左边=1k +1+1k +2+…+1k +k,① 当n =k +1时,左边=1k +2+1k +3+…+1k +k +12k +1+12k +2,② ②-①,得12k +1+12k +2-1k +1=12k +1-12k +2.11.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为______________________________.答案:(k 2+1)+(k 2+2)+…+(k +1)2解析:当n =k 时,左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2, 则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.[冲刺名校能力提升练]1.用数学归纳法证明:“1+a +a 2…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”,在验证n =1时,等式左边是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案:C解析:由题意,根据数学归纳法的步骤可知,当n =1时,等式的左边应为1+a +a 2,故选C.2.[2017·天津模拟]设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f (1)<1成立,则f (10)<100成立B .若f (2)<4成立,则f (1)≥1成立C .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 D .若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立 答案:D解析:选项A ,B 的答案与题设中不等号方向不同,故A ,B 错;选项C 中,应该是k ≥3时,均有f (k )≥k 2成立;对于选项D ,满足题设原理,该命题成立.3.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________.答案:1k +k +解析:不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +,故填1k +k +.4.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.解:(1)当n =1时,方程x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,∴(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,∴⎝ ⎛⎭⎪⎫a 2-122-a 2⎝ ⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16. (2)由题意知(S n -1)2-a n (S n -1)-a n =0, 当n ≥2时,a n =S n -S n -1,代入上式整理得S n S n -1-2S n +1=0,解得S n =12-S n -1.由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23,猜想S n =nn +1(n ∈N *).下面用数学归纳法证明这个结论: ①当n =1时,结论成立.②假设n =k (k ∈N *,k ≥1)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k=12-kk +1=k +1k +2=k +1k ++1,即当n =k +1时结论成立. 由①②知S n =nn +1对任意的正整数n 都成立.5.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小; (2)猜想f (n )与g (n )的大小关系,并给出证明. 解:(1)当n =1时,f (1)=1,g (1)=1, 所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1)猜想f (n )≤g (n ),下面用数学归纳法给出证明. ①当n =1,2,3时,不等式显然成立, ②假设当n =k (k ≥3,k ∈N *)时不等式成立,即 1+123+133+143+…+1k 3<32-12k2.那么,当n =k +1时,f (k +1)=f (k )+1k +3<32-12k 2+1k +3.因为1k +2-⎣⎢⎡⎦⎥⎤12k2-1k +3=k +3k +3-12k 2=-3k -1k +3k 2<0,所以f (k +1)<32-1k +2=g (k +1).由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.。

2018版高考数学大一轮复习第十二章推理与证明算法复数12.1归纳与类比教师用书文北师大版

2018版高考数学大一轮复习第十二章推理与证明算法复数12.1归纳与类比教师用书文北师大版

2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.1 归纳与类比教师用书文北师大版1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N+).( ×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .199 答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +)解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +).5.(2016·青岛模拟)若数列{a n }的通项公式为a n =1 n +1 2(n ∈N +),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58, 推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N +),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n. 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n n +1 2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连月考)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为_________________________________________________________ _______________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n. (2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183.题型二 类比推理例5 (1)(2017·西安质检)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0.(2)令1+12+1…=x ,则有1+12+1x =x ,解得x =1+32(负值已舍去).思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y=4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, ∵x 1<x 2,∴f (x 2)-f (x 1)>0, ∴f (x 2)>f (x 1).∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y=4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+2 4y x ·9x y )=254, 当且仅当⎩⎪⎨⎪⎧ 4y x =9xy ,4x +9y =4,即⎩⎪⎨⎪⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误D .非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案(1)C (2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N +,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n n +12,b 1=4×52=a 4, b 2=5×62=a 5, b 3=9× 2×52=a 9, b 4= 2×5 ×112=a 10,b 5=14× 3×52=a 14,b 6=3×5 ×162=a 15,…b 2 014=⎝ ⎛⎭⎪⎫2 0142×5⎝ ⎛⎭⎪⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5k 5k -1 2. (2)对于①,取f (x )=x -1,x ∈N +,所以A =N +,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.答案 (1)①5 035 ②5k 5k -12(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程 D .没有出错答案 A解析 推理形式正确,但大前提错误,故得到的结论错误.故选A. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确 D .全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( ) A .29 B .30 C .31 D .32答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+ 2n +1 ]2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中.5.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2.其中正确结论的个数是( )A .0B .1C .2D .3答案 B解析 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N +)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案 x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 8.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S =OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.答案 111222O PQ R O P Q R V V -- =OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V -- =OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 9.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3=11+3+13 1+3 =33 1+3 +13 1+3 =33,同理可得f (-1)+f (2)=33,f (-2)+f (3)=33.由此猜想f (x )+f (1-x )=33.证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3 3+3x =3+3x3 3+3x =33.10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N +).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n+2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S nn ,又S 11=1≠0,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1), 所以f (12+x )+f (12-x )=2, 即f (x )+f (1-x )=2.故f (12 017)+f (2 0162 017)=2, f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。

2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.3 推理与证明、算法、复数真题演练集训 理 新

2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.3 推理与证明、算法、复数真题演练集训 理 新

课外拓展阅读 归纳、猜想、证明[典例] [2016·江西九江模拟]设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明;(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2.[审题视角] (1)将n =1,2,3代入已知等式得a 1,a 2,a 3,从而可猜想a n ,并用数学归纳法证明.(2)利用分析法,结合x >0,y >0,x +y =1,利用基本不等式可证.(1)[解] 分别令n =1,2,3,得⎩⎪⎨⎪⎧ 2a 1=a 21+12a 1+a 2=a 22+22a 1+a 2+a 3=a 23+3,∵a n >0,∴a 1=1,a 2=2,a 3=3.猜想:a n =n .∵2S n =a 2n +n ,①当n ≥2时,2S n -1=a 2n -1+(n -1).②①-②,得2a n =a 2n -a 2n -1+1,即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1,∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1, ∴[a k +1-(k +1)][a k +1+(k -1)]=0,∵a k +1>0,k ≥2,∴a k +1+(k -1)>0,∴a k +1=k +1.即当n =k +1时也成立.∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n .(2)[证明] 要证nx +1+ny +1≤2n +2, 只要证nx +1+2nx +1ny +1+ny +1≤2(n +2). 即n (x +y )+2+2n 2xy +nx +y +1≤2(n +2), 将x +y =1代入,得2n 2xy +n +1≤n +2,即只要证4(n 2xy +n +1)≤(n +2)2,即4xy ≤1.2 ∵x >0,y >0,且x +y =1, ∴xy ≤x +y 2=12, 即xy ≤14,故4xy ≤1成立, 所以原不等式成立.[答题模板]第1步:寻找特例a 1,a 2,a 3等.第2步:猜想a n 的公式.第3步:转换递推公式为a n 与a n -1的关系.第4步:用数学归纳法证明a n .①验证递推公式中的第一个自然数n =2.②推证a k +1的表达式为k +1.③补验n =1,说明对于n ∈N *成立.第5步:分析法证明.[方法点睛] (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳——猜想——证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)为了正确地猜想a n ,首先准确求出a 1,a 2,a 3的值.(3)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成不是纯正的数学归纳法.如本题:∵2S n -1=a 2n -1+n -1,∴2(S n -S n -1)=a 2n -a 2n -1+1,推导a n 与a n -1的递推关系,再推出a n ,则不是数学归纳法.(4)本题第(2)问中的不等式证明不是关于n 的不等式,由x +y =1来推证,则不能称为数学归纳法.。

2018版高考数学(人教A版文科)一轮复习课件:第十二章 推理与证明、算法、复数12-1

2018版高考数学(人教A版文科)一轮复习课件:第十二章 推理与证明、算法、复数12-1

OE OF OG OH 故 + + + AE DF BG CH VO-BCD+VO-ABC+VO-ACD+VO-ABD VA-BCD = = =1. VA-BCD VA-BCD
[点石成金] 类比推理的分类及处理方法 类别 解读 适合题型 在求解由某种熟悉的定义产生的类比 类比 已知熟悉定义类 推理型试题时,可以借助原定义来求 定义 比新定义 解 从一个特殊式子的性质、一个特殊图 平面几何与立体 形的性质入手, 提出类比推理型问题, 几何、等差数列 类比 求解时要认真分析两者之间的联系与 性质 与等比数列的类 区别,深入思考两者的转化过程是求 比 解的关键 有一些处理问题的方法具有类比性, 已知熟悉的处理 类比 可以把这种方法类比应用到其他问题 方法类比未知问 方法 的求解中,注意知识的迁移 题的处理方法
[典题 1]
(1)在等差数列{an}中, 若 am=p, an=q(m, n∈N*,
nq-mp n-m≥1),则 am+n= . n-m 类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若 bm=r,
n-m sn rm * bn=s(n-m≥2,m,n∈N ),则可以得到 bm+n=________.
考点 1
类比推理
1.合情推理的过程 从具体问 观察、分析、 归纳、 提出 → → → 题出发 比较、联想 类比 猜想 合情推理是从已知的结论推测未知的结论,发现与猜想的结 论都要经过进一步严格证明.
2.类比推理 (1)定义: 由两类对象具有某些类似特征和其中一类对象的某
这些特征 的推理. 些已知特征,推出另一类对象也具有________ 特殊 特殊 的推理. (2)特点:是由________ 到________
an (1)[教材习题改编]若数列{an}满足a1=1,an+1= (n∈ 1+an 1 * * a = ( n ∈ N ) n N ),则归纳出该数列的通项公式为________________ . n

2018课标版理数一轮(12)第十二章-复数、算法、推理与证明1 第一节 数系的扩充与复数的引入

2018课标版理数一轮(12)第十二章-复数、算法、推理与证明1 第一节 数系的扩充与复数的引入

单位),则 +z2的虚部为 答案 -1 解析 ∵z=1-i(i为虚数单位),
z 1 i 1 i z (1 i) 2 = -2i (1 i)(1 i) 2i = -2i=-i, 2
z z
.
∴ +z2= +(1-i)2
故其虚部为-1.
判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x2+x+1=0没有解. (×) (2)复数z=a+bi(a,b∈R)中,虚部为bi. (×)
(3)复数中有相等复数的概念,因此复数可以比较大小. (×)
(4)原点是实轴与虚轴的交点. (√) (5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是 复数对应的向量的模. (√)
25 9
答案 A 依题意得z= 3-2
z2 2z 已知复数z=1+i,则 = z 1 z 2 2 z (1 i) 2 2(1 i) 2 = = =2i. z 1 i i
.
答案 2i 解析
栏目索引
z ,若z=1-i(i为虚数 3-3 (2016辽宁师大附中期中)设复数z的共轭复数为
= (
A.1
)
B. 2 C. 3 D.2
(2)(2016福建漳州二模)若复数z满足i· z=1+i,则z的共轭复数的虚部是 ( A.i ) B.1 C.-i D.-1
栏目索引
答案 (1)B (2)B 解析 (1)∵x,y∈R,(1+i)x=1+yi, ∴x+xi=1+yi,
x 1, ∴ y 1,
z |= 10 .故选A. ∴|(1-z)· z |=|1-z|· 10 ,故选A. 5 × 2 = 解法二:|(1-z)· |z |=|2+i|· |z|=

2018年高考数学课标通用(理科)一轮复习配套课件:第十二章 推理与证明、算法、复数12-5

必考部分
第十二章
推理与证明、算法、复数
§12.5 复

考纲展示► 1.理解复数的基本概念,理解复数相等的充要条件. 2.了解复数的代数表示法和几何意义,会进行复数代数形 式的四则运算. 3.了解复数代数形式的加、减运算的几何意义.
考点1
复数的有关概念
复数的有关概念 (1)复数的定义
a 形如a+bi(a,b∈R)的数叫做复数,其中实部是________,
考点2
复数的几何意义
复数的几何意义 (1)复平面的概念 建立直角坐标系 ____________来表示复数的平面叫做复平面. (2)实轴、虚轴
虚轴 ,实轴 实轴 ,y轴叫做________ 在复平面内,x轴叫做________ 实数 ;除原点以外,虚轴上的点都表示 上的点都表示________ 纯虚数 . ________
∴a-3=0,∴a=3.
(3)若复数z满足(3-4i)z=|4-3i|,则z的虚部为( A.-4 C.4 4 B.-5 4 D.5
D
)
[解析] 4 的虚部为5.
3+4i 5 (3-4i)z=|4-3i|=5,∴z= = ,∴z 5 3-4i
(4)[2016· 江苏卷]复数z=(1+2i)(3-i),其中i为虚数单位,
[点石成金] 对复数几何意义的理解及应用 → (1)复数z、复平面上的点Z及向量 OZ 相互联系,即z=a → +bi(a,b∈R)⇔Z(a,b)⇔OZ. (2)由于复数、点、向量之间建立了一一对应的关系, 因此可把复数、向量与解析几何联系在一起,解题时可运用 数形结合的方法,使问题的解决更加直观.
1 则λ+μ的值是________ .
[解析] (1,-1), → → → 根据OC=λOA+μOB,得 (3,-4)=λ(-1,2)+μ(1,-1) =(-λ+μ,2λ-μ), -λ+μ=3, λ=-1, ∴ 解得 2λ-μ=-4, μ=2. ∴λ+μ=1.

2018版高考数学一轮复习第十二章推理证明算法复数第3讲数学归纳法理

第3讲 数学归纳法一、选择题1.利用数学归纳法证明“1+a +a 2+…+an +1=1-an +21-a(a≠1,n∈N *)”时,在验证n =1成立时,左边应该是( )A1B1+aC1+a +a 2D1+a +a 2+a 3解析 当n =1时,左边=1+a +a 2,故选C.答案 C2.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( ).A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立解析 A 、B 、C 中,k +1不一定表示奇数,只有D 中k 为奇数,k +2为奇数.答案 D3.用数学归纳法证明1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12),则当n =k +1时,左端应在n =k 的基础上加上( ).A.12k +2B .-12k +2 C.12k +1-12k +2D.12k +1+12k +2 解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k,当n =k +1时, 左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2. 答案 C4.对于不等式n2+n<n +1(n ∈N *),某同学用数学归纳法的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *且k ≥1)时,不等式成立,即k2+k <k +1,则当n =k +1时,+++=k2+3k +2<+3k +++=+=(k +1)+1, 所以当n =k +1时,不等式成立,则上述证法( ).A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的假设,故推理错误.答案 D5.下列代数式(其中k ∈N *)能被9整除的是( )A .6+6·7kB .2+7k -1 C .2(2+7k +1) D .3(2+7k )解析(1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n)-36. 这就是说,k =n +1时命题也成立.由(1)(2)可知,命题对任何k ∈N *都成立.答案D6.已知1+2×3+3×32+4+33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,则a 、b 、c 的值为( ). A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c 解析 ∵等式对一切n ∈N *均成立,∴n =1,2,3时等式成立,即⎩⎪⎨⎪⎧ 1=-+c ,1+2×3=-+c ,1+2×3+3×32=-+c ,整理得⎩⎪⎨⎪⎧ 3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14. 答案 A二、填空题 7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________.解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1++,故填1++. 答案 1++。

2018版高考数学一轮复习第十二章推理证明、算法、复数12.1随机事件的概率课件理


若A∩B为不可能事件,A∪B为必然事件,那 对立事件 互为对立事件 么称事件A与事件B ______________
P ( A ) + P ( B ) = 1 ____________
3.概率的几个基本性质 (1)概率的取值范围: 0≤P(A)≤1 . (2)必然事件的概率P(E)= 1 . (3)不可能事件的概率P(F)= 0 . (4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)= P(A)+P(B). (5)对立事件的概率 若事件A与事件B互为对立事件,则P(A)=1-P (B) .
正面向上5次是随机事件.
答案
解析
A.0.2
B.0.3
C.0.7
D.0.8
因为必然事件发生的概率是1, 所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3,故选B.
4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,
则此射手在一次射击中不超过8环的概率为 A.0.5 B.0.3 C.0.6
跟踪训练1
从装有两个白球和两个黄球的口袋中任取2个球,以下给
出了四组事件: ①至少有1个白球与至少有1个黄球; ②至少有1个黄球与都是黄球; ③恰有1个白球与恰有1个黄球; ④恰有1个白球与都是黄球. 其中互斥而不对立的事件共有 A.0组 B.1组
解析
至多有一张移动卡包含“一张移动卡,一张联通卡”,
“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.
思维升华
(1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生. ②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不 发生,即有且仅有一个发生. (2)判断互斥、对立事件的方法 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个 事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为 对立事件,对立事件一定是互斥事件.

2018版高考数学一轮复习 第十二章 推理证明、算法、复数 第5讲 复数 理

第5讲 复 数一、选择题1.复数2+i1-2i的共轭复数是( ).A .-35i B.35i C .-i D .i解析2+i1-2i=-2i +1-2i=i ,∴2+i1-2i的共轭复数为-i.答案 C2.复数i -21+2i =( ).A .iB .-iC .-45-35iD .-45+35i解析 因为i -21+2i =--+-=5i5=i ,故选择A. 答案 A3.在复平面内,设z =1+i(i 是虚数单位),则复数2z+z 2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 由题知,2z +z 2=21+i +(1+i)2=1-i +2i =1+i ,所以复数2z+z 2对应的点为(1,1),其位于第一象限.答案 A4.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是 ( ). A .-1<a <1 B .a >1 C .a >0D .a <-1或a >1解析 |z 1|=a 2+4,|z 2|=5,∴a 2+4<5,∴-1<a <1.故选A. 答案 A5.方程x 2+6x +13=0的一个根是 ( ).A .-3+2iB .3+2iC .-2+3iD .2+3i解析 Δ=62-4×13=-16,∴x =-6±4i 2=-3±2i.答案 A6.设z 是复数,f (z )=z n(n ∈N *),对于虚数单位i ,则f (1+i)取得最小正整数时,对应n 的值是( ).A .2B .4C .6D .8 解析 f (1+i)=(1+i)n ,则当f (1+i)取得最小正整数时,n 为8. 答案 D7.下面是关于复数z =2-1+i的四个命题:p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1.其中的真命题为( ).A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4解析 z =2-1+i =-1--1+-1-=-1-i ,所以|z |=2,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i ,p 2为真命题;z =-1+i ,p 3为假命题;p 4为真命题.故选C. 答案 C8.已知复数z 满足z (1+i)=1+a i(其中i 是虚数单位,a ∈R ),则复数z 在复平面内对应的点不可能位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 解析 由条件可知:z =1+a i1+i=+a-+-=a +12+a -12i ;当a +12<0,且a -12>0时,a ∈∅,所以z 对应的点不可能在第二象限,故选B. 答案 B9.在复数集C 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R ,-x ,x ∉R ,则f (1+i)等于( ). A .2+iB .-2C .0D .2解析 ∵1+i ∉R ,∴f (1+i)=(1-i)(1+i)=2. 答案 D10.已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >12”是“点M 在第四象限”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析 z =(1-2i)(a +i)=(a +2)+(1-2a )i ,若其对应的点在第四象限,则a +2>0,且1-2a <0,解得a >12.即“a >12”是“点M 在第四象限”的充要条件.答案 C 二、填空题11.设i 为虚数单位,则(1+i)5的虚部为________.解析 因为(1+i)5=(1+i)4(1+i)=(2i)2(1+i)=-4(1+i)=-4-4i ,所以它的虚部为-4. 答案 -412.已知复数z 满足(2-i)z =1+i ,i 为虚数单位,则复数z =________. 解析 ∵(2-i)z =1+i ,∴z =1+i2-i =++-+=1+3i 5=15+35i. 答案 15+35i13.设复数z 满足i(z +1)=-3+2i ,则z 的实部是________.解析 由i(z +1)=-3+2i ,得z +1=-3+2ii =2+3i ,即z =1+3i.答案 114.若复数(1+a i)2(i 为虚数单位,a ∈R)是纯虚数, 则复数1+a i 的模是________.解析 因为(1+a i)2=1-a 2+2a i 是纯虚数,所以1-a 2=0,a 2=1,复数1+a i 的模为1+a 2= 2.答案15.设复数z 1=1-i ,z 2=a +2i ,若z 2z 1的虚部是实部的2倍,则实数a 的值为________. 解析 ∵a ∈R ,z 1=1-i ,z 2=a +2i , ∴z 2z 1=a +2i1-i=a ++1-+=a -2+a +2=a -22+a +22i ,依题意a +22=2×a -22,解得a =6.答案 6 16.若a1-i=1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 解析 ∵a ,b ∈R ,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧a =1-b ,0=1+b .∴⎩⎪⎨⎪⎧a =2,b =-1.∴|a +b i|=|2-i|=22+-2= 5.答案 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节算法与程序框图
A组基础题组
1.(2016山西四校二联)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为( )
A.64
B.73
C.512
D.585
2.定义运算a⊗b的结果为执行如图所示的程序框图输出的S,则⊗的值为( )
A.4
B.3
C.2
D.-1
3.阅读下面的程序框图,运行相应的程序,则输出S的值为( )
A.10
B.-15
C.21
D.-28
4.从1,2,3,4,5,6,7,8中随机取出一个数为x,执行如图所示的程序框图,则输出的x不小于40的概率为( )
A. B. C. D.
5.阅读下面的程序框图,运行相应的程序,如果输入a=(1,-3),b=(4,-2),则输出的λ的值是( )
A.-4
B.-3
C.-2
D.-1
6.(2016四川,6,5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )
A.9
B.18
C.20
D.35
7.(2016河北名校联考)运行如图的程序框图,输出的结果是S=720,则判断框内可填入的是( )
A.i≤7?
B.i>7?
C.i≤9?
D.i>9?
8.如图所示的程序框图,该算法的功能是( )
A.计算(1+20)+(2+21)+(3+22)+…+(n+1+2n)的值
B.计算(1+21)+(2+22)+(3+23)+…+(n+2n)的值
C.计算(1+2+3+…+n)+(20+21+22+…+2n-1)的值
D.计算[1+2+3+…+(n-1)]+(20+21+22+…+2n)的值
9.(2016山东,11,5分)执行如图所示的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.
10.(2016湖北黄冈模拟)数列{a n}满足a n=n,阅读如图所示的程序框图,运行相应的程序,若输入
n=5,a n=n,x=2,则输出的结果v= .
11.已知函数y=如图是给定x的值,求其对应的函数值y的程序框图.①处应填
写;②处应填写.
B组提升题组
13.图(1)是某县参加2016年高考的学生身高条形统计图,从左到右的各小长方形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,则在流程图中的判断框内可填写( )
A.i<6?
B.i<7?
C.i<8?
D.i<9?
14.如图所示的程序框图的功能是输入x的值,输出相应的y值.若要使输入的x值与输出的y值相等,则这样的x值有( )
A.2个
B.3个
C.4个
D.5个
15.(2015山东,13,5分)执行下边的程序框图,输出的T的值为.
16.(2016广东调研)执行如图所示的程序框图,则输出的S的值是.
答案全解全析
A组基础题组
1.B 由程序框图,可得x=1,S=1;x=2,S=1+23=9;x=4,S=9+43=73.循环结束,故输出的S的值为73.
2.A 由程序框图可知,S=
因为2cos=1,2tan=2,1<2,
所以⊗=2×(1+1)=4.
3.C 运行程序得到的结果依次是
S=0-1=-1,k=2;S=-1+4=3,k=3;S=3-9=-6,k=4;S=-6+16=10,k=5;S=10-25=-15,k=6;S=-15+36=21,k=7,此时跳出循环,输出S=21.故选C.
4.B 本题考查程序框图和概率.输入x经过第一次循环得到3x+1,n=2;经过第二次循环得到
3(3x+1)+1,n=3,再经判断框后输出3(3x+1)+1,结束.令3(3x+1)+1≥40⇒x≥4,即满足输出结果不小于40
的基本事件有:x=4,x=5,x=6,x=7,x=8,因此输出的x不小于40的概率P=.故选B.
5.C 当λ=-4时,-4a+b=(0,10),b=(4,-2),λa+b与b既不平行也不垂直,当λ=-3
时,-3a+b=(1,7),b=(4,-2),λa+b与b既不平行也不垂直;当λ=-2时,-2a+b=(2,4),b=(4,-2),λa+b与b垂直,循环结束,输出λ=-2.故选C.
6.B 执行程序框图,n=3,x=2,v=1,i=2≥0;v=1×2+2=4,
i=1≥0;v=4×2+1=9,i=0≥0;v=9×2+0=18,i=-1<0,结束循环,输出v=18.故选B.
7.B 第一次运行,i=10满足条件,S=1×10=10,i=9;
第二次运行,i=9满足条件,S=10×9=90,i=8;
第三次运行,i=8满足条件,S=90×8=720,i=7,
此时不满足条件,输出S=720.
故判断框内条件应使i=8,9,10满足,i=7不满足,所以填入的条件可为i>7?故选B.
8.C 初始值k=1,S=0,第1次进入循环体时,S=1+20,k=2;当第2次进入循环体时,S=1+20+2+21,k=3;……,给定正整数n,当k=n时,最后一次进入循环体,则有S=1+20+2+21+…+n+2n-1,k=n+1,终止循环,输出
S=(1+2+3+…+n)+(20+21+22+…+2n-1),故选C.
9.答案 3
解析a=1,b=8,i=2;a=3,b=6,i=3;a=6,b=3,a>b,所以输出i=3.
10.答案129
解析v=5,i=4,第一次循环,v=14,i=3;第二次循环,v=31,i=2;第三次循环,v=64,i=1;第四次循
环,v=129,i=0,结束循环,输出的结果v=129.
11.答案x<2?;y=log 2x
解析由框图可知只要满足①中的条件则对应的函数解析式为y=2-x,故此处应填写“x<2?”,则②处
应填写y=log2x.
12.答案990
解析算法过程为:
i=11,S=1;
S=11,i=10;
S=110,i=9;
S=990,i=8,
此时i=8<9,退出循环,执行“PRINT S”.
故输出S=990.
B组提升题组
13.C 统计身高在160~180 cm的学生人数,即求A4+A5+A6+A7的值.当4≤i≤7时,符合要求,故选C.
14.B 由程序框图可知y=
则根据题意有或
由解得x=0或±1.
令f(x)=ln x-x,则f '(x)=-1=,当x>1时, f '(x)<0,所以f(x)在(1,+∞)上是减函数,又f(1)=ln 1-1=-1,∴当x>1时, f(x)<-1<0,∴当x>1时,ln x<x,即ln|x|<x,又当x<-1时,ln|x|>ln 1=0>x,
∴无解.
综上所述,符合条件的x值有3个.
15.答案
解析第一次循环:T=1+xdx=1+=,n=2;第二次循环:T=+x2dx=+=,n=3,退出循环,故输出T
的值为.
16.答案 3 024
解析由题意得
a1=1×cos+1=1,a2=2×cos+1=-1,a3=3×cos+1=1,a4=4×cos+1=5,a5=5×cos+1=1,a6=6×cos
+1=-5,a7=7×cos+1=1,a8=8×c os+1=9,……,a2 013=1,a2 014=-2 013,a2 015=1,a2 016=2 017,故输出的
S=a1+a2+…+a2 016=504-(1+5+9+…+2 013)+504+(5+9+13+…+2 017)=504-1+504+2 017=3 024.。

相关文档
最新文档