圆锥曲线的焦半径角度式

合集下载

圆锥曲线二级常用焦半径定理

圆锥曲线二级常用焦半径定理

圆锥曲线二级常用焦半径定理圆锥曲线是数学中的一类重要曲线,它在几何学、物理学和工程学中有着广泛的应用。

在研究圆锥曲线的性质时,我们经常会遇到焦半径及其相关定理的概念。

本文将介绍圆锥曲线二级常用焦半径定理,希望能为读者提供一些指导意义。

圆锥曲线是由一个移动的直线在平面上绕着一个固定点旋转而形成的。

这个固定点被称为焦点,而直线称为准线。

根据准线与焦点的位置关系,圆锥曲线分为椭圆、双曲线和抛物线三种类型。

椭圆是一种封闭曲线,它的特点是离焦点距离之和是一个常数。

关于椭圆的焦半径定理如下:椭圆上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之和等于椭圆的焦半径。

具体来说,我们可以以椭圆的准线上一点为起点,任意作一条切线与椭圆相交于另一点,然后将这两个点与椭圆焦点连线,我们可以发现这个三角形的两条直角边之和是一个定值,即椭圆的焦半径。

双曲线是一种开口的曲线,它的特点是离焦点距离之差是一个常数。

关于双曲线的焦半径定理如下:双曲线上的任意一条切线与准线和焦点之间的连线构成一个直角三角形,且这个直角三角形的两条直角边的长度之差等于双曲线的焦半径。

与椭圆相似,我们以双曲线的准线上一点为起点,任意作一条切线与双曲线相交于另一点,然后连结这两个点与双曲线的焦点,我们可以发现这个三角形的两条直角边之差是一个常量,即双曲线的焦半径。

抛物线是一种开口向上或向下的曲线,它的特点是离焦点距离等于焦准距的一半。

因此,抛物线的焦半径定理可以简单地表述为:抛物线上的任意一条切线与准线和焦点之间的连线构成一个等腰三角形,且这个等腰三角形的底边长度等于焦准距的一半。

同样,我们以抛物线的准线上一点为起点,任意作一条切线与抛物线相交于另一点,然后连结这两个点与抛物线的焦点,我们可以发现这个三角形的底边长度正好是焦准距的一半。

通过了解圆锥曲线二级常用焦半径定理,我们可以更好地理解圆锥曲线的性质和特点。

圆锥曲线公式大全

圆锥曲线公式大全

圆锥曲线公式大全(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即0:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式:(1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D )其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系 点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -=2212121()4k x x x x =+-- 3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程()222210x y a b a b+=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤2.双曲线顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上 焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a ,即21||||2MF MF a -=(2102||a F F <<) 第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式 ) (消y x x x x k x x k l ]4))[(1(1212212212-++=-+=五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:图形标准方程 22y px = ()0p >22y px =- ()0p >22x py = ()0p >22x py =- ()0p >开口方向 向右 向左 向上 向下定义 与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥0y ≤焦点 ,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2px =2p y =-2p y =焦半径 0,0()M x y 02pMF x =+02pMF x =-+02pMF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔直线与椭圆相交?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎨⎧y =kx +bx 2a 2+y2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(b x x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;π;⑸112. ||||FA FB P+=⑷焦点F对A B、在准线上射影的张角为2。

关于圆锥曲线焦半径的两类公式

关于圆锥曲线焦半径的两类公式
3) P 是抛物线 y 2 = 2 px ( p > 0 ) 上任一
∵线段 Q F2 交双曲线于点 P , 即 P 在
Q F2 上 , 于是 Q P∶ PF2 = | Q P | ∶ | PF2 | = 2 ,
由定比分点公式得点 P (
点 , F 是焦点 , 若 PF 或 PF 的延长线交 y 轴 于点 Q , 有向线段 PQ ∶ Q F = λ, 则 | PF | =
求.
3 ) P ( x 0 , y 0 ) 是抛物线 y 2 = 2 px ( p > 0 )
4
= 1 上 一 点 , F1 , F2 是 两 焦 点 , 当
∠F1 PF2 为钝角时 , 点 P 横坐标的取值范围 是
.
上任一点 , F 为抛物线的焦点 , 则抛物线的 焦半径公式为| PF| = x 0 +
p
2
(1 - λ ).
2 21 c, c) . 3 6 11 c 5c ∴ | PF1 | = , | PF2 | = , 故有 6 6 2 | PF2 | 1 +λ e a +λ ce 5 = = . 2 = | PF1 | a-λ 11 ce 1-λ e
证 1) ①当 E 为左焦点时 , x E = - c , 又 ∵ x Q = 0 , ∴λ = PQ ∶ Q E = ( x Q - x P) ∶
© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved.

②当 E 为右焦点时 , x E = c , 仿 ①的方 法可得 x P = - λ c , 代入椭圆焦半径公式即可 得证 . 2 ) , 3) 的证明与 1) 相仿 , 从略 .

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径圆锥曲线的焦半径为:二次曲线上任意一点Q到焦点的距离.圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的.圆焦半径:R f=" + xe, R,-; = a- xe,右支双曲线焦半径:R t =xe + th R = x e■- </ (x > 0),左支双曲线焦半径:R t = - (x e + a), R 6 = - (x e- a) (x <0),抛物线焦半径:Rw + f .art对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(xo,yo)是双曲线屁2_巧2 =局2(“>0">0)右支上的一点,Fl,F2是其左右焦点.则有左准线方程为.丫 =-必.C由双曲线的第二怎义得,左焦半径为IPF] 1=&(心+・)=5+^;c由IPFiF IPF2I =2r/,得IPF2I = IPF2I - 2a = ex0 - ・(IPF2I亦可由第二定义求得).例1已知Fi,F2是椭圆E的左、右焦点,抛物线C以Fi为顶点,F?为焦点,设P为椭圆与抛物线的一个交点,如果椭圆E的离心率e满足IPF,l = elPF2l.贝9 e的值为()(A)苹(C)斗(D)2-j2解法1 设F,(-c,0), F2(C,0), P(A O,yo),于是,抛物线的方程为^=2(4c)(x + c),抛物线的准线/: x=-3c,椭圆的准线m: x = - —, c设点P到两条准线的距离分別为d 1, di.于是,由抛物线定义,得J1 = IPF2I, ................ ①又由椭圆的定义得IPFil = ed2,而IPFil = elPF2l, ..................... ②由①②得t/2 = IPF2l,故山=鸟,从而两条准线重合.・•・—3c = _Xne2=_lne =週.故选(C).c 3 3解法2 由椭圆定义得IPF1l + IPF2l = 2a,又IPF|l = elPF2l, A I PF2I (l+e) = 2a, .. ①又由抛物线定义得IPF2I= AO +3C,即XO =IPF2I-3C,.......................... ②由椭圆定义得IPF2l = “—exo, ............................. ③由②③得IPF2l = "—elPF2l + 3ec,即I PF?I (1+e ) = “ + 3ec, ......... ④由①④得2a = a + 3ec,解得e =斗,故选(C).点评结合椭圆、抛物线的泄义,并充分运用焦半径是解答本题的基本思想.例2设椭圆E:+ (a> b> 0),的左、右焦点分别为Fi,氏,右顶点为A.如果点M为椭圆E上的任意一点,且IMF.I - IMF2I的最小值为4(1)求椭圆的离心率e:(2)设双曲线Q:是以椭圆E的焦点为顶点,顶点为焦点,且在第一象限内任取Q上一点P,试问是否存在常数X(X>0),使得ZPAF> = X ZPF>A成立?试证明你的结论.分析对于(1)可利用焦半径公式直接求解.而(2)是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而ZPFiA显然是一锐角,又易知ZPAFi是(0. 123)内的角,且90。

圆锥曲线焦半径公式的进一步推导及应用

圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。

圆锥曲线焦半径公式推导

圆锥曲线焦半径公式推导

圆锥曲线焦半径公式推导
圆锥曲线是指在平面上的点到一定点(焦点)和一条直线(准线)的距离比例等于一个常数的点的轨迹。

设圆锥曲线的焦点为F,准线上一点为P,焦半径为r,则有以下公式推导:
首先,根据圆锥曲线的定义,可以得到FP/PM=k(k为常数)。

设直角坐标系下焦点F(-c,0)和准线为x轴的方程为y=0,点P在
准线上,坐标为(x,0),则有FP的长度为
√((x+c)^2+y^2)=√((x+c)^2),PM的长度为x,所以有:
√((x+c)^2)/x=k
(x+c)^2/x^2=k^2
x^2+2cx+c^2=k^2x^2
(c^2-k^2)x^2-2cx+c^2=0
(c^2-k^2)x^2-2cx+c^2=0
所以焦半径r为:
r= c^2/(k^2-1)
这就是圆锥曲线焦半径的公式推导过程。

除了推导公式,圆锥曲线还有圆锥抛物线、圆锥双曲线等不同类型,它们的焦半径公式也各有不同。

深入学习圆锥曲线的不同类型和性质,可以帮助我们更好地理解和应用这些曲线。

圆锥曲线中的焦半径公式的应用

圆锥曲线中的焦半径公式的应用

0 30 ) 6 00
( 华 。) 华 一' z
而 = 、 ÷ 佩 .
。 一
・ . ‘
的焦半径.


椭 圆
I PF2I= 1
2 < 4,
标准方程 : +
=1 n>6> ) ( o
・ . .
/ 0+ 6 一 < , 6 < . 2 4 2 4 . 4 ・ .
焦 半 径 : P l =n+ I F = l F l e , P 2 Ⅱ一e. l x 对 于 焦 点 在 Y轴 上 的 椭 圆 的 标 准 方 程 所 对 应 的 焦 半
径 , 自己推 导. 可
二 、 曲 线 双
又 . ’6∈ N .’ =1. . .b
例 3 过 椭 圆 2 x +y =2的 一个 焦 点 F 0 1 作 一 直 线 ( ,)
三 、 物 线 抛

/\ \ =
u), ),



标 准 方 程 : ±2 x P> ) Y= p( 0 .
I A I+ I B I=n — e Fl F2 yl+ 。 一 e 2 y
焦 半 径 :P = l I . l FI +

对 于抛 物 线 的 其 他 形 式 的 标 准 方 程 所 对 应 的 焦 半 径 , 可 自己 推 导.
( ) I BI , 0 a+ ( + ) , 2 若 A ≥2 贝 2 e ≥2
・ .
. l+ 2≥ 一 3


I P,1l= e 1+口,I PF2I= e l— r. 上


l +
t an
字 t≤ , ja 字 n j ≤

高中数学:焦半径公式及其应用

高中数学:焦半径公式及其应用

高中数学:焦半径公式及其应用从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在轴上标准方程(其中抛物线考虑标准方程),分别为椭圆或双曲线的左、右焦点,是抛物线的焦点,是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.设是椭圆上任意一点,则有从而焦半径而,所以其中为椭圆的离心率.事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设满足即分子有理化得于是有(1)(2)两式相加得即为椭圆上一点到椭圆左焦点的距离.于是我们得到椭圆的焦半径公式(I):同理有双曲线的焦半径公式(I):当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.抛物线的焦半径公式可以直接由抛物线的定义得到,即例1椭圆的右焦点为,直线与轴的交点为,在椭圆上存在点满足线段的垂直平分线过点,则椭圆离心率的取值范围是____.正确答案是.解设,则有,即解得又因为,所以有两边同除可解得由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与轴正半轴所成的角对应的焦半径公式.设与轴正半轴形成的角度为,则有整理得,于是有解得同理可以推得右焦点对应的焦半径公式其中,是焦半径与轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:于是我们得到椭圆的焦半径公式(II):其中为焦半径与轴正半轴所成的角.对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II):当在双曲线的左支时,有当在双曲线的右支时,有其中为焦半径与轴正半轴所成的角.抛物线的焦半径公式为:其中为焦半径与轴正半轴所成的角.椭圆的焦半径公式(II)有两个常用的推论:推论1 椭圆的焦点弦长公式:其中为椭圆的焦点弦,的倾斜角为.圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.证明设是过椭圆左焦点的焦点弦,的倾斜角为,不妨设点在轴上方,如图:由焦半径公式(II)知于是这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:其中为双曲线的焦点弦,的倾斜角为.不论两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.抛物线的焦点弦长公式更为简单,即其中是抛物线的焦点弦,的倾斜角为.例2椭圆,为椭圆上四个不同的点,都不和轴垂直,且分别过,,求证:为定值.解设的倾斜角为,则的倾斜角为,则由焦点弦长公式知所以为定值.推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).证明由焦半径公式(I)知于是我们知道与的调和平均数为定值,即这个定值就是半通径长,由均值不等式易知椭圆的所有焦点弦中,通径长最短.几道练习:练习1椭圆的焦点为和,点在椭圆上,如果线段的中点在轴上,求的值.练习2椭圆的左右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,,求四边形面积的取值范围.答案练习1 .提示设,则,于是于是.练习2 .提示设的倾斜角为,则的倾斜角为,于是四边形的面积练习3备注1椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知设直线:,称为椭圆的左准线,记点到的距离为,则有即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率.同样地有椭圆的右准线于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值.对于双曲线也有类似的结论,双曲线的准线方程为双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值,即为双曲线的离心率.同时,平面上到定点与到定直线(其中)的距离比为定值(其中)的轨迹为椭圆、双曲线或抛物线,取决于的大小.当时为椭圆,当时为抛物线,当时为双曲线.从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值的点的轨迹为圆锥曲线,时这个定义就是抛物线的定义,当的范围在与上时,对应的定义被称为椭圆与双曲线的第二定义.备注2由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:以椭圆的一个焦点为极点,以轴正半轴方向为极轴方向建立极坐标系,则椭圆上任意一点的坐标满足:这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点,轴正方向为极轴建立极坐标系,得到的极坐标方程为▍▍ ▍▍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的焦半径——角度式
一 椭圆的焦半径
设P 是椭圆22
221x y a b +=(0a b >>)上任意一点,F 为它的一个焦点,则
PFO θ∠=,则2
cos b PF a c θ
=
- 上述公式定义PFO θ∠=,P 是椭圆上的点,F 是焦点,O 为原点,主要优点是焦点在左右上下均适用,无需再单独讨论
证明:设PF m =,另一个焦点为F ',则PF FF FP ''=- 两边平方得:2
2
2
2PF FF FF FP FP '''=-⋅+ 即:222(2)44cos a m c cm m θ-=++
得:2
cos b PF a c θ
=-
1 过椭圆22
143
x y +=的右焦点F 任作一直线交椭圆于A 、B 两点,若AF BF +=
AF BF λ,则λ的值为
2 (2002全国理)设椭圆22
221x y a b
+=(0a b >>)的一个焦点F ,过F 作一条直
线交椭圆于P 、Q 两点,求证:11
PF QF
+为定值,并求这个定值
结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即
2112a AF BF b
+=
3(2007重庆理)在椭圆22
221x y a b
+=(0a b >>)上任取三个不同的点1P ,2P ,3P ,
使122223321PF P P F P P F P ∠=∠=∠,2F 为右焦点,证明12
2232111
PF P F P F ++为定值,并求此定值
结论:若过F 作n 条夹角相等的射线交椭圆于1P ,2P ,
,n P ,则
21
211
1n na
PF P F P F b
+++
= 4 F 是椭圆2
212
x y +=的右焦点,由F 引出两条相互垂直的直线a ,b ,直线a 与
椭圆交于点A 、C ,直线b 与椭圆交于B 、D ,若1FA r =,2FB r =, 3FC r =,
4
FD r =,则下列结论一定成立的是( )
A 1234
r r r r +++=1234r r r r
+++=C
12341111r r r
r +++=1234
1111
r r r r +++=5 F 是椭圆22
143
x y +=的右焦点,过点F 作一条与坐标轴不垂直的直线交椭圆于
A 、
B ,线段AB 的中垂线l 交x 轴于点M ,则AB
FM
的值为
6(2010辽宁理)设椭圆C :22
221x y a b
+=(0a b >>)的左焦点为F ,过点F 的
直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,2AF FB =
(1) 求椭圆C 的离心率 (2) 如果15
4
AB =,求椭圆C 的方程
7(2010全国Ⅱ理)已知椭圆C :22221x y a b
+=的离心率为2,过右焦点F 且斜
率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,则k =( )
8 已知椭圆C :22
221x y a b
+=(0a b >>)的右焦点为F ,过点F 的直线与椭圆C
相交于A ,B 两点,若2BF AF =,则椭圆的离心率e 的取值范围是( )
A 10,2⎛⎤ ⎥⎝⎦
B 0,2⎛ ⎝⎦
C 1,12⎡⎫⎪⎢⎣⎭
D 1,13⎛⎫
⎪⎝⎭
9(2007全国Ⅰ理)已知椭圆22
132
x y +
=的左右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,求四边形ABCD 的面积的最小值
10(2005全国卷Ⅱ理)P ,Q ,M ,N 四点都在椭圆2
2
12
y x +=上,F 为椭圆在y 轴正半轴上的焦点,已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ⋅=,
求四边形PQMN 面积的最大值和最小值
11 已知过椭圆22
1259
x y +
=左焦点1F 的弦(非长轴)交椭圆于A ,B 两点,2F 为右焦点,求使2F AB ∆的面积最大时直线AB 的方程
二 双曲线的焦半径
设P 是椭圆22
221x y a b -=(0a >,0b >)上任意一点,F 为它的一个焦点,
则PFO θ∠=,则2
cos b PF c a
θ=±
式中“±”记忆规律,同正异负,即当P 与F 位于轴的同侧时取正,否则取负,取PFO θ∠=,无需讨论焦点位置,上式公式均适用
1(2009全国Ⅱ理)已知双曲线C :22
221x y a b
-=(0a >,0b >)的右焦点为F ,
过F C 于A ,B 两点,
若4AF FB =,则C 的离心率为( ) A 65 B 75 C 58 D 9
5
2 (2007重庆理)过双曲线224x y -=的右焦点F 作倾斜角为105°的直线交双曲线于P 、Q 两点,则FP FQ ⋅的值为
三 抛物线的焦半径
已知A 是抛物线C :22y px =(0p >)上任意一点,F 为焦点,AFO θ∠=,则1cos p
AF θ
=
+
证明:PN 为准线,于是AF AN =,其中PF p =,cos FM AF θ=⋅ 于是cos AN PF FM P AF θ=-=- 所以cos AF P AF θ=- 故1cos p
AF θ
=+
1 过抛物线22y x =的焦点F 作直线交抛物线于A ,B 两点,若11
1AF BF
-=,则直线l 的倾斜角θ(02
π
θ<≤)等于( )
A 2π
B 3π
C 4π
D 6
π
2(2008江西)过抛物线22x py =(0p >)的焦点F 作倾斜角为30°的直线与抛物线分别交于A ,B 两点(点A 在y 轴左侧),则
AF
FB
= 3(2008全国理)已知F 为抛物线C :24y x =的焦点,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,设FA FB >,则FA 与FB 的比值等于
4(2010重庆理)已知以F 为焦点的抛物线24y x =上的两点A ,B 满足
3AF FB =,,则弦AB 的中点到准线的距离为
5 已知抛物线24y x =,准线与x 轴交于E 点,过点E 的直线(1)y k x =+交抛物线于A ,B 两点,F 是焦点,且满足060AFB ∠=,求AB
6 已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线
1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AB DE +的最小值为
7 抛物线1C :2
2y px =和圆2C :222()24
p p x y -+=,直线l 经过1C 的焦点,与1
C 交于A 、
D ,与2C 交于B 、C ,则AB CD ⋅的值为( )
A 24p
B 23p
C 2
2
p D 2p。

相关文档
最新文档