电路实验总结基本放大电路实验总结集成运放电路实验总结
集成运放放大电路实验报告

集成运放放大电路实验报告一实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。
二仪器设备:i SXJ-3B型模拟学习机ii 数字万用表iii 示波器三实验内容:每个比例求和运算电路实验,都应进行以下三项:(1)按电路图接好后,仔细检查,确保无误。
(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV档测量,输出电压绝对值不超过0.5mv)。
A. 反相比例放大器实验电路如图所示R1=10k Rf=100k R’=10k输出电压:Vo=-(Rf/R1)V1实验记录:将电路输入端接学习机上的直流信号源的OUTPUT,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
实际测量V0的值填在表内。
B 同相比例放大器R1=10k, Rf=100k R'=10k输出电压:V0=(1+Rf/R1)V1别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。
E 电压跟随器实验电路:四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或对电路的影响。
2分析实验数据与理论值产生的误差原因。
(1)运放输入阻抗不是无穷大。
(2)运放增益不是无穷大。
(3)运放带宽不是无穷大。
(4)运放实际存在输入、温漂等等。
集成运算放大电路实验报告

电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。
基本运算电路实验报告

基本运算电路实验报告一、实验目的:1.电子仪器仪表的熟练使用;学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。
2.集成运算放大器的基本应用电路原理;3.集成运算放大器基本参数含义与应用要点。
4.简单电子电路的设计、安装、调试与参数测量。
二、实验原理:1.反相比例运算(图1)V0=-R f V1/R1其中输入电阻R≈R1根据增益,确定R f和R1的比值,得出一般取R f几十千欧到几百千欧图23.三、实验仪器集成运算放大器LM324 1片电位器1KΩ1只电阻100kΩ2只;10kΩ3只;Ω1只;9kΩ1只μF 1只四、实验内容(1)设计并安装反相比例运算电路,要求输入阻抗R i=10 kΩ, 闭环电压增益|A vf|=10(2)在该放大器输入端加入f=1kHZ的正弦电压,峰峰值自定,测量放大器的输出电压值;改变v I峰峰值大小,再测v O,研究v I和v O的反相比例关系,填入自拟表格中。
在反相比例电路的基础上,在R fμF的电容,构成积分运算电路。
输入端加入f=500HZ、幅值为1V的正方波,用双踪示波器同时观察、记录v I和v O的波形,标出幅值和周期。
图3所示电路可分别实现加法和减法运算。
当开关置于A点时为加法运算;开关置于B 点时为减法运算。
将开关置于A点,接入f=1kHZ的正弦波,调节电位器R P,测量v i1和v i2的大小,然后再测v O的大小。
改变R P,改变v i2的值,分别记录相应的v i1、v i2和v O的数值,填入自拟表格中(此时R’=R f//R1//R2)。
研究加法运算关系。
将实验原理图3中电路的开关置于B点,R’=R f,输入信号同上,分别测量v i1、v i2和v O数值。
调节R P,改变v i2的大小,再测v O,填入自拟表格中。
研究减法运算关系。
五、实验数据处理及分析:序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 131 02 480 145 0.3%3 480 168 0.6%序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 168 0.6%2 480 177 0.7%3 480 189 2.7% 3.反相比例积分电路结果分析:在反相比例加减法实验中所得结果在误差允许范围内与理论值相同,可以认为结果正确,反相比例积分电路图形基本正确。
集成运放电路的组装与测试实验总结

集成运放电路的组装与测试实验总结:组装电路集成实验测试集成运放电路分析集成运放电路实验报告集成运放四个组成部分篇一:5集成运放电路实验报告实验报告姓名:学号:日期:成绩:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0 带宽fBW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压UO 与输入电压之间满足关系式UO=Aud(U+-U-)由于Aud=∞,而UO为有限值,因此,U+-U-≈0。
即U+≈U -,称为“虚短”。
(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为UO??RFUiR1为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1 //RF。
图6-1 反相比例运算电路图6-2 反相加法运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为UO??(RFRUi1?FUi2) R3=R1 // R2 // RF R1R23) 同相比例运算电路图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为UO?(1?RF)Ui R2=R1 // RF R1当R1→∞时,UO=Ui,即得到如图6-3(b)所示的电压跟随器。
5集成运放电路实验报告

5集成运放电路实验报告实验目的:1.熟悉基本的集成运放电路的组成和功能;2.了解非反转运放电路、反转运放电路及运算放大器电路的工作原理;3.学会使用运放电路进行信号放大、滤波和求和。
实验仪器:1.电源供应器2.六组运筹放大器模数器件3.信号发生器4.示波器5.可调电阻6.电容7.电感实验原理:集成运放是一种重要的模拟电子器件,可广泛应用于电子电路中。
它具有高放大倍数、输入阻抗高、输出阻抗低等特点,在模拟电路的设计中起到了重要作用。
实验一:非反转运放电路非反转运放电路可以实现信号的放大,其电路图如下:Rf------------↑----------,OUVref---------+, -, VouV1,+--------R1R++----------```实验二:反转运放电路反转运放电路可用于信号放大和求逆,其电路图如下:```Rf--------↑--------,-,V1-----,+R1++----------```实验三:运算放大器电路运算放大器是一种特殊的运放电路,可以实现加法、减法、乘法和除法等运算。
其电路图如下:```Rf---------↑-------------,OUVref1--------V1-------------------Rg```实验步骤:1.使用示波器测量电源供应器的输出电压,调整到所需电压范围内;2.将非反转运放电路连接好,并连接示波器检测输出波形;3.调整电阻值,观察输出波形的变化;4.按照同样的方式,搭建反转运放电路进行实验;5.最后,搭建运算放大器电路进行实验,观察输出波形的变化。
实验结果:1.非反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为4V;2.反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为-4V;3. 运算放大器电路实验中,V1=2V,Vref1=4V,Rf=10kΩ,R1=2.2kΩ,Rg=3kΩ,输出波形为两个输入信号的和。
集成运放电路实验总结

集成运放电路实验总结集成运放(Operational Amplifier,简称Op Amp)是一种广泛应用于电路中的电子元器件。
在本次实验中,我们通过搭建基本的集成运放电路,理解其工作原理,并探究其在各种应用场景下的性能特点。
首先,我们搭建了一个简单的非反馈运放电路。
该电路的原理是将输入信号传递到运放的反向输入端,通过运放内部的放大模块,输出信号将作为电压跟随输入信号变化。
这个电路的放大倍数与运放参数有关,我们可以按照具体的需求,选择不同参数的运放实现不同的放大倍数和带宽等特性。
接下来,我们尝试了运用集成运放实现信号放大、筛选、求反等功能。
我们搭建了一个滤波器电路,通过调整运放反馈网络的参数(即电容大小和电阻大小),实现了对不同频率信号的筛选。
同时,我们也实现了信号的放大功能。
这些实验充分展现了集成运放的强大的信号处理能力。
除了以上的应用场景,集成运放还可用于比较电路、积分电路、微分电路等。
这些电路充分展现了集成运放在电子电路中的重要作用。
在实验中,我们也注意到了集成运放电路的一些特殊性质。
如:输入端阻抗极高、输出电阻极低、运放输出总是追随着反向输入端的变化、实现了对输入信号的放大、保持了各项特性的良好线性等。
这些特性使得集成运放成为现代电子电路设计中非常有价值的元器件。
虽然集成运放的特性优越,但也有其缺点。
例如:如果电路反馈不稳定,就可能出现振荡的情况。
同时,集成运放也可能存在噪声等影响其性能的因素,需要在设计时进行合理的防止和处理。
综上所述,本次集成运放电路实验,让我们深入地了解了集成运放的工作原理、应用场景和特性,同时也掌握了一些基本的电路设计技巧。
这对于电子电路的设计和实现,都具有重要的指导和启示意义。
集成运算放大器的基本应用模拟运算电路实验报告
集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。
实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。
实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。
在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。
常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。
各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。
实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。
实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。
实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。
基本放大电路的实验报告.doc
基本放大电路的实验报告.doc
本实验以基本放大电路仿真实验为例,结合TINA仿真软件,阐述基本放大电路的原
理和运作步骤。
首先,我们必须搭建基本放大电路,由于TINA仿真软件能够进行电路仿真,因此可
以使用它来实现基本放大电路的搭建。
在电路模拟中,我们首先选定一种芯片,如LM741,然后将它安装在电路板上,之后将放大电路所需的电容、电阻和其他组件依次接入芯片内部,并连接输入控制接口以及输出信号接口,使基本放大电路成功搭建。
其次,我们需要使用TINA仿真软件进行电路仿真。
首先,我们在新画面上新建一个
电路,然后将结构搭建的放大电路安装在画面上,并设置电源及输入信号等,然后开始进
行仿真示波。
仿真返回的结果显示,由于连接的电阻、电容和接口的影响,输入信号在经
过基本放大电路放大后,输出信号波形较输入信号更佳,且能实现信号从小到大的扩大。
最后,我们可以得出总结:基本放大电路是一类基于晶体管运放构成的简单放大电路,可以实现信号从小到大的扩大,在不同的应用领域中有重要的作用。
本次实验,我们使用
了TINA仿真软件模拟,搭建基本放大电路,并通过仿真获得了较佳的结果,掌握了基本
放大电路在实际操作中的基础原理和操作步骤。
集成运算放大器的应用实验报告
集成运算放大器的应用实验报告引言集成运算放大器(Operational Amplifier,简称Op Amp)是一种常用的电子元器件,广泛应用于各种电路中。
本实验主要目的是通过实践操作,掌握Op Amp的基本原理、特性以及应用。
本文档将详细记录实验过程、结果分析以及心得体会。
实验设备与材料1.集成运算放大器芯片2.电源(直流电源和信号发生器)3.示波器4.电阻、电容等基本元件5.连接线和面包板6.多用途实验电路板实验目标1.了解集成运算放大器的基本原理和特性。
2.熟悉使用Op Amp进行电压放大、非反相放大、反相放大等基本运算。
3.掌握Op Amp的应用范围和适用条件。
4.实验结果的数据测量和分析。
5.总结实验心得,进一步巩固理论知识。
实验原理集成运算放大器的基本原理集成运算放大器是一种具有高增益、输入阻抗大、输出阻抗小的电子放大器。
它通常由差动放大器和输出级组成。
集成运算放大器的输入端有两个,分别为非反相输入端(+)和反相输入端(-)。
输出端的电压和电源电压之间的差值称为放大倍数,通常表示为A。
集成运算放大器的主要特点有以下几个方面:1.无穷大的增益:理论上,集成运放的增益可以达到无穷大。
2.高输入阻抗:集成运放的输入电阻非常大。
3.低输出阻抗:集成运放的输出电阻非常小。
4.大信号频率响应范围宽:集成运放的频带宽度一般为几十到上百MHz。
Op Amp的应用电压放大器电压放大器利用Op Amp的高增益特性,将输入信号进行放大。
输入信号经过放大后,输出信号可以达到较高的幅度。
电压放大器通常采用非反相放大电路,输出信号与输入信号的相位关系相同。
非反相放大器非反相放大器是一种常见的Op Amp应用电路。
它实际上是电压放大器的一种特殊形式。
非反相放大器的特点是输出信号与输入信号具有相同的相位关系,通过选择合适的电阻比例,可以实现不同的电压放大倍数。
反相放大器反相放大器也是一种常用的Op Amp应用电路。
集成运算放大器实验报告总结
集成运算放大器实验报告总结
本次实验通过对集成运算放大器的原理和特性进行研究,掌握了集成运算放大器的基本工作原理、性能特点、应用范围和电路设计方法等方面的知识。
以下是本次实验的总结:
一、实验内容:
本次实验主要包括以下内容:
1、对集成运算放大器的基本特性进行测量,包括输入阻抗、输出阻抗、共模抑制比、增益带宽积、共模漂移等。
2、利用集成运算放大器设计反相放大电路、非反相放大电路、电压跟随器电路,实现对输入信号的放大和处理。
3、利用集成运算放大器设计直流平移电路、带通/陷波滤波电路,实现对输入信号的滤波和分析。
4、利用集成运算放大器设计电路输出交流信号的直流偏置,实现输出直流电平的稳定。
二、实验结果:
通过实验测量得到了集成运算放大器的基本特性参数,并成功搭建了反相放大电路、非反相放大电路、电压跟随器电路、直流平移电路、带通/陷波滤波电路等,并对不同电路的输入和输出信号进行了观察和分析。
三、实验体会:
通过本次实验,我对集成运算放大器的工作原理、特性及其应用有了更深入的了解,同时加强了实验能力和动手能力。
同时,在实验过程中我也深刻体会到了理论知识与实践操作的重要性,只有把理论与实验相结合,才能更好地理解和掌握这门学科的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路实验总结基本放大电路实验总结集成
运放电路实验总结
基本放大电路实验总结集成运放电路实验总结
电路实验总结总结的对象是什么?总结的对象是过去做过的工作或完成的某项任务,进行总结时,要通过调查研究,努力掌握全面情况和了解整个工作过程,只有这样,才能进行全面总结,避免以偏概全。
电路实验总结一:一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到现在的略懂一二。
在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。
但是后来就觉得越来越麻烦了。
从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多情况下是在实验出现象以后在去想理论。
在实验这门课中给我最大的感受就是,一定要先弄清楚原理,在做实验,这样又快又好。
在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。
比如说测量三相电,有很多种情况,有中线,无中线,
三角形接线法还是 Y 形接线法,在这个实验中,如果选择恰当的顺序就可以减少很多接线,做实验应该要有良好的习惯,应该在做实验之前想好这个实验要求什么,有几个步骤,应该怎么安排才最合理,其实这也映射到做事情,不管做什么事情,应该都要想想目的和过程,这样才能高效的完成。
电原实验开始的几周上课时间不是很
固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我应该从这件事情中吸取教训,合理安排自己的时间,完成应该完成的学习任务。
这学期做的一些实验都需要严谨的态度。
在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要特别仔细。
在最后的综合实验中,我更是受益匪浅。
完整的做出了一个红外测量角度的仪器,虽然不是特别准确。
我和我组员分工合作,各自完成自己的模块。
我负责的是单片机,和数码显示电路。
这两块都是比较简单的,但是数码显示特别需要细致,
由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。
总结:电路原理实验最后给我留下的是:严谨的学习态度。
做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。
电路实验总结二:电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。
它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。
在大二上学期将要结束之际,我们进行了一系列的电路实验,从简单基尔霍夫定律的验证到示波器的使用,再到一阶电路
——,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。
不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。
它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成
此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。
下面我想谈谈我在所做的实验中的心得体会:在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。
我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。
在戴维南定理的验证实验中,了解到对于任何一个线性
有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势 Us 等于这个有源二端网络的开路电压 Uoc,其等效内阻 Ro 等于该网络中所有独立源均置零时的等效电阻。
这就是戴维南定理的具体说明,我认为其实质也就是
在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。
不过在做这个实验,我想我们应该注意一下万用表的使用,尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃! 在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。
在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。
总的来说,通过此次电路实验,我的收获真的是蛮大的,不只是学会了一些一起的使用,如毫伏表,示波器等等,更重要的是在此次实验过程中,更好的培养了我们的具体实验的能力。
又因为在在实验过程中有许多实验现象,需要我们仔细的观察,并且分析现象的原因。
特别有时当实验现象与我们预计的结果不相符时,就更加的需要我们仔细的思考和分析了,并且进行适当的调节。
因此电路实验可以培养我们的观察能力、动手操做能力和独立思考能力。
电路实验总结三:本周主要进行电工实验设计和指导,经过一周时间,我们在辅导老师和辛勤帮助指导之下,完成了这次的实验任务,本次实验设计一共进行了四项,在进行实验之前,一定要把课本先复习掌握一下,以方便实验的经行和设计。
我分别设计了对戴维南定理的验证试验,基本放大电路的实验,逻辑电路四人表决器的设计实验和六进制电路的设计实验,首先,在进行戴维南定理实验设计的时候,经过自己的资料查找和反复设计,排除实验过程中遇到的一些困难,最终圆满的完成了实验任务及要求,在进行放大电路设计时就遇到了一定困难,也许是由于这些实验是电工教学中下册内容,在知识方面掌握还是不够,所以遇到了较多困难,通过老师指导和同学的帮助,一步一步进行改进和设计,在设计过程中也学到了许多放大电路的知识,更加深入的体会到有关放大电路的基本原理。
设计 6 进制的时候要了解芯片的作用,懂得该芯片的原理,最后设计的就是逻辑电路实验,每个实验的设计都经历许多的挫折,产生许多的问题,我们在出现的问题上对实验设计进行一步步的修改,这样还帮助我们弄懂了很多的问题。
实验过程中,从发现问题到解决问题,无不让我们更
加明白和学习到电工知识的不足,让我们更加深入透彻的学习掌握这些知识,我认为,这次的实验不仅仅更加深入的学习到了电工知识,还培养了自己独立思考,动手操作的能力,
并且我们学习到了很多学习的方法,这些都是今后宝贵的财富。
通过电工实验设计,从理论到实际,虽然更多的是幸苦,但是学完之后,会发现我们收获的真的很多,所以这些付出都是值得的。
本次实验我们还利用了 EWB 软件绘图,这是一项十分有作用的软件,我们电工学学习此软件对今后学习帮助十分重大,所以这也是一项重大的收获。
本次实验花了我较多时间,但是又由于实验周与考试安排较近,所以做的又有一定的匆忙性,实验设计上的缺陷还是很明显的,所以经过了老师和同学的批评指正,十分感激大家的帮助,我想这次的实验设计所收获的点点滴滴,今后一定能对我们起到重要的帮助!。