八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)
人教版初中八年级数学下册第十九章《一次函数》(含答案解析)

一、选择题1.一次函数y=-3x-2的图象和性质,表述正确的是( )A .y 随x 的增大而增大B .函数图象不经过第一象限C .在y 轴上的截距为2D .与x 轴交于点(-2,0)2.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .3.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .4.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩5.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 6.关于一次函数2y x b =-+(b 为常数),下列说法正确的是( ) A .y 随x 的增大而增大B .当4b =时,直线与坐标轴围成的面积是4C .图象一定过第一、三象限D .与直线32y x =-相交于第四象限内一点 7.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <8.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,49.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .10.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1811.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2⎫⎪⎪⎝⎭C .10⎫⎪⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭12.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =- 13.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③14.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 二、填空题16.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.17.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)18.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx b y mx n =+⎧⎨=+⎩的解为________. (2)若0kx b mx n <+<+,写出x 的取值范围________.19.已知y +3与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为______________________.20.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 21.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________. x -10 m y1 -2 -5 22.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.23.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.24.函数51y x=-的定义域是______. 25.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案26.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.三、解答题27.要从甲、乙两仓库向A 、B 两工地运送水泥.已知甲仓库可运出100吨水泥,乙仓库可运出80吨水泥;A 工地需要70吨水泥,B 工地需要110吨水泥.两仓库到A 、B 两工地的路程和每吨每千米的运费如下表:路程(千米) 运费(元/吨·千米)甲仓库 乙仓库 甲仓库乙仓库 A 地 20 151.2 1.2 B 地 2520 1 0.8 (1)设甲仓库运往A 地水泥x 吨,则甲仓库运往B 地水泥__________吨;乙仓库运往A 地水泥________吨,乙仓库运往B 地水泥_______吨.(2)试用x 的代数式表示总运费.(3)总运费能达到3695元吗?若能,求出此时甲仓库应运往A 地多少吨水泥;若不能,说明理由.28.已知直线l 1:y =kx+b 经过点A (12,2)和点B (2,5). (1)求直线l 1的表达式;(2)求直线l 1与坐标轴的交点坐标.29.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?30.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.。
人教版数学八年级下册第十九章:一次函数课后练习(含答案)

人教版数学八年级下册第十九章:一次函数课后练习(含答案)第十九章一次函数课后练习1.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量2.下列关系式中,y是x的函数的是()A.2x-y2B.y=3x-1C.y=23xD.y2=3x-53.已知正比例函数y=(k-1)x,且函数值y随自变量x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>04.已知正比例函数y=kx(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2,则y1与y2的大小关系是()A.y1B.y1>y2C.y1=y2D.不能确定5.一个正比例函数的图象经过点(2,-1),则它的解析式为()A.y=-2xB.y=2xC.y=-12xD.y=12x6.下列函数中,是正比例函数的是()A.y=-8xB.y=8xC.y=8x2D.y=8x-47.若函数y=(k-2)x+3是一次函数,则k的取值范围是()A.k>2B.k<2C.k=2D.k≠28.下列函数中,y随x的增大而增大的是()A.y=-2x+1B.y=-x-2C.y=x+1D.y=-2x-19.某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则降价后每件商品的销售价格为()A.12元B.12.5元C.16.25元D.20元10.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.11.已知关于x的函数y=(m-3)x|m|-2+n-2.(1)当m,n为何值时,它是一次函数?(2)当m,n为何值时,它是正比例函数?12.已知y与x成正比例,且当x=2时y=-6.(1)求y与x之间的函数解析式.(2)求x=-23时,y的值.(3)求x为何值时,y=9.13.如图,已知正比例函数y=kx(k≠0)的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为3,且△AOH 的面积为3.(1)求正比例函数的解析式.(2)在x轴上是否存在一点P,使△AOP的面积为5Ω若存在,求出点P的坐标;若不存在,请说明理由.14.已知正比例函数y=kx(k≠0)的图象经过点(3,-6).(1)求这个函数的解析式;(2)画出这个函数的图象;(3)判断点A(4,-2),B(-1.5,3)在不在这个函数的图象上;(4)图象上有两点C(x1,y1),D(x2,y2),如果x1>x2,比较y1,y2的大小.15.已知函数y=-2x+3.(1)在如图所示的平面直角坐标系中,画出这个函数的图象.(2)写出这个函数的图象与x轴、y轴的交点的坐标.16.已知y是x的一次函数,当x=0时,y=3;当x=2时,y=7.(1)写出y与x之间的函数关系式.(2)当x=4时,求y的值.17.已知一次函数的图象经过点A(2,2),B(0,-1).(1)求该一次函数的解析式.(2)求图象与x轴的交点C的坐标.(3)判断点D13,12是否在该一次函数的图象上?答案和解析【答案】CBBACADCBC11.【答案】解:(1)当|m|-2=1时,m=±3,m-3≠0,故m=-3,n为任意实数,它是一次函数;(2)当|m|-2=1时,m=±3,m-3≠0,n-2=0,故m=-3,n=2时,它是正比例函数.12.【答案】解:(1)y=-3x.(2)y=2.(3)x=-3.13.【答案】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为-2,∴点A的坐标为(3,-2).将点A(3,-2)代入y=kx,-2=3k,解得:k=-23,∴正比例函数的表达式为y=-23x.(2)设点P的坐标为(a,0),则S△AOP=12|a|×|-2|=5,解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(-5,0)或(5,0).14.【答案】解:(1)将点(3,-6)代入y=kx得,-6=3k,解得,k=-2,函数解析式为y=-2x;(2)如图:函数过(0,0),(1,-2).(3)将点A(4,-2)、点B(-1.5,3)分别代入解析式得,-2≠-2×4;3=-2×(-1.5);故点A不在函数图象上,点B在函数图象上.(4)由于k=-2<0,故y随x的增大而减小,可得y115.【答案】解:(1)略.(2)函数y=-2x+3与x轴、y轴的交点的坐标分别是32,0,(0,3).16.【答案】解:(1)y=2x+3.(2)当x=4时,y=2×4+3=11.17.【答案】解:(1)y=32x-1.(2)在y=32x-1中,令y=0,得x=23,故图象与x轴的交点C的坐标为23,0.(3)当x=13时,y=32×13-1=-12≠12.故点D不在该一次函数的图象上.。
部编数学八年级下册第19章一次函数(10页)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!新人教八年级(上)第19章《一次函数》同步学习检测(§19.1~19.2)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .2.函数自变量x 的取值范围是_______________.3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.4.若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.5.一次函数的图象与x 轴的交点坐标是_________,与y 轴的交点坐标是__________.6.长方形相邻两边长分别为x 、y ,面积为30,则用含x的式子表示y 为__________,则这个问题中,____________常量;____________是变量.7.为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10t 时,水价为每吨1.2元;超过10t 时,超过部分按每吨1.8元收费.该市某户居民5月份用水x (t )(x >10),应交水费y 元,则y 与x 的关系式为_____________.8.函数的取值范围是_______________.9.如图所示,每个图案是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆总个数为S ,按此规律,则S 与n的函数关系式是_________.(第9题)10.为了直观地表示一周内某支股票价格随时间变化的情况,宜采用的函数表示方法是________________________.y =113y x =-+y =x二、选择题(每题4分,共32分)11.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A .沙漠B .体温C .时间D .骆驼12.长方形的周长为24cm ,其中一边为(其中),面积为,则这样的长方形中与的关系可以写为( )A .B .C .D .13.函数的自变量x 的取值范围为 ( ) A .x≠1 B .x >-1 C .x≥-1 D .x≥-1且 x≠114.下列各图象中,y 不是x 函数的是 ( )15.小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,而最后停下,下面哪一副图可以近似地刻画出以上情况( )速度 速度速度 速度16. 表格列出了一项实验的统计数据,表示皮球从高度落下时弹跳高度与下落高的关系,试问下面的哪个式子能表示这种关系(单位)( )A .B .C .D .17.如图所示,OA 、BA 分别表示甲、乙两名学生运动的路程与时间的关系图象,图中和分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A .2.5B .2C .1.5D .1x 0>x y 2cm y x 2x y =()212x y -=()x x y ⋅-=12()x y -=122112++--=x x x y d b d cm 2d b =d b 2=25+=d b 2db =S t m m m md 5080100150b 25405075. C . D .C 3H 8C 2H 6CH 4H H H H H H H H H H H C C C C CH HH HC 18.水池有2个进水口,1个出水口,每个进水口进水量时间的关系如图甲所示,出水口水量与时间的关系如图乙所示.某天0点到6点,该水池的蓄水量与时间的关系如图丙所示.下面的论断中:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和一个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点,同时打开两个进水口和一个出水口.可能正确的是 ( )A .①③B .②④C .①④ D.②③三、解答题(共38分)19.(9分)如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围.20.(9分)下列是三种化合物的结构式及分子式,结构式分子式(1)请按其规律,写出后一种化合物的分子式 .(2)每一种化合物的分子式中H 的个数m 是否是C 的个数n 的函数?如果是,请写出关系式.丙甲乙(第18题)21.(10分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以哪里?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?22.(10分)打市内电话都按时收费,并于200l 年3月21日起对收费办法作了调整,调整前的收费办法:以3分钟为计时单位(不足3分钟按3分钟计),每个计时单位收0.2元;调整后的收费办法:3分钟内(含3分钟)0.2元,以后每加1分钟加收0.1元.(1)根据调整后的收费办法,求电话费y (元)与通话时间t (分)之间的函数关系式(t >3时设t (分)表示正整数).①当t 3时,y = ;②当t >3时(t (分)表示正整数),y = .(2)对(1),试画出0<t 6时函数的图象.(3)就0<t 6,求t(元).≤≤≤(第12题) (第13题)新人教八年级(上)第19章《一次函数》同步学习检测(§19.3)(时间45分钟 满分100分)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.一次函数y =3x +12的图象如图所示,由此可知,方程3x +12=0的解为 .2.一次函数图象如图所示,则它的解析式为 ,当x 时,y >0,当x 时,y <0.3.二元一次方程组的解即为函数 与函数 的图象交点的坐标.4.一次函数y =-2x +4与x 轴的交点坐标为 ,与y 轴的交点坐标是 .5.一次函数y =x -2与y =2x -1的图象交点的坐标为 ,即x = ,y = 是方程组的解.6.当x =2时,函数y =kx -2与y =2x +k 的值相等,则k = .7.已知一次函数y =kx +b 的图象如图3所示,由图象可知,方程kx +b =0的解为 ,不等式kx +b >0的解集为 .8.直线与直线y =3x +b 都经过y 轴上同一点,则b 的值是 .9.一次函数y =2x +3与y =2x -3的图象的位置关系是,即 交点(填“有”或“没有”),由此可知的解的情况是 .10.一次函数y =(3m -1)x -m 中,y 随x 的增大而减小,且其图象不经过第一象限,则m 的取值范围是 .二、选择题(每题3分,共24分)11.以方程x +y =5的解为坐标的所有点组成的图形是直线( )A .y =x -5B .y =x +5C .y =5-xD .y =-x -5242312x y x y +=ìí-=î,132y x =--230230x y x y -+=ìí--=î,(第1题) (第2题) (第3题)12.如图4所示,直线y =kx +b 与x 轴交于点(-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <013.已知一次函数y =kx +b 的图象如图5所示,当x <0时,y 的取值范围是( )A .y >0B .y <0C .-2<y <0D .y <-214.已知直线y =-x +3a 和直线y =x +a 的交点坐标为(m ,8),则m 的值为( )A .4B .8C .16D .2415.已知一元一次方程3x -6=0的解为x =2,那么一次函数y =3x -6的函数值为0时,自变量x的取值为( )A .2B .-3C .3D .-216.已知一元一次方程2x -5=7,则直线y =2x -12与x 轴的交点坐标为( )A .(6,0)B .(-6,0)C .(0,6)D .(0,-6)17.已知二元一次方程x +y =3与3x -y =5有一组相同的解,那么一次函数y =3-x 与y =3x -5在直角坐标系内的交点坐标为( )A .(1,2)B .(2,1)C .(-1,2)D .(-2,1)18.如果一次函数y =3x +6与y =2x -4的交点坐标为(a ,b ),则是下面哪个方程组的解( )A . B . C .D .三、解答题(共46分)19.(7分)当自变量x 的取值满足什么条件时,函数y =3x -17的值满足下列条件?(1)y =0;(2)y =-2;(3)y =4.20.(7分)已知:一次函数y =5x -9,请回答下列问题:(1)x 取什么值时,函数值y 等于0?x a y b =ìí=î,3624y x x y -=ìí-=-î360240x y x y ++=ìí--=î36240x y x y -=-ìí--=î3624x y x y -=ìí-=î(2)x 取什么值时,函数值y 始终小于0?(3)想一想,这些与一元一次方程5x -9=0,一元一次不等式5x -9<0有什么关系?21.(7分)用作图象的方法解下列方程组22.(7分)已知:直线5x +by =1,3x +y =1,ax +5y =4,2x -3y =8相交于一点,试求a ,b 的值.23.(9分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公364.y x x y =-ìí+=î,司其中的一家签订租车合同,设汽车每月行驶x(千米),应付给个体车主的费用是y1 (元),应付给出租车公司的费用是y2(元),y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内,租国营公司的车合算?(2)每月行驶的路程为多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租用哪家的车合算24.(9分)已知:直线x-2y=-k+6和x+3y=4k+1,若它们的交点在第四象限内.(1)求k的取值范围.(2)若k为非负整数,求直线x-2y=-k+6和x+3y=4k+1分别与y轴的交点,及它们的交点所围成的三角形的面积.(§19.1~19.2)一、填空题1. 2. 3.2 4. 5.(3,0)(0,1) 6.y=,30;x 、y7.y=1.8x-6 8. 9.S=3n -3 10.图象法;二、选择题11.C 12.C 13.D 14.C 15.C 16.D 17.C 18.C三、解答题19.y= —2x+35(0<x <9.5) 20.C 4H 10 m=2n+221.(1)距离;时间,900m (2)20分,45分;(3)在商场;(4)45米/分,60米/分 22.(1)①0.2②0.1t-0.1;(2)图象略;(3)当0<t<3时,y=0.2,当4<t ≤5时,y=0.4(§19.3)一、填空题1. 2.,, 3., 4., 5.,,, 6.6 7., 8. 9.平行,没有,无解 10.二、选择题11.C 12.A 13.D 14.A15.A 16.A 17.B 18.C三、解答题19.(1)当时,;(2)当时,;(3)当时,20.(1)当时,;(2)当时,;(3)略 21.图略,解为3y x =-25x ³1,2-30x 2x ³4x =-22y x =-+1<1>24y x =-+243y x =-(20),(04),(13)--,1-3-221x y x y -=ìí-=î,1x =-1x <-3-103m <≤173x =0y =5x =2y =-7x =4y =95x =0y =95x <0y <523.2x y ì=ïïíï=ïî,22. 23.(1)每月行驶路程小于1500千米,租国营公司的车合算;(2)每月行驶路程等于1500千米,租两家车的费用相同;(3)由图象可知租个体车主的车合算 24.(1);(2)直线与轴的交点为,直线与轴的交点为,它们的交点为,142.a b =ìí=î,41k -<<26x y -=y (03)-,31x y +=y 103æöç÷èø,(41)-,112043233S æö=´´+=ç÷èø△。
八年级数学下册选择方案练习题及解析

第十九章函数y1>y2.需在 x > (7)观察图像可知:①当上网时间__________时,选择方式A最省钱.②当上网时间__________时,选择方式B最省钱.③当上网时间_________时,选择方式C最省钱.2.自主归纳最优方案跟________的范围有关,可以通过解不等式或画函数图象确定_______的范围.三、自学自测1.某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为1000分钟,你认为采用哪种收费方式较为合算()A.计时制 B.包月制 C.两种一样 D.不确定2.如图,l1、l2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,两种灯的使用寿命都是6000时,照明效果一样.(1)观察图象,你能得到哪些信息?(2)你能给买灯的小明同学提供一个参考意见吗?(3) 8000时,请你帮他设计最省钱的用灯方案.四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点:选择方案典例精析例某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:型号 A B成本(万元/台)200 240售价(万元/台)250 300课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片6-29)2.探究点1新知讲授(见幻灯片6-29)(1)该厂对这两种型号挖掘机有几种生产方案?Array(2)该厂如何生产获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)分析:可用信息:①A、B两种型号的挖掘机共_________台;②所筹生产资金不少于22400万元,但不超过22500万元;③所筹资金全部用于生产,两种型号的挖掘机可全部售出.1.某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费15元,另收通话费为0.2元/分;B方案:零月租费,通话费为0.3元/分.(1)试写出A,B两种方案所付话费y(元)与通话时间t(分钟)之间的函数关系式;(2)在同一坐标系画出这两个函数的图象,并指出哪种付费方式合算?2.抗旱救灾行动中,江津、白沙两地要向中山和广兴每天输送饮用水,其中江津每天输出60车饮用水,白沙每天输出40车饮用水,供给中山和广兴各50车饮用水.由于距离不同,江津到中山需600元/车,到广兴需700元/车;白沙到中山需500元/车,到广兴需650元/车.请你设计一个调运方案使总运费最低?此时总运费为多少元?二、课堂小结当堂检测1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x________时,选用个体车较合算.。
八下数学十九章《一次函数选择方案》练习题及答案

八下数学十九章《一次函数选择方案》练习题及答案
1、“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算。
2、为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图像回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算。
答案。
人教版八年级下册数学第十九章 一次函数含答案

人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、平行四边形的周长为240,两邻边为x、y,则它们的关系是( ).A.y=120-x(0<x<120)B.y =120-x(0≤x≤120)C.y =240-x(0<x<240) D.y =240-x(0≤x≤240)2、同一平面直角坐标系中,一次函数y=k1x+b的图象与一次函数y=k2x的图象如图所示,则关于x的方程k1x+b=k2x的解为()A.x=0B.x=﹣1C.x=﹣2D.x=13、在函数y= 中,自变量x的取值范围是()A.x≤1B.x≥1C.x<1D.x>14、如图,函数和的图象相交于点,则不等式的解集为()A. B. C. D.5、若直线y=kx+b的大致图象如图所示,则不等式kx+b 3的解集是()A.x >0B. x <2C.x ≥0D.x≤26、函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2B.-1C.2或﹣1D.-27、一次函数y=kx﹣k(k<0)的图象大致是()A. B.C. D.8、若是直线上一点,则的值是()A.2B.-2C.1D.-19、若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C.D.10、某型号的汽车在路面上的制动距离S=其中变量是()A.s vB.s v 2C.sD.v11、如图,是在同一坐标系内作出的一条函数的图象l1, l2,设y=k1x+b1, y=k2x+b2,则方程组的解是().A. B. C. D.不能确定12、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→OB.O→A→C→OC.O→C→D→OD.O→B→D→O13、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为,则a的值是 ( )A. B. C. D.14、要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。
人教版数学八年级下《19.3课题学习--选择方案》课时练习含答案

八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时; 两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h .故选D .分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b .根据题意得⎩⎨⎧+=+=b k b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.答案:B知识点:一次函数的性质一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选B.分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x 之间的函数关系式为____(x 为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h .(2012答案:4知识点:一次函数的性质 一次函数的图像 解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∵甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20-16=4(千米/时); 故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x≤2时,y 关于x 的函数解析式为____.答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答. 20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3), 则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S 1、S 2.S 1与t 之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S 2与t 之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象; (3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表:A (件) 20 21 22B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∵20≤m≤22,∵m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元. (1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ; 当x >200时,y 与x 的函数表达式是 y=0.55×200+0.7(x-200), 即y=0.7x-30;(2)因为小明家5月份的电费超过110元, 所以把y=117代入y=0.7x-30中,得x=210. 答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y 就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x件,则B种商品销售(100-x)件.依题意,得10x+15(100-x)=1350解得x=30.∵100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∵w随a的增大而减小.∵当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∵把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。
八年级数学(下)第十九章《一次函数》测试题含答案

八年级数学(下)第十九章《一次函数》测试题(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .76.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对8.已知正比例函数y=kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x =D .12y x =-9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 二、填空题(共10小题,每题3分,共30分)11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是.12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 .15.已知点A(-3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(填序号)A.①②③ B.仅有① C.仅有①③ D.仅有②③20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB 的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T (℃) (填“是”或“不是”)时间t (时)的函数. (2)温差是 ℃.(3)10时的气温是 ℃. (4) 时气温是4℃.(5) 时间内,气温不断上升. (6) 时间内,气温持续不变.22.(6分)已知水池中有800立方米的水,每小时抽50立方米. (1)写出剩余水的体积Q 立方米与时间t (时)之间的函数关系式. (2)写出自变量t 的取值范围.(3)10小时后,池中还有多少水? (4)几小时后,池中还有100立方米的水?23.(8分)如图,直线y = 2x + 3与x 轴相交于点A ,与y 轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 00.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥3的是( ) A .y=13x - B .y=13x - C .y=x ﹣3 D .y=3x - 【答案】D . 【解析】考点:1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.2.用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( )【答案】C. 【解析】试题分析:函数图像中图形表示了自变量和函数之间的对应关系,由题,因瓶子下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越缓,分析四个图象只有C 符合要求,故选C .考点:函数图像.3.在圆的周长公式2C r =π中,下列说法错误的是( ) A .C r π,,是变量,2是常量 B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数 D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数 【答案】【解析】试题分析:在圆的周长公式2C r =π中,C 是r 的函数,C ,r 是变量,2π是常量,将C=2πr 写成2Cr =π,则可看作C 是自变量,r 是C 的函数,故说法错误的是A . 故选A .考点:函数的概念.4.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如下图所示,正确的是( )【答案】C . 【解析】考点:函数的图象.5.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2),∴a b 3b 2+=⎧⎨=-⎩,解得a 5b 2=⎧⎨=-⎩.∴a ﹣b=5+2=7.故选D .考点:1.直线上点的坐标与方程的关系;2.求代数式的值.6.一次函数y=kx+b 满足kb >0,且y 随x 的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限C.第三象限D.第四象限 【答案】A 【解析】考点:一次函数的性质.7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的大小关系是( ) A .a >b B .a=b C .a <b D .以上都不对 【答案】A . 【解析】试题分析:∵k=-2<0,∴y 随x 的增大而减小,∵1<2,∴a >b . 故选A .考点:一次函数图象上点的坐标特征.8.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为 ( ) A .y=2x B .y=-2x C .12y x = D .12y x =- 【答案】B. 【解析】试题分析:∵正比例函数y=kx (k ≠0)的图象经过点(1,-2),∴1×k=-2,解得:k=-2.则此正比例函数的关系式为y=-2x. 故选B.考点:待定系数法求正比例函数解析式.9.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )xyxyxyxyOOOOA. B. C. D.【答案】A . 【解析】考点:一次函数的图象及性质.10.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为( )A .x ≥32 B .x ≤3 C .x ≤32D .x ≥3 【答案】A . 【解析】试题分析:将点A (m ,3)代入y=2x 得,2m=3,解得,m=32,∴点A 的坐标为(32,3),∴由图可知,不等式2x ≥ax+4的解集为x ≥32. 故选A .考点:一次函数与一元一次不等式.二、填空题(共10小题,每题3分,共30分) 11.在女子3000米的长跑中,运动员的平均速度v=t3000,则这个关系式中自变量是 .【答案】t 【解析】试题分析:根据函数的定义即可判断出自变量是t ,因变量是v. 考点:函数的定义12.根据图示的程序计算函数值,若输入的x 的值为32,则输出的结果为【答案】12. 【解析】 试题分析:因为x=32,所以1<x ≤2,所以y=-32+2=12. 考点:函数值.13.当m = 时,一次函数2(2)4y m x m =-+-是正比例函数. 【答案】-2. 【解析】试题分析:由正比例函数的定义可得:4-m 2=0,且m-2≠0,解得,m=-2. 考点:正比例函数的定义.14.若一次函数y x m =-+的图象经过点(-l ,5),这个函数的表达式为 . 【答案】y=-x+4. 【解析】试题分析:∵一次函数y=-x+m 的图象经过(﹣1,5),∴5=-(-1)+m ,解得:m=4.则该一次函数解析式为y=-x+4.考点:待定系数法求一次函数解析式.15.已知点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,则a 与b 的数量关系为 【答案】a=8-3b . 【解析】试题分析:∵点A (-3,a ),B (1,b )都在一次函数y=kx+2的图象上,∴322a k b k =-+=+⎧⎨⎩①②,①+②×3得,a+3b=8,即a=8-3b . 考点:一次函数图象上点的坐标特征.16.直线y=ax+b与直线y=cx+d (a、b、c、d为非零常数)在直角坐标系中的位置如图所示,不等式ax +b<cx+d的解集是.【答案】x<1【解析】考点:一次函数与一元一次不等式.17.把直线y=- x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围____. 【答案】m>1.【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:324y x my x=-++=+⎧⎨⎩,解得:132103mxmy-⎧=⎪⎪⎨+⎪=⎪⎩,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴132103mm-⎧⎪⎪⎨+⎪⎪⎩>>,解得:m>1.学¥科网考点:一次函数图象与几何变换.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】y=﹣21x+23 【解析】考点:1、翻折变换(折叠问题);2、勾股定理;3、待定系数法19.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是 (填序号)A .①②③B .仅有①C .仅有①③D .仅有②③【答案】①②③. 【解析】考点:一次函数的图象分析.20.如图,在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则点P 的坐标为A .(0,1)B .(0,2)C .4(,0)3D .(0,2)或4(,0)3【答案】(0,2). 【解析】试题分析:∵线段AB 的长度是确定的,∴△PAB 的周长最小就是PA+PB 的值最小,∵3>5,∴点P 在y 轴上,作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点P ,∵A (1,1),∴A ′(-1,1),设直线A ′B 的解析式为y=kx+b (k ≠0),∴351k b k b +=-+=⎧⎨⎩,解得12k b =⎧⎨=⎩,∴直线A ′B 的解析式为y=x+2,当x=0时,y=2,∴P (0,2). 学科#网考点:1.轴对称-最短路线问题;2.坐标与图形性质.三、解答题(共60分)21.(6分)如图是某地区一天的气温随时间变化的图象,根据图象回答:在这一天中:(1)气温T(℃)(填“是”或“不是”)时间t(时)的函数.(2)温差是℃.(3)10时的气温是℃.(4)时气温是4℃.(5)时间内,气温不断上升.(6)时间内,气温持续不变.【答案】(1)是;(2)12;(3)5;(4)9时和22时;(5)2时至12时;(6)14时到16时.【解析】;(3)5;(4)9时和22时;(5)2时至12时及14时到16时.故答案为:(1)是;(2)16,2,10,2考点:函数的图象.22.(6分)已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水?(4)几小时后,池中还有100立方米的水?【答案】(1)Q=800-50t;(2)0≤t≤16;(3)300立方米;(4)14小时后学#科网【解析】考点:函数的应用.23.(8分)如图,直线y = 2x + 3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴的正半轴相交于P,且使OP = 2OA,求ΔABP的面积.【答案】(1)A(-32,0) B(0,3);(2)274.【解析】考点:一次函数图象上点的坐标特征.24.(6分)在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.【答案】x≥34.【解析】试题分析:首先将已知点的坐标代入到直线y=kx-2中求得k值,然后代入不等式即可求得x的取值范围.试题解析:∵将点A(-2,0)代入直线y=kx-2,得:-2k-2=0,即k=-1,∴-4x+3≤0,解得x≥34.考点:一次函数与一元一次不等式.学@科网25.(8分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.(1)求S与x的函数关系式,并直接写出x的取值范围;(2)当S=12时,求点P的坐标.【答案】(1)S=24-3x,(0<x<8);(2)(4,4).【解析】试题分析:(1)根据题意画出图形,根据三角形的面积公式即可得出结论;(2)把S=12代入(1)中的关系式即可.试题解析:(1)如图所示:考点:一次函数图象上点的坐标特征.26.(9分)已知A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【答案】(1)60千米/小时,96千米/小时,C(19806,);(2))4619(38496≤≤+-=xxy;(3)613.【解析】试题分析:(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/考点:一次函数的应用.27.(8分)已知某市2014年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2014年10月份的水费为620元,求该企业2014年10月份的用水量;【答案】(1)y=6x﹣100;(2)120吨;(3)100吨.【解析】试题分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可.考点:1.一次函数、一元二次方程和一元一次方程的应用;2.待定系数法;3.分类思想.28.(9分)小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的通话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;学@科网(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.【答案】(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩;(2)作图见解析;(3)方案二.【解析】试题分析:(1)根据月话费=月租费+通话费分别列式. (2)根据(1)的函数关系式作图.(3)分别求出两种方案的月话费作出比较即可.试题解析:(1)方案一:y=0.2x+10;方案二:()()300x80y0.15x18x>80⎧≤≤⎪=⎨+⎪⎩.(2)作图如下:(实线部分)考点:1.一次函数的应用;2.由实际问题列函数关系式;3.分类思想的应用.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
(1)问小李分别购买精品盒与普通盒多少盒?(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配?最大的总利润是多少?【解析】(1)设小李购买精品盒x盒,普通盒y盒,根据题意得60 60403100 x yx y+=+=⎧⎨⎩,解得3525 xy==⎧⎨⎩,答:小李购买精品盒35盒,普通盒25盒.(2)由(1)可知精品盒共35盒,普通盒共25盒,则分给甲店精品盒a盒,则分给乙店精品盒35-a盒,甲店分得普通盒30-a盒,乙店分得普通盒a-5盒.故答案为:30-a;35-a;a-5.获取的总利润W=30a+40×(30-a)+24×(35-a)+35×(a-5)=a+1865,∵甲店获利不少于1000元,∴30a+40×(30-a)=1200-10a≥1000,解得:a≤20,由W=a+1865的增减性可知:当a=20时,W取最大值,最大值为20+1865=1885(元),此时30-a=10;35-a=15;a-5=15.答:甲店分精品盒20盒普通盒10盒,乙店分精品盒15盒普通盒15盒,才能保证总利润最大,总利润最大为1885元.13.某中学为丰富学生的课余生活,准备购买一批每副售价50元的羽毛球拍和每筒售价10元的羽毛球,购买时,发现商场正在进行两种优惠促销活动.活动甲:买一副羽毛球拍送一筒羽毛球;活动乙:按购买金额打9折付款.学校欲购买这种羽毛球拍10副,羽毛球x(x≥.10)筒.(1)写出每种优惠办法实际付款金额y甲(元),y乙(元)与x(筒)之间的函数关系式;(2)比较购买同样多的羽毛球时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种羽毛球拍10副和羽毛球60筒设计一种最省钱的购买方案.【解析】(1)y甲=50×10+10(x-10)=10x+400,y乙=(10x+50×10)×0.9=9x+450,即:y甲=10x+400,y乙=9x+450.(2)由y甲=y乙得10x+400=9x+450,解得x=50;由y甲<y乙得10x+400<9x+450,解得x<50;由y甲>y乙得10x+400>9x+450,解得x>50.∴当10≤x<50时,按活动甲更省钱,当x=50时,两种活动付款一样,当x>50时,按活动乙更省钱.(3)甲活动方案:y甲=10x+400=60×10+400=1000(元);乙活动方案:y乙=9x+450=9×60+450=990(元);两种活动方案买:50×10+50×10×0.9=950(元).所以按甲活动方案购买10副羽毛球拍,其余按乙活动方案购买最省钱,共花950元.。