AO生化的硝化与反硝化原理及控制参数-汇总重要

合集下载

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮操作一、硝化与反硝化的作用机理:1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用。

硝化作用必须通过这两类菌的共同作用才能完成。

2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用。

3、硝化细菌必须在好氧条件下作用。

4、反硝化菌必须在无氧或缺氧的条件下进行。

二、作用方程式:硝化反应:2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化)2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化)反硝化反应:NO3— +CH3OH ——N2 + CO2+H2O+ OH—(以甲醇作为C源)三、操作:1、将购买的硝化菌投加到曝气池5、6#,亚硝化菌投加到曝气池1、2、3、4#,反硝化菌投加到厌氧池。

2、控制指标:生物硝化①PH值:控制在7.5—8.4②温度:25—30℃③溶氧:2—4mg/L④污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2小时生物反硝化:①PH值:控制在7.0—8.0②温度:25—30℃③溶氧:0.5mg/L⑤机碳源:BOD5/TN>(3—5)过低需补加碳源生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将转化为和。

在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将(经反亚硝化)和(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。

水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。

○1硝化——短程硝化:硝化——全程硝化(亚硝化+硝化):○2反硝化——反硝化脱氮:反硝化——厌氧氨氧化脱氮:反硝化——厌氧氨反硫化脱氮:废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。

主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。

硝化反硝化知识汇总

硝化反硝化知识汇总

硝化反硝化知识汇总1.硝化反应在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

硝化反应包括亚硝化和硝化两个步骤:2.反硝化反应NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N 还原成N2的过程,称为反硝化。

反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。

反硝化反应方程式为:NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH-NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH-3.短程硝化反硝化短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。

短程硝化反硝化是指NH3--NO2---N2,即可以从水中氨氮去除的一种工艺。

4.影响因素:(1)、pH硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。

当pH 降到5.5以下,硝化反应几乎停止。

反硝化细菌最适宜的pH值为7.0~7.5之间。

考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。

(2)、溶解氧(DO)硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。

反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。

反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。

硝化作用与反硝化作用

硝化作用与反硝化作用

硝化作用与反硝化作用一、硝化作用硝化作用是指在有氧的条件下,经亚硝酸细菌和硝酸细菌的作用,将氨转化成硝酸的过程。

硝化作用分两个阶段进行,第一阶段是氨被氧化为亚硝酸,靠亚硝酸细菌完成;第二阶段是亚硝酸被氧化为硝酸,靠硝酸细菌完成。

亚硝酸细菌和硝酸细菌统称为硝化细菌。

大量施用铵盐或硝酸盐肥料,所产生的硝酸除了被植物吸收和微生物固定外,尚有相当一部分随水流失。

流失的硝酸不但造成氮索损失,也引起环境污染。

若硝酸盐进入地下水或流入水井,则会导致饮用水中硝酸盐浓度升高。

硝酸盐流入水体,使水体营养成分增加,导致浮游生物和藻类旺盛生长,这种现象称作富营养化。

硝化过程也产生相当数量的N2O,这是一种温室效应气体,可导致臭氧层的破坏。

二、反硝化作用微生物还原硝酸为亚硝酸、氮和氮气的作用称为反硝化作用。

反硝化作用需要具有反硝化微生物,一般只在厌氧条件下进行。

反硝化作用是造成土壤中氮素损失的重要原因之一。

在农业上常采用中耕松土的办法,施用硝化抑制剂以抑制反硝化作用。

来源老燕说农,参考文献:【1】战忠玲.农业微生物【M】.北京:中国农业大学出版社,2019.89-91.以下节选自环保水处理(1)pH值硝化菌对pH值的变化非常敏感,最佳pH值是8.0~8.4。

在这一最佳pH值条件下,硝化菌最大的比增殖速度可达最大值;当pH值低于6或高于9.6时,硝化反应将停止进行。

反硝化菌最适宜的pH值是6.5~7.5,在这个pH值条件下,反硝化速率最高,当pH值高于8或低于6时,反硝化速率将很快下降。

(2)溶解氧(DO)氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应的进程。

在进行硝化反应的曝气池内,根据试验结果证实,DO含量不得低于1mg/L,通常为1~2mg/L。

反硝化菌是异养兼性菌,只有在无分子氧而同时存在NO3-和NO2-的条件下,它们才能够利用这些离子中的氧进行呼吸,使硝酸盐还原。

在有溶解氧存在时,反硝化菌首先利用溶解氧,这将阻碍反硝化反应的进行。

AO生化的硝化与反硝化原理及控制参数-汇总重要

AO生化的硝化与反硝化原理及控制参数-汇总重要

A/O生化处理工艺的硝化和反硝化控制(天道酬勤)1、基本原理本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。

在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。

这里着重介绍生物脱氮原理。

1) 生物脱氮的基本原理传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。

①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程;③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。

其中硝化反应分为两步进行:亚硝化和硝化。

2、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为7.5~8.5,当pH值低于7.0时,硝化反应会受到抑制,但是当pH低于一定值后,硝化反应就会被抑制而停止,所以说如果废水pH由高到低,且pH小于6.5时就可以排除硝化反应导致的pH值降低。

(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。

(3)适宜温度20~30℃。

(4)硝化菌在反应器中的停留时间必须大于最小世代时间。

(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮把持之蔡仲巾千创作
一、硝化与反硝化的作用机理:
1、硝化细菌包括亚硝化菌和硝化菌, 亚硝化菌将废水中的NH3转化为亚硝酸盐, 硝化菌将亚硝酸盐转化为硝酸盐, 称为硝化作用.硝化作用必需通过这两类菌的共同作用才华完成.
2、反硝化菌将硝酸盐转化为N2、NO、N2O, 称为反硝化作用.
3、硝化细菌必需在好氧条件下作用.
4、反硝化菌必需在无氧或缺氧的条件下进行.
二、作用方程式:
硝化反应:
2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化)2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化)反硝化反应:
NO3— +CH3OH —— N2 + CO2+H2O+ OH—(以甲醇作为C源)
三、把持:
1、将购买的硝化菌投加到曝气池5、6#, 亚硝化菌投加到曝气池1、
2、
3、4#, 反硝化菌投加到厌氧池.
2、控制指标:
生物硝化
①—
②温度:25—30℃
③溶氧:2—4mg/L
④污泥停留时间:必需年夜于硝化菌的最小世代时间, 一般
应年夜于2小时
生物反硝化:
①—
②温度:25—30℃

④有机碳源:BOD5/TN>(3—5)过低需补加碳源。

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮的原理

硝化与反硝化去除氨氮操作一、硝化与反硝化的作用机理:1、硝化细菌包括亚硝化菌和硝化菌,亚硝化菌将废水中的NH3转化为亚硝酸盐,硝化菌将亚硝酸盐转化为硝酸盐,称为硝化作用。

硝化作用必须通过这两类菌的共同作用才能完成。

2、反硝化菌将硝酸盐转化为N2、NO、N2O,称为反硝化作用。

3、硝化细菌必须在好氧条件下作用。

4、反硝化菌必须在无氧或缺氧的条件下进行。

二、作用方程式:硝化反应:2NH3+3O2――(亚硝化菌)――2HNO2+2H2O+能量(氨的氧化)2HNO2+O2――(硝化菌)――2HNO3+能量(亚硝酸的氧化)反硝化反应:NO3— +CH3OH ——N2 + CO2+H2O+ OH—(以甲醇作为C源)三、操作:1、将购买的硝化菌投加到曝气池5、6#,亚硝化菌投加到曝气池1、2、3、4#,反硝化菌投加到厌氧池。

2、控制指标:生物硝化①PH值:控制在7.5—8.4②温度:25—30℃③溶氧:2—4mg/L④污泥停留时间:必须大于硝化菌的最小世代时间,一般应大于2小时生物反硝化:①PH值:控制在7.0—8.0②温度:25—30℃③溶氧:0.5mg/L⑤机碳源:BOD5/TN>(3—5)过低需补加碳源生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将转化为和。

在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将(经反亚硝化)和(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。

水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。

○1硝化——短程硝化:硝化——全程硝化(亚硝化+硝化):○2反硝化——反硝化脱氮:反硝化——厌氧氨氧化脱氮:反硝化——厌氧氨反硫化脱氮:废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。

主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。

硝化和反硝化脱氮原理

硝化和反硝化脱氮原理

硝化和反硝化是自然界中常见的脱氮过程,用于处理水体和废水中的氮污染。

它们的基本原理如下:
硝化:硝化是指将氨氮(NH3-N)或亚硝酸盐氮(NO2-N)转化为硝酸盐氮(NO3-N)的过程。

硝化作用通常由两种细菌完成,一种是氨氧化细菌(AOB),负责将氨氮氧化为亚硝酸盐氮;另一种是亚硝酸氧化细菌(NOB),负责将亚硝酸盐氮氧化为硝酸盐氮。

硝化过程一般在氧气充足的条件下进行。

反硝化:反硝化是指将硝酸盐氮还原为氮气(N2)或氮氧化物(如亚氮氧化物,N2O)的过程。

反硝化通常由一种或多种嫌氧细菌完成,这些细菌利用硝酸盐氮作为电子受体,同时将有机物质作为电子供体进行反应,产生氮气或氮氧化物。

反硝化过程常发生在缺氧或低氧的环境中。

硝化和反硝化是自然界中氮循环的重要环节,也是废水处理和水体保护中常用的处理方法。

通过调节硝化和反硝化过程,可以有效地去除水体和废水中的氮污染物,保护水环境的质量。

污水处理AO工艺介绍

污水处理AO工艺介绍

污水处理AO工艺介绍引言概述:污水处理是现代社会中一个重要的环境保护领域,而AO工艺是一种常用的污水处理技术。

本文将介绍AO工艺的原理、优势、应用领域、操作注意事项以及未来发展趋势。

正文内容:1. AO工艺的原理1.1 氨氧化(Anoxic)阶段:在无氧条件下,硝化细菌通过氨氧化反应将氨氮转化为亚硝酸盐。

1.2 好氧(Oxic)阶段:在有氧条件下,亚硝酸盐通过硝化反应转化为硝酸盐。

1.3 反硝化(Denitrification)阶段:在无氧条件下,反硝化细菌将硝酸盐还原为氮气释放到大气中。

2. AO工艺的优势2.1 高效处理:AO工艺能够同时进行氨氮和有机物的去除,处理效果显著。

2.2 节能环保:AO工艺采用生物降解方式,无需添加化学药剂,能够减少能耗和化学物质的排放。

2.3 占地面积小:AO工艺相对于传统的污水处理工艺来说,占地面积更小,适合在城市中进行污水处理。

2.4 运行成本低:AO工艺操作简单,维护成本低,适合于中小型污水处理厂。

3. AO工艺的应用领域3.1 城市污水处理厂:AO工艺适合于城市污水处理厂,能够高效处理大量的污水。

3.2 工业废水处理:AO工艺也适合于工业废水处理,能够有效去除废水中的有机物和氨氮。

3.3 农村污水处理:AO工艺可以适合于农村地区的污水处理,能够解决农村地区污水处理难题。

4. AO工艺的操作注意事项4.1 控制好氧/无氧条件:根据处理需求,合理控制好氧和无氧条件,以保证处理效果。

4.2 保持适宜的温度:AO工艺对温度要求较高,需要保持适宜的温度范围,以促进微生物的生长和代谢。

4.3 适时添加碳源:AO工艺需要适时添加碳源,维持好氧/无氧条件下微生物的生长和代谢。

5. AO工艺的未来发展趋势5.1 高效化:未来的AO工艺将更加注重提高处理效率,减少处理时间和成本。

5.2 能源回收:AO工艺将更加关注能源的回收利用,例如利用产生的甲烷气体发电。

5.3 自动化控制:未来的AO工艺将更加自动化,通过先进的监测和控制系统,实现更高效的运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A/O生化处理工艺的硝化和反硝化控制(天道酬勤)1、基本原理本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。

在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。

这里着重介绍生物脱氮原理。

1) 生物脱氮的基本原理传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。

①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2和NO3的过程;③反硝化(Denitrification):废水中的NO2和NO3在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。

其中硝化反应分为两步进行:亚硝化和硝化。

2、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为7.5~8.5,当pH值低于7.0时,硝化反应会受到抑制,但是当pH低于一定值后,硝化反应就会被抑制而停止,所以说如果废水pH由高到低,且pH小于6.5时就可以排除硝化反应导致的pH值降低。

(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。

(3)适宜温度20~30℃。

(4)硝化菌在反应器中的停留时间必须大于最小世代时间。

(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。

(6)硝化过程NH3-N耗于异化氧化和同化的经典公式NH4++1.83O2 +1.98HCO3- 0.98NO3-+0.021C5H7NO2+1.88H2CO3+1.04H2O因此表明,去除1gNH3-N约:耗去4.33gO2;生成0.15g细胞干物质;减少7.14g碱度;耗去0.08g无机碳(碳酸钠能提供无机碳源)。

硝化反应过程方程式如下所示:①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+②硝化反应:NO2-+0.5O2→NO3-③总的硝化反应:NH4++2O2→NO3-+H2O+2H+3、反硝化反应的适宜条件:(1)最适宜的PH值为7~8。

PH高于8或低于6,反硝化速率将大为降低。

(2)反硝化菌需要缺氧、好氧(合成酶系统)条件交替存在,系统DO≤0.5mg/l(3)最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。

(4)(4)BOD/TN≥3~5。

反硝化菌是异氧兼性厌氧菌,可作为其碳源的有机物较多.反硝化过程NO3-+1.08CH3 OH+0.24H2CO3→0.06C5H7NO2 +0.47N2+1.68H2O+HCO3-因此表明:每1gNO3--N 被硝化,消耗3.7gCOD产生0.45g新细胞产生3.57g 碱度(5)在20℃情况下,反硝化速率可取0.03~0.06gNO3--N/(gMLVSS·d);对于没有外来碳源的后置反硝化系统,反硝化速率可取0.01~0.03gNO3--N/(gMLVSS·d).反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电子供体为例):第一步: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O第二步: 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-第三步: 6NO3-+5CH3OH 5CO2+3N2+7H2O+6OH-4、本系统脱氮原理针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。

因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。

5、工艺特征A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。

因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的NO3-或NO2-作电子受体而影响反硝化速率,如内回流比过高,则将导致BOD5/NO3-或BOD5/NO3-等过低,同样将因反硝化菌得不到足够的碳源作电子供体而抑制反硝化菌的生长。

A/O工艺中因只有一个污泥回流系统,因而使好氧异养菌、反硝化菌和硝化菌都处于缺氧/好氧交替的环境中,这样构成的一种混合菌群系统,可使不同菌属在不同的条件下充分发挥它们的优势。

将反硝化过程前置的另一个优点是可以借助于反硝化过程中产生的碱度来实现对硝化过程中对碱度消耗的内部补充作用。

图2.3所示为A/O脱氮工艺的特性曲线。

由图可见,在脱氮反应池(A 段)中,进入脱氮池的废水中的COD、BOD5和氨氮的浓度在反硝化菌的作用下均有所下降(COD和BOD5的下降是由反硝化菌在反硝化反过程中对碳源的利用所致),而氨氮的下降则是由反硝化菌的微生物细胞合成作用以及短程硝化-厌氧氨氧化所致),NO3-的浓度则因反硝化作用而有大幅度下降;在硝化反应池(O段)中,随硝化作用的进行,NO3-的浓度快速上升,而通过内循环大比例的回流,反硝化段的NO3-N含量通过反硝化菌的作用明显下降,COD和BOD5则在异养菌的作用下不断下降。

氨氮浓度的下降速率并不与NO3-浓度的上升相适应,这主要是由于异养菌对有机物的氨化而产生的补偿作用造成的。

(3)溶解氧氧对反硝化脱氮有抑制作用。

一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。

若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。

所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。

为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。

在实际运行中,一般应取>2 ;6、碳酸钠与氢氧化钠在硝化中投加的区别绝对是碳酸钠好!第一,用氢氧化钠调pH,pH波动很大,对微生物的活性影响很严重,用碳酸钠,不仅调节了pH,而且pH波动程度远小于氢氧化钠,在混合液中可以形成缓冲对,应对pH的波动,最重要的是!碳酸钠可以提供硝化反应所需的无机碳源!这是选择碳酸钠的最最主要的原因!pH和碱度绝对不是一个概念,pH和氢离子有关,碱度和碳酸根或碳酸氢根有关!pH一直保持在7-8.5之间,碱度不一定充足,这才导致我们监测水质指标时,不仅要监测pH值,还需要用滴定法测碱度!例如:超纯水的pH值约在7左右,但是它碱度是0,所以pH和碱度无直接关系,调碱度的时候,因为碳酸根的水解,会生成氢氧根,导致pH变化。

BOD 降解、硝化反硝化图2.3 A/O脱氮工艺的特性曲线与传统的生物脱氮工艺相比,A/O系统不必投加外碳源,可充分利用原污水中的有机物作碳源进行反硝化,同时达到降低BOD5和脱氮的目的;A/O系统中缺氧反硝化段设在好氧硝化段之前,因而当原水中碱度不足时,可利用反硝化过程中产生的碱度来补充硝化过程中对碱度的消耗。

此外,A/O工艺中只有一个污泥回流系统,混合菌群交替处于缺氧和好氧状态及有机物浓度高和低的条件,有利于改善污泥的沉降性能及控制污泥的膨胀。

生物脱氮反应过程各项生物反应特征见表2.2所示。

表2.2 生物脱氮反应过程中各项生物反应特征(参考值)根据废水的脱氮水质、处理目标、出水要求,选择A/O脱氮工艺时,其参数一般也有所不同。

通常情况下,可以按照表2.3选用各参数。

表2.3 A/O法工艺参数(参考值)7、影响因素与控制条件1) 硝化反应主要影响因素与控制要求①好氧条件,并保持一定的碱度。

氧是硝化反应的电子受体,硝化池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。

硝化菌对pH值的变化十分敏感,为保持适宜pH值,废水应保持足够的碱度以调节pH值的变化,对硝化菌的适宜pH值为8.0~8.4。

②混合液中有机物含量不宜过高,否则硝化菌难成为优势菌种。

③硝化反应的适宜温度是20~35℃。

当温度在5~35℃之间由低向高逐渐升高时,硝化反应的速率将随温度的升高而加快,而当低至5℃时,硝化反应完全停止。

对于去碳和硝化在同一个池子中完成的脱氮工艺而言,温度对硝化速率的影响更为明显。

当温度低于15℃时即发现硝化速率迅速下降。

低温状态对硝化细菌有很强的抑制作用,如温度为12~14℃时,反应器出水常会出现亚硝酸盐积累的现象。

因此,温度的控制时相当重要的。

④硝化菌在消化池内的停留时间,即生物固体平均停留时间,必须大于最小的世代时间,否则硝化菌会从系统中流失殆尽。

⑤有害物质的控制。

除重金属外,对硝化反应产生抑制作用的物质有高浓度NH4-N、高浓度有机基质以及络合阳离子等。

2) 反硝化反应主要影响因素与控制要求①碳源(C/N)的控制。

生物脱氮的反硝化过程中,需要一定数量的碳源以保证一定的碳氮比而使反硝化反应能顺利地进行。

碳源的控制包括碳源种类的选择、碳源需求量及供给方式等。

反硝化菌碳源的供给可用外加碳源的方法(如传统脱氮工艺)、或利用原废水中的有机碳(如前置反硝化工艺等)的方法来实现。

反硝化的碳源可分为三类:第一类为外加碳源,如甲醇、乙醇、葡萄糖、淀粉、蛋白质等,但以甲醇为主;第二类为原废水中的有机碳;第三类为细胞物质,细菌利用细胞成分进行内源反硝化,但反硝化速率最慢。

当原废水中的BOD5与TKN(总凯氏氮)之比在5~8时,BOD5与TK(总氮)之比大于3~5时,可认为碳源充足。

相关文档
最新文档