单因素方差分析的计算步骤教学教材

合集下载

OneWayANOVA单因素方差分析PPT课件

OneWayANOVA单因素方差分析PPT课件
•五个水平:品系I-V •重复(Repeat):在特定因素水平下的独立试验
•五次重复
第3页/共31页
单因素方差分析的数据形式
X因素的a个不同水平(处理)
每 个 处 理 下 n 个 重 复
n
xi xij ,
j 1
xi
1 n
xi ,
i 1, 2,, a
a n
x
xij ,
i 1 j1
x
1 an
固定效应模型
方差分析统计量:
Fdf A ,dfe
MS A MSe
第11页/共31页
固定效应模型
平方和的简易计算
a n
SST
i1 j1
xij x
2
a
i 1
n j1
xi2j
x2 na
a
SSA n
i1
xi x
2
1 n
a i 1
xi2
x2 na
C x2 na
减少计算误差 利于编程
C称为校正项。误差平方和 SSe = SST-SSA
第30页/共31页
感谢您的观看!
第31页/共31页
第19页/共31页
单因素方差分析的SPSS实现
例:小麦株高与品系的关系研究-单因素固定模型的方差分析
第20页/共31页
单因素方差分析的SPSS实现
SPSS one-way ANOVA output
株高
Between Groups Within Groups Total
Sum of Squares
第22页/共31页
多重比较
多重比较方法:
最小显著差数(LSD)检验 Student-Newman-Keuls(SNK)q检验 Duncan 检验 Dunnett t检验 Tukey 检验 …

SPSS单因素方差分析步骤(单因素显著性分析步骤)

SPSS单因素方差分析步骤(单因素显著性分析步骤)

spss教程:单因素方差分析用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。

方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。

所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。

统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。

方法/步骤1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。

2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。

采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。

图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。

趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。

趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。

图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。

3.多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。

常用LSD、S-N-K方法。

LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。

4.相似性子集:由图可知,划分的子集结果是一样的。

通常在相似性子集划分时多采用S-N-K方法的结论。

第10章-单因素方差分析PPT课件

第10章-单因素方差分析PPT课件

(四)重复 (repeat)
在试验中,将一个处理实施在两个或两个以上的试验单位
上,称为处理有重复;一处理实施的试验单位数称为处理的重
复数。
.
6
第一节 单因素方差分析的基本原理
一、线性模型 二、固定线性模型 三、随机线性模型 四、多重比较 五、基本假定
.
7
一、线性模型
(一)线性模型 假设某单因素试验有a个处理,每个处理有n
第10章 单因素方差分析
One-factor analysis of variance
.
1
用6种培养液培养红苜蓿,每一种培养液做5次重复,测 定5盆苜蓿的含氮量,结果如下表(单位:mg).问用6 种不同培养液培养的红苜蓿含氮量差异是否显著?
培养方法 盆号 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ
1 19.4 17.7 17.0 20.7 14.3 17.3
χi2
χa2
χi3
χa3


χ2j χ3j
χij
χaj
χ2n χ3n
χin
χan
x 2
x 3
x i
x a x
x 2
x 3
2
3
x i
x a x
i
a
a2
a3
.
ai
aa
9
符号
文字表述
a
因素水平数
n
x ij n
xi
xij
j 1
xi
1 n
xi
每一水平的重复数 第i水平的第j次观察值 第i水平所有观察值的和
ij 是试验误差,相互独立,且服从正态分布N(0,σ2)。
.
11
xiji ij ij11,,22,, an

生物统计-8第八章单因素方差分析

生物统计-8第八章单因素方差分析

01
确定因子和水平
确定要分析的因子(独立变量) 和因子水平(因子的不同类别或 条件)。
建立模型
02
03
模型假设
根据因子和水平,建立方差分析 模型。模型通常包括组间差异和 组内误差两部分。
确保满足方差分析的假设条件, 包括独立性、正态性和同方差性。
方差分析的统计检验
01
F检验
进行F检验,以评估组间差异是否 显著。F检验的结果将决定是否拒
生物统计-8第八章单因素方差分析
目录
• 引言 • 方差分析的原理 • 单因素方差分析的步骤 • 单因素方差分析的应用 • 单因素方差分析的局限性 • 单因素方差分析的软件实现
01
引言
目的和背景
目的
单因素方差分析是用来比较一个分类变量与一个连续变量的关系的统计分析方法。通过此分析,我们可以确定分 类变量对连续变量的影响是否显著。
VS
多元性
单因素方差分析适用于单一因素引起的变 异,如果存在多个因素引起的变异,单因 素方差分析可能无法准确反映实际情况。 此时需要考虑使用其他统计方法,如多元 方差分析或协方差分析等。
06
单因素方差分析的软件 实现
使用Excel进行单因素方差分析
打开Excel,输入数据。
点击“确定”,即可得到单因素方差分析 的结果。
输出结果,并进行解释和 解读。
谢谢观看
背景
在生物学、医学、农业等领域,经常需要研究一个分类变量对一个或多个连续变量的影响。例如,研究不同品种 的玉米对产量的影响,或者不同治疗方式对疾病治愈率的影响。
方差分析的定义
定义
方差分析(ANOVA)是一种统计技术,用于比较两个或更多组数据的平均值 是否存在显著差异。在单因素方差分析中,我们只有一个分类变量。

第9.1节 单因素试验的方差分析——概率论与数理统计(李长青版)

第9.1节 单因素试验的方差分析——概率论与数理统计(李长青版)

ES A ( s 1) 2 n j 2 j
j 1
s
由此得
Se 2 E , ns
1 s SA 2 2 E n j j s 1 s 1 j 1
在 H0 为真时, 即 1 2 s 0 时, 有
S A ( s 1) 将 从而在 H0 不真时, 比值 S ( n s ) 有偏大的趋势, 其 e
S A ( s 1) . 记为 F, 即 F Se (n s )
则 F 可以作为检验 H0 的统
计量. 将 Se 写成如下分项相加的形式
Se ( xi1 x1 ) 2 ( xi 2 x2 ) 2 ( xis xs ) 2
的 影响.
种子品种代 号 (水平) 重复试验序号及作物实测产量
1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系
s nj
从而有
Se ( ij j ) ,
2 j 1 i 1
s
nj
S A n j ( j j ) 2
j 1
s
由此知, Se 反映了误差的波动, 称其为误差的偏差 平方和(或称为组内平方和), 它集中反映了试验中与因 素及其水平无关的全部随机误差. 在 H0 为真时, SA 反 映误差的波动, 在 H0 不真时, SA 反映因子A 的不同水

01-单因素方差分析PDF

01-单因素方差分析PDF

ni
2
4.计算均方误差MS
1)各误差平方和的大小与观察值的多少有关,为
消除观察值多少对误差平方和大小的影响,需要将
其平均,这就是均方,也称为方差
2)由误差平方和除以相应的自由度求得(也是一
种平均值)
3)三个平方和对应的自由度分别是
▪ SST 的自由度为n-1,其中n为全部观察值的个数
▪ SSA的自由度为k-1,其中k为因素水平(总体)的个数
(3)组内平方和 SSE
1)每个水平或组的各样本数据与其组平均值的离差
平方和
2)反映每个样本各观察值的离散状况
3)该平方和反映的是随机误差的大小
k ni
2
4)计算公式为 SSE =
x −x
(
i =1 j =1
ij
▪ 引例的计算结果: SSE = 2708
i
)
三个误差平方和的关系
总 离 差 平 方 和 (SST) 、 误 差 项 离 差 平 方 和
三、提出假设
1. 一般提法


H0 :m1 = m2 =…= mk

自变量对因变量没有显著影响
H1 :m1 ,m2 ,… ,mk不全相等

自变量对因变量有显著影响
2. 注意:拒绝原假设,只表明至少有两个总
体的均值不相等,并ቤተ መጻሕፍቲ ባይዱ意味着所有的均值
都不相等
四、构造检验的统计量
• 构造统计量需要计算:
水平的均值
▪ SSE 的自由度为n-k
均方 MS
1. 组间方差:SSA的均方,记为MSA,计算公
式为
SSA
MSA =
1456.608696
引例计算结果:

单因素方差分析-PPT课件

单因素方差分析-PPT课件

单因素方差分析的假设检验的步骤:
(1)提出统计假设 H 0 : μ 1μ2 μs
H1: μ1, μ2, , μs 不全相等.
(2)编制单因素试验数据表
s nj
(3)根据数据表计算 T ,
x
2 ij

ST,SA,SE
j1 i1
(4)填制单因素方差分析表
单因素方差分析表
一、基本概念
我们将要考察的对象的某种特征称为指标, 影响指标的各种因素称为因子,一般将因子控 制在几个不同的状态上,每一个状态称为因子 的一个水平.
若一项试验中只有一个因子在改变,而其 它的因子保持不变,称这样的试验为单因素试 验.多于一个因子在改变的的试验为多因素试验. 这里,我们只讨论单因素试验.
否则接受H0 ,认为因子A对指标没有显著影响.
例1. 在显著性水平α=0.01下,用单因素方差分析法判断
实例1中,三个工厂所生产的电池的平均寿命有无显著 差异?
解:提出统计假设
H0: μ1μ2μ3
H1: μ1, μ2, μ3 不全相等.
编制单因素试验数据表
部分 总体
A1
A2 A3
37
样 47 本 40 值 60
6444
S A

s j1
1 nj
T2j
n1T2
1 12 81 442 91 826 27 192 49
4
6
3
13
4284
SESTSA644 44 28 24 160
单因素方差分析表
方差来源 平方和 自由度
因子A 4284 2
随机误差 2160 10 总和 6444 12
ST σ2
~

单因素方差分析 PPT课件

单因素方差分析 PPT课件

解:
ssA
5 i1
1 m
10 l1
2 xil
1 510
5 i1
10 l1
2 xil
22.865
fA 51 4
ssE
5 i1
10 l1
x
2 il
1 510
5 i1
10 xil 2 l1
53.055
fE 510 5 45
s 2A
ssA fA
22.865 4
5.71
1 m
m L1
xiL
2
fE km k
m
有km个数据,但存在 k个约束条件,即有 k个 xiL xi 0 L1
3.总离差平方和ssT、自由度fT
• 它反映了全部数据的波动程度。
k m
2
ssT
xiL x
i1 L1
k m
2 km
2
xiL xi
xi x
i1 L1
试验次数
1
2
34
水平
A1
38
36
35 31
A2
20
24
26 30
A3
21
22
31 34
样本 X1 X2
试验数据 X11,X12,..X1L…X1m X21,X22,…X2L,…X2m
.
Xi
Xi1,Xi2,…XiL…Xim
.
.Xk
Xk1,Xk2,…XkL,…Xkm
样本平均值
x1
x2
xi
xk
m
xiL
L1
因素A第i个水平平均值为
xi
1 m
m
xiL
L1
1.因素A离差平方和 ssA、自由度fA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单因素方差分析的计
算步骤
一、 单因素方差分析的计算步骤
假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为
,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记
做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表3.1:
表3.1 单因素方差分析数据结构表
为了考察因素A 对实验结果是否有显著性影响,我们把因素A 的m 个水平
m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j
总体的第i 个样品,因此,可设()
m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显著的差异,就相当于检验:
μ====m a a a H 210:或者 0:210====m H εεε
具体的分析检验步骤是: (一)计算水平均值
令j x 表示第j 种水平的样本均值,
j
n i ij
j n x
x j
∑==1
式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和
在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,
2)(∑∑-=x x SST ij
其中,n
x x ij
∑∑=
它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:
()∑∑⎥⎦⎤
⎢⎣⎡-=j i j ij x x SSE 2
其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:
()
()
2
2
∑∑∑-=-=x x n x x SSA j j j
用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在:
SSA SSE SST +=
因为:
()
()()[]
2
2
∑∑∑∑-+-=-x x x x x x
j j ij ij
()()
()()
x x x x x x x x j j ij j j ij --+-+-=∑∑∑∑∑∑22
2
在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,
222)()()(∑∑∑∑∑∑-+-=-x x x x x x
j j ij ij
即 SSA SSE SST +=
(三)计算平均平方
用离差平方和除以各自自由度即可得到平均平方。

对SST 来说,其自由度为1-n ,因为它只有一个约束条件,即0)(=-∑∑x x ij 。

对SSA 来说,其自由度是1-m ,这里m 表示水平的个数,SSA 反映的是组间的差异,它也有一个约束条件,即要求:
0)(=-∑x x n
j j
对SSE 来说,其自由度为m n -,因为对每一种水平而言,其观察值个数为
j n ,该水平下的自由度为1-j n ,总共有m 个水平,因此拥有自由度的个数为m n n m j -=-)1(。

与离差平方和一样,SSE SSA SST ,,之间的自由度也存在着关系,即
)()1(1m n m n -+-=-
这样对SSA ,其平均平方MSA 为:
1
-=
m SSA
MSA 对于SSE ,平均平方MSE 为:
m
n SSE
MSE -=
(四)方差分析表
由F 分布知,F 值的计算公式为:
MSE
MSA
F ==
组内方差组间方差
为了将方差分析的主要过程表现的更加清楚,通常把有关计算结果列成方差分析表如下表3.2: 表3.2 方差分析表
(五)作出统计判断
对于给定的显著性水平α,由F 分布表查出自由度为),1(m n m --的临界值
αF ,如果αF F >,则拒绝原假设,说明因素对指标起显著影响;如果αF F ≤,则接受原假设,说明因素的不同水平对试验结果影响不显著。

相关文档
最新文档