高考物理试题真题分类汇编物理动量守恒定律

高考物理试题真题分类汇编物理动量守恒定律
高考物理试题真题分类汇编物理动量守恒定律

高考物理试题真题分类汇编物理动量守恒定律

一、高考物理精讲专题动量守恒定律

1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.

①求弹簧恢复原长时乙的速度大小;

②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】

(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:

又知

联立以上方程可得

,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为

由动量定理可得,挡板对乙滑块冲量的最大值为:

2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的

1

2

反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2

10m/s g =。求:

(1)碰撞后瞬间,小球受到的拉力是多大?

(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】

解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

22

1111011=22

m gL m v m v μ--

解之可得:1=4m/s v 因为1v v <,说明假设合理

滑块与小球碰撞,由动量守恒定律:21111221

=+2

m v m v m v - 解之得:2=2m/s v

碰后,对小球,根据牛顿第二定律:2

22

2m v F m g l

-=

小球受到的拉力:42N F =

(2)设滑块与小球碰撞前的运动时间为1t ,则()0111

2

L v v t =+ 解之得:11s t =

在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ?=-=

设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ??-=-? ???

解之得:22s t =

滑块向左运动最大位移:121122m x v t ??

=

?? ???=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度

11

2

v

在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程

22212X vt m ?==

因此,整个过程中,因摩擦而产生的内能是

()112Q m g x x μ=?+?=13.5J

3.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:

(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2

014

mv ;(2) 0mv 【解析】 【详解】

解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以

2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速

度相等,有:2

12

v v =

而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:0

12

v v =

,20 v v = 所以第一次碰撞中的机械能损失为:2

2

22012011

11222

2

24

E m v m v mv mv ?=--=g

g g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=

4.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。物体P 置于P 1的最右端,质量为2m 且可以看作质点。P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。P 与P 2之间的动摩擦因数为μ,求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。

【答案】(1) 201v v =,4

302v v = (2)L g v x -=μ3220,162

p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得2

1v v =

。 对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4

30

2v v =

(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从

P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律

)(2)2()2(212212212

22021x L mg u v m m m mv mv ++++=?+? 解得L g

v x -=μ3220

对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律

p 222021))(2()2(2

1221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能16

2

P mv E =

注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg

【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题

5.如图,质量分别为

的两个小球A 、B 静止在地面上方,B 球距地面的高度

h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为

,忽略空气阻力及碰撞中的动

能损失.

(i )B 球第一次到达地面时的速度; (ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】

试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有

21

2

B B B m gh m v =

可得B 球第一次到达地面时的速度24/B v gh m s =

(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒

'''A A B B B B m v m v m v +=

碰撞过程没有动能损失则有

222111

'''222

A A

B B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =

小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==

所以P 点的高度22

0'0.752B p v v h m g

-=

= 考点:动量守恒定律 能量守恒

6.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108

K 时,可以发生“氦燃烧”。

①完成“氦燃烧”的核反应方程:γBe ___He 8

442+→+。

②Be 8

4是一种不稳定的粒子,其半衰期为2.6×10-16

s 。一定质量的Be 8

4,经7.8×10-16

s 后所剩下的Be 8

4占开始时的 。

(2)如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以

s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段

时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。

【答案】(1)①4

2He (或α) ②1

8

(或12.5%) (2)2m/s

【解析】(1)①由题意结合核反应方程满足质量数和电荷数守恒可得答案。 ②由题意可知经过3个半衰期,剩余的8

4Be 的质量30011

()28

m m m ==

。 (2)设碰后A 的速度为A v ,C 的速度为C v ,由动量守恒可得0A A A C C m v m v m v =+, 碰后A 、B 满足动量守恒,设A 、B 的共同速度为1v ,则01()A A B A B m v m v m m v +=+ 由于A 、B 整体恰好不再与C 碰撞,故1C v v = 联立以上三式可得A v =2m/s 。

【考点定位】(1)核反应方程,半衰期。 (2)动量守恒定律。

7.如图所示,光滑水平面上依次放置两个质量均为m 的小物块A 和C 以及光滑曲面劈B ,B 的质量为M =3m ,劈B 的曲面下端与水平面相切,且劈B 足够高,现让小物块C 以水平速度v 0向右运动,与A 发生弹性碰撞,碰撞后小物块A 又滑上劈B ,求物块A 在B 上能够达到的最大高度.

【答案】20

38v h g

=

【解析】

试题分析:选取A 、C 系统碰撞过程动量守恒,机械能守恒,应用动量守恒定律与机械能守恒定律求出A 的速度;A 、B 系统在水平方向动量守恒,由动量守恒定律与机械能守恒定律可以解题.

小物块C 与A 发生弹性碰撞, 由动量守恒得:mv 0=mv C +mv A 由机械能守恒定律得:

2220111222

C A mv mv mv =+ 联立以上解得:v C =0,v A =v 0

设小物块A 在劈B 上达到的最大高度为h ,此时小物块A 和B 的共同速度大小为

v ,对小物块A 与B 组成的系统,

由机械能守恒得:

()2211

22

A mv mgh m M v =++ 水平方向动量守恒()A mv m M v =+

联立以上解得: 2

38v h g

=

点睛:本题主要考查了物块的碰撞问题,首先要分析清楚物体运动过程是正确解题的关键,应用动量守恒定律与机械能守恒定律可以解题.要注意A 、B 系统水平方向动量守恒,系统整体动量不守恒.

8.如图所示,一光滑弧形轨道末端与一个半径为R 的竖直光滑圆轨道平滑连接,两辆质量均为m 的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起(轻弹簧尺寸忽略不计),两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧瞬间将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点.求:

(1)前车被弹出时的速度1v ;

(2)前车被弹出的过程中弹簧释放的弹性势能p E ; (3)两车从静止下滑处到最低点的高度差h . 【答案】(1)15v Rg =(2)54mgR (3)58

h R = 【解析】

试题分析:(1)前车沿圆环轨道运动恰能越过圆弧轨道最高点,根据牛顿第二定律求出最高点速度,根据机械能守恒列出等式求解(2)由动量守恒定律求出两车分离前速度,根据系统机械能守恒求解(3)两车从h 高处运动到最低处机械能守恒列出等式求解.

(1)设前车在最高点速度为2v ,依题意有22

v mg m R

= ①

设前车在最低位置与后车分离后速度为1v , 根据机械能守恒得

222111

222

mv mg R mv +?=② 由①②得:15v Rg =

(2)设两车分离前速度为0v ,由动量守恒定律得012mv mv = 设分离前弹簧弹性势能P E ,根据系统机械能守恒得:22

101152224

P E mv m mgR =

-?= (3)两车从h 高处运动到最低处过程中,由机械能守恒定律得:2

01222

mgh mv =? 解得:58

h R =

9.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:

(1)碰撞过程中系统损失的机械能;

(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】

解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4 2

12E Mv Mv J -?==

损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+

由能量守恒得:

22212311122222

Mv Mv mv ?=?+ 解得:3 1.6 /v m s =

10.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m=0.10kg 的爆竹B ,木块的质量为M=6.0kg .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm ,而木块所受的平均阻力为f=80N .若爆竹的火药质量以及空气阻力可忽略不计,g 取10m/s 2,求爆竹能上升的最大高度.

【答案】60m h = 【解析】

试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得

211

()02

mg f h Mv -=-(1)

爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有21mv Mv =(2)

爆竹完后,爆竹做竖直上抛运动,故有2

22v g h =?(3)

联立三式可得:600h m ?=

考点:考查了动量守恒定律,动能定理的应用

点评:基础题,比较简单,本题容易错误的地方为在A 下降过程中容易将重力丢掉

11.在竖直平面内有一个半圆形轨道ABC ,半径为R ,如图所示,A 、C 两点的连线水平,B 点为轨道最低点.其中AB 部分是光滑的,BC 部分是粗糙的.有一个质量为m 的乙物体静止在B 处,另一个质量为2m 的甲物体从A 点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC 轨

道,最高运动到D 点,OD 与OB 连线的夹角θ60.=o

甲、乙两物体可以看作质点,重力加

速度为g ,求:

(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.

(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力. (3)甲乙构成的整体从B 运动到D 的过程中,摩擦力对其做的功.

【答案】(1)2 3(2)压力大小为:

17

3

mg ,方向竖直向下.(3)W f =1

6

mgR -. 【解析】 【分析】

(1)先研究甲物体从A 点下滑到B 点的过程,根据机械能守恒定律求出A 刚下滑到B 点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.

(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.

(3)甲乙构成的整体从B 运动到D 的过程中,运用动量定理求摩擦力对其做的功. 【详解】

()1甲物体从A 点下滑到B 点的过程,

根据机械能守恒定律得:2012mgR 2mv 2

=?,

解得:0v =

甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:

()02mv m 2m mv =+,

解得:v =

甲物与乙物体碰撞过程,对甲,由动量定理得:02

I 2mv 2mv 3

=-=-甲向:水平向右;

()2甲物体与乙物体碰撞后的瞬间,对甲乙构成的整体,

由牛顿第二定律得:()()2

v F m 2m g m 2m R

-+=+, 解得:17

F mg 3

=

, 根据牛顿第三定律,对轨道的压力17

F'F mg 3

==

,方向:竖直向下; ()3对整体,从B 到D 过程,由动能定理得:()2f 13mgR 1cos60W 03mv 2

--+=-?o

解得,摩擦力对整体做的功为:f 1

W mgR 6

=-; 【点睛】

解决本题的关键按时间顺序分析清楚物体的运动情况,把握每个过程的物理规律,知道碰撞的基本规律是动量守恒定律.摩擦力是阻力,运用动能定理是求变力做功常用的方法.

12.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg 的小物块A .装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s 的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg 的小物块B 从其上距水平台面高h=0.8m 处由静止释放.已知物块B 与传送带之间的动摩擦因数0.35μ=,l=1.0m .设物块A 、B 间发生的是对心弹性碰撞,第一次碰撞前物块A 处于静止状态.取g=10m/s 2.

(1)求物块B 与物块A 第一次碰撞前的速度大小; (2)物块A 、B 间发生碰撞过程中,物块B 受到的冲量;

(3)通过计算说明物块B 与物块A 第一次碰撞后能否运动到右边的曲面上?

(4)如果物块A 、B 每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B 第n 次碰撞后的运动速度大小.

【答案】(1)3m/s ;(2)2kgm/s ;(3)17l <,所以不能;(4)1

13n m s

-?? ???

【解析】 【分析】

物块B 沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B 在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A 、B 第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B 在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B 运动到左边台面是的速度大小为v 1,继而与物块A 发生第二次碰撞.物块B 与物块A 第三次碰撞、第四次碰撞…,根据对于的规律求出n 次碰撞后的运动速度大小. 【详解】

(1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律可得:

2012

mgh mv =

解得:04m v s =

设物块B 在传送带上滑动过程中因受摩擦力所产生的加速度大小为a ,则有:μmg=ma , 设物块B 通过传送带后运动速度大小为v ,有:v 12-v 02=-2al ,

解得:v 1=3m/s >v=1m/s ,则物块B 与物块A 第一次碰撞前的速度大小为3m/s ; (2)设物体A 、B 第一次碰撞后的速度分别为A v 、B v ,取向右为正方向 由动量守恒定律得:1A B mv Mv mv -=+ 由机械能守恒定律得:

2221111222

B A mv mv Mv =+

解得:v A =-2m/s ,v B =1m/s ,(v A =0m/s ,v B =-3m/s 不符合题意,舍去)

12?B m I P mv mv kg s

=?=-= ,方向水平向右; (3) 碰撞后物块B 在水平台面向右匀速运动,设物块B 在传送带上向右运动的最大位移为l',则有: 0-v B 2=-2al′, 解得:1

7

l l '=

< 所以物块B 不能通过传送带运动到右边的曲面上;

(4) 当物块B 在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B 运动到左边台面是的速度大小为v B ,继而与物块A 发生第二次碰撞 由(2)可知,v B =

113

v 同理可得:第二次碰撞后B 的速度:v B1=2

111()3

3

B v v = 第n 次碰撞后B 的速度为:v B (n-1)=1

111()()3

3

n

n m v s

-= 【点睛】

本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.

相关主题
相关文档
最新文档