有界线性算子的谱

合集下载

第五章 有界线性算子的谱理论

第五章 有界线性算子的谱理论
−1 −1
明显地 , 若 λ ∈ σ p ( A) ,则存 在 x ≠ 0 使得 (λI − A) x = 0 , 此时 称
x 是 A 的 相 应 于 λ 的 特 征 向 量 . 称 N (λI − A) 是 A 的 相 应 于 λ 的 特 征
向量空 间 . 由定义还知道复平面 C =
ρ ( A) ∪ σ ( A) 并 且 ρ ( A) ∩ σ ( A) = ∅ . 另
∑a A
n=0 n


n
( Ao = I ) 的 收 敛 性 乃 至 算 子 函 数 f ( A) 的 解 析 性
都可以 加以 定义 . 例如 表达式
eA = ∑
n=0
∞ An A2 n +1 , sin A = ∑ (−1) n (2n + 1)! n! n =0
等 在 范 数 收 敛 意 义 下 都 代 表 Β( X ) 中 的 元 素 . 下 面 定 理 中 出 现 的 多 项 式和幂 级数 也是如 此的 . 定 理 3 (von Neumann) 设 X 是 Banach 空间 , A ∈ Β( X ) , λ ∈ C ,
−1 −1
上 , 根据 逆 算子定 理知 A 定理 2
∈ Β( X ) .
设 Aห้องสมุดไป่ตู้ B ∈ Β( X ) .
−1 −1 −1
(1) 若 A 是正则算 子 , 则 A 是正 则算 子并且 ( A ) (2) 若 A, B 是正 则算子 ,则 AB 是正则 算子 并且
= A.
( AB) −1 = B −1 A −1 .
又由 1 =|| I || ≤ || A || || B || 知道 || B ||≠ 0 . 取 || B ||

第十一章线性算子的谱

第十一章线性算子的谱
(λI − T )−1 ∈ L (X, X) .
用 ρ (T ) 表示 T 的正则值组成的集合, 称 ρ (T ) 为 T 的正则集. 对 λ ∈ ρ (T ), 称
Rλ = (λI − T )−1 为 T 的预解式.
Spring 2017
ni.tianjia@
4/34
Functional Analysis
注 1. 当 X {θ} 时, 有 ρ (T ) ∅.
定义 11.2. 记
r (T ) = max {|λ| : λ ∈ σ (T )} ,
称 r (T ) 为算子 T 的谱半径.
定理 11.3.
谱半径公式 r (T ) =
lim
∥T
n∥
1 n
.
x→∞
Spring 2017
ni.tianjia@
an ∼ λn.
Spring 2017
ni.tianjia@
2/34
Functional Analysis
§11.1 谱的概念
Spring 2017
ni.tianjia@
3/34
Functional Analysis
谱的概念
定义 11.1. 设 X 是复 Banach 空间, T ∈ L (X, X), λ 为一复数. (1) 称 λ 为 T 的正则值, 如果 λI − T 有有界逆算子, 即
T
∑ k+1
αi xi
=
∑ k+1
αiλi xi
=
θ.
(2)
i=1
i=1
在式 (1) 两边乘 λk+1 得
∑ k+1
αiλk+1 xi = θ.
(3)

第三章 有界线性算子-黎永锦

第三章 有界线性算子-黎永锦

第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结泛函分析知识总结与举例、应⽤学习泛函分析主要学习了五⼤主要内容:⼀、度量空间和赋范线性空间;⼆、有界线性算⼦和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算⼦的谱。

本⽂主要对前⾯两⼤内容进⾏总结、举例、应⽤。

⼀、度量空间和赋范线性空间(⼀)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧⽒空间n R (有限维空间)的推⼴,所以学好它有助于后⾯知识的学习和理解。

1.度量定义:设X 是⼀个集合,若对于X 中任意两个元素x ,y,都有唯⼀确定的实数d(x,y)与之对应,⽽且这⼀对应关系满⾜下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (⾮负性) 2°d(x,y)= d(y,x) (对称性)3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常⽤的⽅法)注意:⑴定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满⾜1°、2°、3°都称为度量。

这⾥“度量”这个名称已由现实⽣活中的意义引申到⼀般情况,它⽤来描述X 中两个事物接近的程度,⽽条件1°、2°、3°被认为是作为⼀个度量所必须满⾜的最本质的性质。

⑵度量空间中由集合X 和度量函数d 所组成,在同⼀个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶集合X 不⼀定是数集,也不⼀定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷在称呼度量空间(X,d)时可以省略度量函数d ,⽽称“度量空间X ” 。

(完整)泛函分析知识总结,推荐文档

(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

第2章 有界线性算子的基本概念(1)kj

第2章  有界线性算子的基本概念(1)kj

2 算子的范数及其计算
定义 2.1.2 设 X , Y 是赋范空间, T : X Y 是有界线性算子. 称
T = sup Tx .
x £1
为算子 T 的范数. 若 f 是 X 上的有界线性泛函, 则 f 的值域是标量域 K , 此时
f = sup f ( x) .
x £1
定理 2.1.3 设 T : X Y 是有界线性算子. 则
yn =
xn x - 1 (n = 1, 2, ). f ( xn ) f ( x1 )
则 f ( yn ) = 0. 因此 yn Î N ( f ) (n ³ 1). 另一方面, 由于
xn xn 1 = < 0 (n ¥), f ( xn ) f ( xn ) n
这说明
xn x 0. 因此 yn y = - 1 . 但是 f ( xn ) f ( x1 ) f ( y ) = f (x1 ) = -1 ¹ 0, f ( x1 )
T -1 y = x £
1 1 Tx = y . a a
这表明映射 T -1 : Y X 是连续的. 因此 X 与 Y 拓扑同构的充要条件是, 存在一一对应的映射 T : X Y , 使得 T 是线性的 , 并且 T 和 T -1 都是 连续的. 线性泛函是线性算子的特殊情形, 因此定理 2.1.1 的结论对线性泛 函当然也成立. 对线性泛函还成立如下定理. 定理 2.1.2 设 f 是赋范空间 X 上的线性泛函. 则 f 在 X 上有界的 充要条件是 f 的零空间 N ( f ) 是闭集. 证明 设 f 在 X 上有界, 则 f 在 X 上连续. 设 {xn } Ì N ( f ), xn x.

则 f ( xn ) = 0 ( n ³ 1 ) 于是 f ( x) = lim f ( xn ) = 0. 因此 x Î N ( f ). 这表明

有界线性算子和连续线性泛函.ppt

有界线性算子和连续线性泛函.ppt
证明 若 T 有界,由(3)式,当 xn x(n ) 时,因为 Txn Tx c xn x
所以 Txn Tx 0 ,即 Txn Tx(n ) ,因此 T 连续。 反之若 T在 X 上连续,但 T 无界,这时在 X 中必有一列向量 x1, x2, x3,,使 xn 0

Txn n xn
对于线性泛涵,我们还有下面的定理 定理2 设X 是赋范线性空间,f 是 X 上线性泛涵,那么 f 是X 上连续泛涵的
充要条件为 f 的零空间 ( f )是 X 中的闭子空间。
证明 设 f 是连续线性泛涵,当 xn ( f ) n 1,2,, 并且 xn x(n ) 时,由 f
的连续性,有
f
(x)
Tx c x
(3)
则称 T是 A(T )到 Y 中的有界线性算子,当 A(T) X时,称 T 为X 到 Y中的有界线性
算子,简称为有界算子,对于不 满足条件(3)的算子,称为无界算子。本书主要 讨论有界算子。
定理1 设 T是赋范空间 X 到赋范空间 Y中的线性算子, 则 T 为有界算子的充要条件为 T 是 X 上连续算子。
则当 x vev 时,由 f 的线性, v1
n
n
f (x) f (e )
1
1
由此可见, n 维线性空间上线性泛函与数组 (1,2,,n ) 相对应。
II 有界线性算子与连续线性泛函
定义2 设 X 和 Y 是两个赋范线性空间。T 是X 的线性子空间 A(T )到 Y 中的
线性算子,如果存在常数 c,使对所有 x A(T ) ,有
(7)
III 有界线性算子和连续线性泛涵的例子
例6 赋范线性空间X上的相似算子Tx x 是有界线性 算子,且 T a ,特别

算子谱定理

算子谱定理

算子谱定理
算子谱定理(Spectral Theorem for
Operators)是数学中的一个重要定理,它提供了一种将一个自伴算子(self-adjoint operator)或正规算子(normal
operator)与其特征值(eigenvalues)和特征向量(eigenvectors)
之间的联系的方式。

算子谱定理在函数分析、量子力学和线性代数等领域中有广泛的应用。

对于一个有界自伴算子或正规算子,算子谱定理断言以下几点:
1.该算子的特征值都是实数。

对于自伴算子,其特征值还
满足正交补充关系。

2.该算子的特征向量对应于不同的特征值,且构成一个正
交基。

3.该算子可以被谱分解为特征值和特征向量的线性组合,
其中特征值对应于特征向量的投影。

这个定理的重要性在于它提供了一种将一个复杂的算子分解为一组简单的特征值和特征向量的方式,从而使我们能够更好地理解和研究算子的性质和行为。

这种分解为特征值和特征向量的形式在许多数学和物理问题中都起着关键作用,例如矩阵对角化、量子力学中的态矢量表示等。

需要注意的是,算子谱定理的具体形式和适用范围会依赖于具体的数学理论和背景。

在不同的领域和上下文中,可能会有不同版本的算子谱定理。

因此,在具体问题中应该参考相应的数学理论和文献,以了解适用于该问题的算子谱定理的详细表述和证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节有界线性算子的谱一.算子代数定义:厶(X)是一复Banach空间,并且为一具有线性运算与乘法运算的代数系统,我们称英为算子代数。

性质:设R,S,T“(X),xC,则有1、结合律:(RS)T = R(ST), T m+B=r n r(m,neN);2、a(ST) = (aS)T = S(aT);3、R(S + T) = RS + R「(R + S)T = RT + ST ;4、单位算子/满足:IT = TI = T ;5、7\X T X为同构O存在A.B^L(X),使得AT = [ = TB :必左4 = B,称它为T的逆,记作T~\并称丁为可逆算子。

以GZXX)记厶(X)中的可逆算子的全体。

6、若S、TwGL(X),贝iJSreGL(X),且(ST)"1=T^S'\(T n y[ =(T-I)/\当Tw GL(X)时约宦厂〃=(厂丫⑺> 0),厂=I,因而对任何"乙厂有意义。

注:1、算子乘法不满足交换律;2、阿|邙||||71,||鬥|井『(心);3、若在厶(X)中S Q S、T Q T,则必有S n T n ->ST o定义:设丁属于某算子代数,称/(7')=工%7'”=%/ + <7' + ・・・+ ©7'”+・・・n-0(其中系数e C(// > 0)为算子幕级数。

性质:设通常幕级数有收敛半径R,则当TeMX),||T||</?时级数ZF-0工0Z1卜工闯P『vs引理3丄1设TeL(X),则X (/_丁尸=工厂『“■0只要貝右端级数收敛。

特別,当|卩||<1时上式必成立。

推论:若T,SwL(X),T可逆,则00(T + S)-=工厂l_S 厂 g/r-()只要英右端级数收敛:特别,当||s||适当小时必成立。

二、谱与谱半径定义3.1.2设Tw厶(X ),1、若不可逆,即AI-TeGL(X),则称2为丁的谱值。

以b(T)记T的谱值的全体,成其为T 的谱:称G(T)= sup U|J1€<T(D为T的谱半径,它是以原点为中心且包含b(T)的最小的圆的半径。

2、令p(T) = C\<r(T),称任何的2 e p(T)为T的正则值;称R(A,T) = (AI-Ty i(Aep(T))为预解式,也记为尺(刃或心。

3、若2eC,存在XH0,使得7k = /U (这相当于xeN(AI-T)),则称2为T的特征值,并称x 为T关于2的特征向量,称N (AI-T)为T关于特征值几的特征子空间。

以<7,(7) idT的特征值的全体,称其为T的点谱。

性质:1、bp(T)ub(T);2、若TeL(X),dimX<oo,则N(AI-T) = {0) <^> 2/-T因而勺⑺)=b(T)。

3、若dimX=oo,贝ij可能有勺⑴工旷⑺),即谱值未必是特征值。

泄理3.1.3 (Gelfand左理) 设T w L(X),则“厂)是非空紧集,且成立谱半径公式:阿呷卩三、某些应用定理3.1.4设幕级数工%的收敛半径为R、TwL(X)°1、若怙⑺<R,则级数"T"绝对收敛;2、若W)>R,则级数工a“T发散。

注:若r a(J) = R,级数X a J n可能收敛,也可能发散。

第二节算子函数一、解析扩张由定理3」.4可推得:若旳—0是圆D r(A))= UeC:|2-^|<r}内的复解析函数,则当TeL(X),r a(T-^/)<r时,/(门=茲(T — 3 (3.2.3)n.O有意义,且上式右端级数绝对收敛。

因<y(T一人)/) = b(T)—入={兄一入):几w cr(T)(,于是0(了一人)/) v 厂o b(T —如)U 0(0) o b(T) U 几 + 0(0) = D r(2)所以:(3.2.3)表示一个泄义于集合{TeUXy.a(T)^D r (^)}±.的算子函数/(T)o 我们 将/(厂)视为复解析函数/(兄)的某种扩张。

特别,熟知的初等函数都可适当地扩张为算子函数。

例如,对数函数 可扩张为集{丁 e 厶(X): b(厂)u 0(1)}上的算子对数函数类似地,还可左义算子的指数函数正弦函数sinT,等等。

但是,在通过深入思考后,我们发现这种推广并非可以简单地实现,我们将会发现以下 的问题:1、幫级数仅能表达圆域内的解析函数。

对任意开集Q(czC)内的解析函数/(几)及满足 b(T)uGWTeL(X),应如何定义/(T)?2、/(T)能继承/(刃的哪些性质?3、函数/(T)仅只是/(兄)的形式扩张,还是有某些不可缺少的实质性应用?为解决以上问题,先介绍算子积分的概念。

设厶是复平而上任一可求长曲线,T(r)是立义于厶上而取值于厶(X)中的函数(称为 算子值函数),则可用通常的"分割、求和、取极限”的方式泄义丁⑴)沿厶的积分:其中必眄,…,%为厶上顺次排列的分点,6与%分别为厶的起点与终点,冬是厶上介于 71 与 £ 之间的任一点,5 = r z -r^Cl <z <//)。

性质:1.当丁匕)对厂连续时,上述积分必存在。

2、对任给的// e X*与xwX 有< "J, T(r)dr^x >=£ < 仏 T (r)x > dr(1)心(兄 1)"n (2 e 0 (0))F而考虑任意复解析函数的扩张问题。

取定非空开集GuC,以H(G)记C内的复解析函数之全体,令D n={7'eL(X):<7(T)c=Q}设/(Z)eH(Q),TeD n,今探求/(T)的合理泄义。

因未必有某个圆0•(久°),使得形如式(3.23)的左义式一般不再有效。

注意到在复函数理论中,复解析函数不仅可表为幕级数,而且可表为积分,即有如下形式的Cauchy公式表示:2托i JL其中厶是0内任一围绕几的简单闭曲线(或称用道,且假定沿英正方向行进时,保持2所在区域在左边),我们设想将/(T)类似地立义为f(T)=/(r)(r/-n_,^r (326)2托i JL定义3.2.1任给/(2)eH(⑵与TeD n,取。

内任一用绕b(7)的用逍厶,依式(3.2.6)定义/(T),则得到一个从Q到L(X)的函数/(T),称它为/(几)的解析扩张,或简称为扩张。

注:1、式(3.2.6)右端的积分必存在。

2、式(3.2.6)右端的积分不依赖于厶的选择。

3、世义式(3.2.3)与(3.2.6)(两者都可使用时)是一致的。

4、/(门的确是/(兄)的扩张。

首先,显然是一等距嵌入,且此嵌入保持乘积运算。

因此,不妨认为Cu厶(X),即将几与2/等同。

显然b(〃)= {/l},因此可以认为GuQ。

VAeQ,在G内取一围绕;I的围道厶,则/(2Z) = ?Lj[/(r)(rZ-AZ)-,Jr=/(r)(r-2)-W=/W/»2TTI JL可见/(A/)与/(几)一致。

二、解析扩张的性质定理3.2.2 设/(A),^(2)e H(Q),/?(2) e , guCuC,TeQ,则1、(/ + g)(T) = /(D + g(T):2、(M) = /(T)g(C;3、(ho/)(T) = /7(/(T))0定理3.2.3 (谱映射定理) 设/(2)e/7(Q),7'eZ)n,则有<r(/(T)) = /(a(T)).三、谱分解定理324(谱分解定理)设TeL(X),o-(D = U<T p/^2^f为互不相交的非空闭集, I则存在X的拓扑直和分解:X = X1©X2©...©X/I, (3.2.17)使得每个X,是T的不变子空间(即TXjUXJSiS),且cr(7;)= “,Tx =》石兀(x =》兀,X: e X)、(3.2.18)i此处7;=TIX r.看作X,上的有界线性算子。

证明:取充分小的£>0,令fl, ={2eC: J(2,<r, ) <£■)(1 < / < n),使得可互不相交.令n = (jQ,,则。

为开集,b(T)uC •以/亿)记篡之特征函数,则1Z(A) e H(Q).令 P、= /(T), X f = RX,以下验证X, (Id)即为所求.⑴验证(3217)式。

显然有恒等式:fiWfjW = = 1 (八⑵。

i于是,由定理3.2.2得P.P} =6jPQ严 IQS j <«)•(3.2.19)r特别,用= A(19S),由工R = I得X=mZXi,这意味着对每个xeX有分解r i% =》兀,Xj 已 X:(1 <z <n) (3220) oi因Xj = P,X ,故对式(3.2.20)中的忑有>',•e X ,使兀=£“,从而由式(3.2.19)有兀=工6弓儿=工纟号兀=£工® = P i x。

i J i这表明分解式(3.2.20)是惟一的,因而直和分解式(3.2.17)成立,且片就是从X到X, 的投影。

下证X:= 2(》弓)(19Sn)。

若xwN(^P),则x = Ix = ^p,x+p,x = p i x^P i X = X/ ° 反之,若xwXj,则有P t x = x,这是因为,由Xi的定义,有yeX,使得£y = x,所以P t x = P~y = P t y = x .故(力即= a_£)x = — g = 0,所以"N(才)。

又 Xi=N(^P,gS)是X 声>*/ 护的闭子空间(有界算子工P,的核是闭子空间),故式(3.2.17)是拓扑直和。

洋i(2)证明(3218)。

任给xeX ,令x, = Z>x(l < i < n),贝ijTx = TD="=ZTz・i i i因TXj = TRX =P[XuRX = X「故X,(l <i<n)是T 的不变子空间。

(3)证明b(£) = q(l彳 S)。

只要证b(G = “。

不妨设n = 2 (否则合并cr2,cr3,---,(7w)0任取20 e <r1,令0(几)=厶(刃/(入一兄),则^(2) e H(n)(几为0(2)的可去极点)。

由定理3.2.2有P2 = W-T)(p(T) = ©(7%V -巧;(3.2.21)•••0(兄)=厶(2)0(2),所以0(T) = P2(p(Ty(p(T)X u X2 (3.2.22)上式后一式成立是因为(p(T)X = P2(p(T)X u巴X = X?。

相关文档
最新文档