关于数控机床故障诊断及排除方法
数控机床进给伺服系统类故障诊断与处理(3篇)

数控机床进给伺服系统类故障诊断与处理数控机床进给伺服系统是数控机床中非常关键的一个组成部分,它直接影响机床加工的精度和效率。
然而,在使用过程中,由于各种原因,进给伺服系统可能会出现故障。
本文将介绍数控机床进给伺服系统的常见故障及其诊断与处理方法。
一、数控机床进给伺服系统常见故障1. 运动不平稳:机床在加工工件时,出现运动不平稳的情况,可能是由于进给伺服系统的故障引起的。
这种情况表现为运动过程中有明显的抖动或者不稳定的现象。
2. 运动失效:机床无法正常运动,不响应操作指令。
这种情况可能是由于进给伺服系统的电源故障、控制器故障或者连接线路故障引起的。
3. 位置误差过大:机床在加工过程中,位置误差超过了允许范围,导致加工工件的尺寸不准确。
这种情况可能是由于进给伺服系统的位置反馈元件(如编码器)故障引起的。
4. 加工速度过慢:机床在加工时,进给速度远低于预设值,导致加工效率低下。
这种情况可能是由于进给伺服系统的电机故障或者速度控制回路故障引起的。
二、故障诊断与处理方法1. 运动不平稳的诊断与处理:首先,检查机床的润滑系统,确保润滑油是否充足,并且清洁。
其次,检查机床的传动系统,确保螺杆和导轨的润滑良好。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
2. 运动失效的诊断与处理:首先,检查进给伺服系统的电源供应情况,确保电源正常。
其次,检查进给伺服系统的连接线路,包括电源线、编码器连接线等,确保线路没有松动或者断裂。
如果问题还未解决,可以通过检查进给伺服系统的控制器和电机驱动器是否正常工作等方式进一步诊断。
3. 位置误差过大的诊断与处理:首先,检查进给伺服系统的位置反馈元件,如编码器是否损坏或者松动。
如果问题还未解决,可以通过检查进给伺服系统的控制器参数是否正确、电机驱动器是否正常工作等方式进一步诊断。
4. 加工速度过慢的诊断与处理:首先,检查进给伺服系统的电机是否正常工作,包括电机是否有异常声音或者发热等。
数控机床的故障诊断与维修

数控机床的故障诊断与维修
面对未来,我们需要不断学习新知识、掌握新技术,以适应制造业的发展需求
同时,我们也要关注行业动态,积极参与专业培训和研讨会,与同行交流经验,共同推动数控机床故障诊断与维修技术的进步
数控机床的故障诊断与维修
挑战与应对
面对未来数控机床的故障诊断与维修技术的快速发展,我们也面临一些挑战
绿色维修:随着环保意识的提高,未来的数控机床故障诊断与维修将更加注重环保和可持续发展。采用环保材料和技术进行维修,降低维修过程中的能源消耗和环境污染,实现绿色维修
远程诊断与维修:随着网络技术的发展,未来的数控机床故障诊断与维修将更加远程化。通过远程诊断系统,技术专家可以在远程控制中心对机床进行实时监测和诊断,提供维修建议和技术支持,大大缩短维修时间
数控机床的故障诊断与维修
参考文献
[
1] 李宏胜,朱强. 数控机床故障诊断与维修
[
M]. 北京: 机械工业出版社, 2019
[
2] 王岩. 数控机床电气控制与故障诊断
[
M]. 北京: 化学工业出版社, 2020
数控机床的故障诊断与维修
数控机床的故障诊断与维修
015] 刘美俊. 基于大数据的数控机床故障预测与维修策略研究
预测性维护:通过数据分析和预测模型,对数控机床的寿命和性能进行预测和维护。在故障发生之前,采取相应的维护措施,降低故障发生概率,提高机床的可靠性和稳定性
数控机床的故障诊断与维修
总结
数控机床的故障诊断与维修是保证机床正常运行的关键环节。通过掌握常见的故障类型、诊断方法和维修流程,结合实际案例进行分析和学习,可以更好地掌握数控机床的故障诊断与维修技能。同时,随着智能化、远程化、绿色化和预测性维护的发展,未来的数控机床故障诊断与维修将更加高效、准确和环保
数控机床各种常见故障及分析排除方法

数控机床各种常见故障及分析排除方法数控机床是一种高精度的自动化加工设备,常见的故障涉及机械、电气和控制系统等方面。
下面将介绍数控机床常见的故障及分析排除方法。
一、机械故障1.传动系统故障:可能是齿轮损坏、传动链条松动等。
分析排除时需要检查传动部件的磨损程度,并及时更换磨损严重的零件。
2.导轨磨损:导轨磨损会导致机器精度下降,产生噪音。
排除方法为进行导轨的研磨或更换损坏的导轨。
3.润滑系统故障:润滑系统故障可能导致机械部件摩擦不足,引起过热和损坏。
分析排除时需要检查润滑系统的油液是否充足,是否存在堵塞等问题。
二、电气故障1.电气接触不良:电气接触不良会导致机床无法正常运转、控制信号丢失等问题。
分析排除时需要检查电气接线是否牢固,并清理接触点上的脏污。
2.电机故障:电机故障可能导致机床不能运转或运转不稳定。
排除方法为检查电机是否发热、电机线圈是否短路等问题,并及时更换损坏的电机零件。
3.电源故障:电源故障会导致机床无法正常供电。
分析排除时需要检查电源线路是否接触良好,电源开关是否正常。
三、控制系统故障1.控制卡故障:控制卡故障会导致机床无法正常运转或运行偏差。
排除方法为检查控制卡是否松动、焊点是否断开等,并及时更换故障的控制卡。
2.编程错误:编程错误可能导致机床运行轨迹错误或参数设置错误。
分析排除时需要检查程序的逻辑是否正确,并对参数进行调整。
3.传感器故障:传感器故障会导致机床无法正常感知工件位置或状态。
排除方法为检查传感器的连接是否正常,是否需要更换故障的传感器。
在分析和排除故障时,需要注意进行正确的故障现象描述和故障现场检查,充分了解机床的结构和工作原理,根据故障现象进行合理的排查。
此外,定期进行机床的维护保养工作,检查关键部件的磨损情况,及时更换损坏的零件,可以减少故障的发生。
最后,应注意安全操作,遵守机床操作规程,确保人员的人身安全和设备的安全运行。
数控机床常见的故障及排除方法

数控机床常见的故障及排除方法一、数控机床常见故障分类1、确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。
这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便,确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常。
但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。
正确的使用与精心维护是杜绝或避免故障发生的重要措施。
2、随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障,此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
二、数控机床常见的故障1、主轴部件故障由于使用调速电机,数控机床主轴箱结构比较简单,容易出现故障的部位是主轴内部的刀具自动夹紧机构、自动调速装置等。
为保证在工作中或停电时刀夹不会自行松脱,刀具自动夹紧机构采用弹簧夹紧,并配行程开关发出夹紧或放松信号。
若刀具夹紧后不能松开,则考虑调整松刀液压缸压力和行程开关装置,或调整碟形弹簧上的螺母,减小弹簧压合量。
此外,主轴发热和主轴箱噪声问题也不容忽视,此时主要考虑清洗主轴箱,调整润滑油量,保证主轴箱清洁度和更换主轴轴承,修理或更换主轴箱齿轮等。
2、进给传动链故障在数控机床进给传动系统中,普遍采用滚珠丝杠副、静压丝杠螺母副、滚动导轨、静压导轨和塑料导轨。
所以进给传动链有故障,主要反映是运动质量下降。
如:机械部件未运动到规定位置、运行中断、定位精度下降、反向间隙增大、爬行、轴承噪声变大(撞车后)等。
数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
数控机床常见故障及排除方法

数控机床常见故障及排除方法数控机床作为一种高精度、高效率的机械设备,通常情况下是可靠稳定的,但在使用过程中还是会出现一些常见故障。
下面将介绍几种数控机床常见故障及排除方法。
一、刀具故障1.切削速度过快。
切削速度过快会导致刀具过热,甚至损坏。
这时可以降低切削速度,调整合适的进给速度。
2.刀具磨损。
定期检查刀具磨损情况,定时更换刀具。
二、传动系统故障1.传动皮带松驰。
当传动皮带松驰时,机床的运动精度会降低。
使用螺丝刀调节皮带张紧力,保持合适的张紧状态。
2.传动齿轮磨损。
传动齿轮磨损会导致传动不稳定,影响加工质量。
及时更换磨损的齿轮,保持传动系统的正常运转。
三、控制系统故障1.程序错误。
程序错误可能导致机床无法正常运行。
需要仔细检查程序是否正确,并进行修正。
四、液压系统故障1.油泵压力不足。
检查液压系统的油泵压力是否正常,如果不足可以清洗油泵,更换液压油。
2.液压管路漏油。
当液压管路发生漏油时,需要及时更换密封件或修复漏油处,确保系统的正常运行。
五、刀库故障1.刀具卡滞。
如果刀具在刀库中卡滞,可以尝试涂抹润滑剂,或者清洗刀库。
2.刀库传感器故障。
刀库传感器故障会导致刀具无法自动更换。
检查传感器是否损坏,更换损坏传感器,确保刀库正常运行。
六、工件夹持故障1.刀具夹持力不足。
当刀具夹持力不足时,工件无法稳定加工。
可以调节夹具的夹持力,确保工件的稳定性。
2.夹具磨损。
夹具磨损会导致工件不稳定。
及时更换磨损的夹具,保证夹持的可靠性。
以上是数控机床常见故障及排除方法的简要介绍。
在使用数控机床时,应定期进行检查和维护,及时处理常见故障,确保机床的正常运行。
同时,在故障排除过程中需要注意安全操作,避免造成二次事故。
数控机床故障分析及排除

主轴部件常见故障 常见故障 主轴箱噪声大 1) 主轴部件动平衡不好 2) 齿轮啮合间隙不均匀或严重损伤 3) 轴承损坏或传动轴弯曲 4) 传动带长度不一或过松 5) 齿轮精度差 6) 润滑不良 齿轮和轴承损坏 1) 变挡压力过大,齿轮受冲击产生破损 2) 变档机构损坏或固定销脱落 3) 轴承预紧力过大或无润滑
刀架、刀库及换刀装臵故障诊断
转塔刀架没有抬起动作 控制系统是否有T指令输出信号 抬起电磁铁断线或抬起阀杆卡死 压力不够 抬起液压缸研损或密封损坏 与转塔抬起联接的机械部分研损 转塔转位速度缓慢或不转位 是否有转位信号输出 转位电磁阀断线或阀杆卡死 压力不够 转位速度节流阀是否卡死 凸轮轴压盖过紧 抬起液压缸体与转塔平面产生摩擦、研损 安装附具不配套
故障诊断技术
故障自诊断技术是数控系统一项十分重要的技术,它的 强弱是评价系统性能的一项重要指标,应熟悉和运用系 统的自诊断功能 CNC系统的诊断方法: 启动诊断: 从通电开始至进入正常的运行准备状态为止 诊断的内容: 1) 系统中最关键的硬件和系统控制软件 2) 系统的配臵如:外设接口、RAM、ROM 启动诊断过程不结束,系统不能投入运行 在线诊断 通过CNC系统的内装程序,在系统处于正常运行状 态时,对CNC系统本身及与CNC装臵相连的各个进给 伺服单元、伺服电动机、主轴伺服单元和主轴电动 机、外围设备等进行自动诊断、检查 只要系统不停电,在线诊断就不会停止
第八章 数控机床故障分析及排除
本章学习内容
第一节 第二节 一般故障的分析方法 数控机床一般故障的排除方法
§8-1一般故障的分析方法
一、故障分类 1、故障:是指设备或系统由于自身的原因丧 失了规定的功能,不能在进行正常工作的 现象。 2、故障种类:机械部分的故障、数控系统的 故障、伺服与主轴驱动系统的故障及辅助 装臵等故障
数控机床常见故障的诊断与排除(三篇)

数控机床常见故障的诊断与排除本文针对数控机床伺服系统在加工中心可能出现的如五面体加工中心零点漂移等常见故障的现象进行阐述,并对其产生原因以及解决方案等加以认真分析研究。
随着科技的进步,机床由普通机床逐渐发展为数控机床。
数控机床的伺服系统在机床中起核心作用,但在实际生产中,伺服系统较容易出现故障,占整个数控机床系统的30%以上,其通常会使机床不能正常工作或停机,造成严重后果。
因此,在实际生产过程中,应加强对设备的维护保养,规范操作,确保各项安全。
通常,数控机床的故障主要包括两方面,一是当伺服系统出现故障时,系统会及时报警,在CRT显示屏上会出现诊断程序的报警信息,查阅相关手册得出,这些故障通常发生在电动机脉冲或编码器。
另一方面是操作人员不经意间的人为操作事故,如主轴刀具号地址输送错误、刀具号呼叫信号错误、输入刀具长度错误、编译程序错误等。
伺服系统在排除这两方面故障时,难度较大。
因为有些事故是由伺服系统本身产生的,而有些事故则是受机械、液压、温度等外界因素影响,外界环境也会对伺服系统产生不同程度的影响。
目前,在我厂数控机床中,操作系统通常采用日本的FANUC系统,现对实际生产中,加工中心中出现的常见故障处理进行叙述。
五面体加工中心零点漂移故障故障现象:一台五面体加工中心,近期出现加工坐标系的零点漂移,大大降低了工件的加工精度。
在工件加工时,工件的加工精度时好时坏,有些工件往往达不到其位置度公差要求。
初步认为是机床的几何精度不够造成的,但经测试,排除这一可能性。
仔细分析研究,得到可能是由于温度以及环境的变化造成的。
经统计发现,工件加工的精度较差大多发生在早八点,开机一小时后机床稳定工作。
故障分析原因:早上机床温度较低,油温也低,这就导致了机床的热膨胀不能得到完全的释放,致使工件的加工精度降低。
解决方案:对操作工人进行工作培训,着重强调机床预热对于工件加工精度以及生产效率的重要性,确保机床每天使用前有足够的预热时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于数控机床故障诊断及排除方法
【关键】数控机床;故障;排方法;
不同的数控机床其结构和性能有很大的区别,但故障诊断上有它的共性。
通过这些共性的分析得一些对数控机床故障诊断原、方法及故障排除方法。
以下一介绍:
一、数控机故障诊断原则
1.先外部后内部
数控机床是机械、液压电气一体化的机床,所以故障发生必然要从这三者之间综反映出来。
所以要求维修人员掌先外部后内部的原则,即当数控机发生故障后,维修员应采用望、闻、听问等方法,由外向里逐一进检查。
例1:一数控车床刚投入使用的候,在系统断电后重新启动,必须要返回到参考。
即当用手动方式各轴移到非干涉区外后,再各轴返回参考点。
否则,可能生撞车事故。
所以,每加工完后,最好把机床轴移到安全位置。
此再操作或断电后就不会出现问。
外部硬操作引起的故障是控修理中的常见故障。
一般都是由检测开关、液压系、气动系统、电气执行元件机械装置出现问题引起的。
这类障有些可以通过报警信息找故障原因。
对一般的数控系统讲都有故障诊断功能或信息警。
维修人员可利用些信息手段缩小诊范围。
而有些故障虽有报警信显示,但并不能反映故障的真原因。
这时需根据报警信和故障现象来分析解。
例:台立式加工中心采用FANUC-OM控制系统。
机床自动方式下执
行到X轴快速移动时就现414#和410#报警此报警是速度控制OFF 和X轴伺服驱动异常。
于此故障出现后能通重新启动消除,但每执行X轴快速移动时就报警。
经查伺服电机电源线插头因弧爬行而引起相间短,经修整后此故障排。
2.先机械后电气
由于数控机床是一种自动化程度,技术复杂的先进机械工设备。
机械故障较易发现而系统故障诊断难度要大一些。
3.先静后动
维修人员要做到先静后,不可盲目动手,应先询操作人员故障发生的过程及状态,看说明书、资料后方动手查找故障原因,继而排除故障4.先公用后专用
公性问题会影响到全局,而专用性问只影响局部。
5.先简单后杂
当现多种故障相互交织掩盖、一时从下手时,应先解容易的问题,后解决较大的问。
常常在解决简单的故障过程中,难度大的问题也可能的容易,理清思路,将难度大的变得容易一些。
6.一般后特殊
在排除某一故障时要先考虑最常见的可能原,然后再分析很少发生的特殊因。
二、数控系统自诊断技及故障排除方法
谓系统诊断技术,就是利用数装置中的计算机及相关运行诊断件进行各种测试。
1.自诊断技术
1)开机自诊断:数系统通电后,设备内部诊断软会自动对系统中各种件如CPU、RAM各应用软件进行逐一检测并将检测果显示出来,如检发现问题,系统会显示警信息或发出报警信号。
开自诊断通常会在开一分钟之内完成。
有时开机诊断会将故原因定位到电路板或模块上,但经常仅将故障原因位在某一范围内,这时维修人需查找相关维修手册根据示找到真正故障原因并加以除。
2)运行自诊:运行自诊断也称线自诊断,是指数控系统正常作时,运行内部诊断序,对系统本身、PLC位置伺服单元以及数控装置相连的其它部装置进行自动测试、检查,显示有关信息,这种断一般会在系统工作时复进行。
3)脱机诊:当系统出现故障时,首先停,然后使用随机的专诊断纸带对系统进行脱诊断。
诊断时先要将纸带上的程读入RAM系统中,计算机运行序进行诊断,从而判定故障部位这种诊断在早期的数控系统中用较多。
2.工诊断技术
数控系统的故障类很多,而自诊断往往不能系统的所有部件进行测试,不能将故障原因定位到具体定的元器件上,这时要迅速查明原就需要采用人工诊断法。
人工诊断方法有很多种,常用的有:功能程序测试法、参检查法、备件置换法直观法、原理分析法等,简介如下:1)功能程序测试法:种方法将数控系统中的G、MS、T、功能的全部令
编成一个测试程,穿成纸带或存储到软上在进行诊断时运行这个程序,快速判定哪个功能出现问,这种方法一般在机床出现机性故障时使用,可用于设备闲置时间较长重投入使用时测试用。
2)参数检查法:一般系统参数是存放在RAM中的一旦出现干扰或其它因会造成参数丢失或混乱,从而使统不能正常工作,时应根据故障特征,检查和核对有参数,在排除某些故障时,时还需对某些参数行调整。
3)备件置换法是将系统中型号完全相同的电板、模块、集成电路或其它零部进行互相交换比较,或用备用的元器件替换有疑的部件,从而快速有效地定故障部位。
4)直观法直观法是利用维修中常用的“外后内”的原则,用观察零部件的工作态、听声音、摸发等方法,进行逐个检查,如利视觉可观察内部器件或部连接的形状上的化;利用听觉可查寻件发出的异常声音;利用嗅觉或触可查寻过载、高温等象;等等。
5)原理分析:当采用其它检查方法难以奏时,可以从电路基本原理出发一步一步用万用表逻辑表、示波器等工对测点进行检查对照,最终查明故原因。
3.高级诊断技术
1)在高诊断中,常用的方法主要有以几种方法:
2)自修复诊断:自修复诊断一是指在系统内设置不参与运行的用模块。
自修复程序在制系统每次开机运行当发现某模块有问题时,统会把故障信息显示在屏幕上,时自动查寻备用模块,故障模块工作即被
备用模块取代,维修人可根据提示更换下一故模块。
自修复诊断方需要较多的备用模块,这会使系统积增大,价格提高。
3)诊断指导专家系统近年来,随着图像识别、声音别、自动翻译和智能业机器人等技术的发展,这些技越来越多地被应用到数控床上。
诊断专家系统以家知识、经验为基础,自动仿专家利用知识解决复杂题的思维活动,这就普通工作人员同样能对故障做具有专家级水平的断结论。
例如日本的FANUC系统的诊断导专家系统是由知库、推理计算机和人工制器组成。
知识库存储了专家分析、障判断和如何消除故障的经验知。
这些知识用于读数控系统的状态信息,通过人控制器,编程员可用简捷的记把专家的知识编成程序,把程序变成知识库目标形式再存储到知识库中。
推理机通过运程序进行推理,操作者也通过显示单位,用简单的机对话的方式选择故障状态必要时回答系统的提问,以补充为出结论所需的其它信息。
4)通讯断系统:该诊断方又称海外诊断,是由中央修站通过电话线路,甚至国电话系统向用户设备发诊断程序所进行的一遥控诊断。
通讯诊断统除可用于故障发生后的诊断,还可以为用户作定期的预防性断,设备生产厂家的维修不必亲临现场,只需按预的时间对机床进行列试运行检查,在中央维站分析诊断数据,即可发现可能在的故障隐患。
【。