GIS基本概念
gis技术

gis技术GIS技术(地理信息系统技术)是一种地理学、计算机科学和信息技术的综合应用技术。
通过将地理信息与数据库技术、网络技术和软件工程技术等相结合,可以构建出以地球表面上的地理空间信息为基础,以数据挖掘、空间分析、模拟和可视化技术为支撑的信息系统。
GIS不仅可以为人们提供更为准确和丰富的地理空间信息,还能为人类社会的可持续发展提供有力的科技支持。
一、 GIS技术的基本概念GIS技术是一个复杂的技术系统,其中包含众多的术语、工具和方法。
为了更好地理解GIS技术,我们需要了解以下几个基本概念。
1)地理信息地理信息(Geographic Information)是指用来表达地球表面特征的数据,一般包括地形、地貌、气候、生态、社会经济等各种自然和人文方面的信息。
地理信息最基本的单位是地理位置,即三维坐标系中的经度、纬度和高度。
GIS技术就是将这些地理位置信息与其他属性信息相结合,构建出多维度、多角度的地理信息体系。
2)GIS数据GIS数据是指按一定的格式和规则组织、描述、存储和处理的地理信息数据。
GIS数据按照其空间关系可以分为矢量数据和栅格数据两类。
矢量数据以点、线和面等基本图形作为要素,用坐标、属性和拓扑关系等信息来描述地物的空间特征。
矢量数据适用于精细的空间分析和图形表示。
栅格数据则将地图像素化,将地图上的对象分成许多小块(单元格),用数值来表示地物属性。
栅格数据适用于面积计算、图像分析和数字地形模型等领域。
3)GIS功能GIS功能包括数据管理、空间分析、数据查询、数据可视化等多项服务。
GIS数据管理主要包括数据输入、存储、编辑、更新、转换等。
空间分析应用各种统计和数学方法,通过对数据表格进行计算、分析、汇总和预测,探索数据之间空间关系和地理现象发生的原因。
数据查询是指针对用户需要进行数据检索和筛选,用户可以根据自己的需求选择所需的数据信息。
数据可视化则主要是通过图表、地图、场景等展示手段,将地理信息数据以人类可以感知的形式,直观地一、二、三维地进行展示,更好的理解空间和地理现象。
gis的基本概念

gis的基本概念1. GIS的发展历史GIS(地理信息系统)是一种将地理空间信息与属性数据进行整合、存储、分析和展示的技术系统。
它的发展历史可以追溯到20世纪60年代。
当时,GIS主要用于军事和国防领域,用于进行地图制作和军事情报分析。
随着计算机技术的发展,GIS逐渐应用于各个领域,并取得了显著的进展。
2. GIS的基本概念与组成GIS是由硬件、软件、数据和人员组成的系统。
其中,硬件包括计算机设备、显示器、打印机等;软件包括操作系统、数据库管理系统等;数据包括地理空间数据和属性数据;人员则是使用和管理GIS技术的专业人员。
3. 地理空间数据地理空间数据是GIS的核心内容,它包括点、线、面等要素以及与之相关联的属性信息。
点可以代表一个位置或一个事件,线可以代表道路或河流,面可以代表土地利用类型或行政区划等。
这些要素及其属性信息被存储在数据库中,并通过各种操作进行管理和分析。
4. 属性数据除了地理空间数据外,GIS还需要属性数据来描述要素及其特征。
属性数据可以是数字、字符、日期等类型的数据,用于表达要素的属性特征,如房屋的面积、人口数量等。
属性数据可以与地理空间数据进行关联,从而进行更深入的分析和应用。
5. GIS的应用领域GIS在各个领域都有广泛应用。
在城市规划领域,GIS可以帮助规划师进行土地利用分析、交通规划和市政设施布局等工作;在环境保护领域,GIS可以进行自然资源管理、环境监测和生态保护等工作;在农业领域,GIS可以帮助农民进行土壤肥力评估、作物生长监测和农田管理等工作。
6. GIS的分析功能GIS具有强大的空间分析功能。
通过GIS技术,我们可以进行空间查询、缓冲区分析、路径分析和空间插值等操作。
这些功能使得我们能够更好地理解地理现象,并做出科学决策。
7. GIS与遥感技术遥感技术是一种通过航空器或卫星获取地球表面信息的技术手段。
与遥感技术结合使用,可以获取大范围的高质量地理空间数据,并实现对地表特征的监测和分析。
地理信息服务的基本概念

地理信息服务(Geographic Information Service,GIS)是指通过计算机技术、数据库和网络等手段,对地球表面或其它空间实体进行描述、分析、处理和管理的一种信息服务。
GIS 以地图为基础,依托于地图数据,为用户提供了包括地图浏览、查询、分析、编辑、发布和共享等多种功能。
地理信息服务的基本概念包括:
1.地图:GIS的核心是地图,地图是对地球表面或其它空间实体的可视化呈现,通常采
用栅格图像或矢量图形的形式。
2.数据库:GIS中存储地图数据的方式通常是通过数据库管理系统。
数据库是一种结
构化的数据存储和管理方式,可以存储地图数据、属性数据、元数据等各种类型的数据。
3.空间分析:空间分析是GIS的重要功能之一,它可以根据地图数据进行空间关系的
计算和分析。
常见的空间分析包括缓冲区分析、交叉分析、路径分析、空间插值等。
4.服务发布:GIS可以将地图数据和空间分析结果以服务的形式发布到互联网上,让
用户通过标准的Web浏览器访问和使用这些服务。
5.应用开发:GIS可以通过API(Application Programming Interface)开放给开发者
使用,开发者可以基于GIS开发各种地理信息应用程序。
总之,地理信息服务是一种以地图为基础,以数据库、空间分析和网络技术等为支撑的综合性信息服务,具有广泛的应用前景。
GIS简介

(Geographic Information System)
2012.7
主要内容
1.1 GIS的基本概念
1.2 地球信息科学与地理信息系统 1.3 GIS的组成 1.4 GIS功能和应用1.1.1 信息与数据 1.1.2 空间数据与地图 1.1.3 地理信息与地学信息 1.1.4 信息系统和地理信息系统
数据存储和管理
数据输出和显示
数据变换
1.3 GIS的组成
1.3.2 计算机软件系统
3. 数据库软件
数据库软件是GIS软件系统的重要组成部分。作为GIS”血液”的 海量空间数据主要以地图为基础,并借助较为成熟的商业数据库软 件(如Oracle、SQL-Server DB2、Sybase等)进行存储和管理。在数 据处理过程中,既是资料的提供者,也可以是处理结果的归宿处; 在检索和输出过程中,它是形成绘图文件或各类地理数据的数据源。 另外,利用成熟的商业数据库软件可对数据的调度、更新、维护、 并发控制、安全、恢复等提供服务。
1.3 GIS的组成
1.3.3 地理空间数据
空间数据的三个基本特点: 1)数据的空间性
数据的空间性是指这些数据反映现象的空间位置及空间位 置的关系。通常以坐标数据形式来表示空间位置,这些坐标数 据必须具有标准坐标系中的参考位置。 坐标系的选择随具体应用要求而定,但不同的坐标定位系 统之间应能进行转换。通常用空间拓扑信息来表示空间位置的 关系。
1.3.1 计算机硬件系统
1.单机模式
2.局域网模式
GIS广域网模式其系统硬件平台一般采
用UNIX、PC工作站/服务器,采用普通以太
网作为末端类型,通过交换/路由设备与千兆
3.广域网模式
最新GIS基本概念

2.1 系统硬件
GIS硬件用来:存储、处理、传输和 显示地理信息或空间数据。 计算机是GIS硬件的核心。GIS的外部 设备包括输入设备、输出设备。
2.2 系统软件
GIS软件是系统的核心,用于GIS功能 的各种操作,包括:数据输入、处理、 数据库管理、空间分析和图形用户界 面等。
按其功能GIS分为:GIS专业软件,数 据库软件和系统管理软件。
系统特征 整体性 层次性 目的性 开放性 稳定性
信息系统
信息系统:具有处理、管理和分析数据功 能系统(事务处理系统),能为用户的决策 过程(决策支持系统)提供有用的信息。
信息系统特点:在信息系统中,尤其是现 代社会计算机支持下的信息系统,其信息 是以数据为载体的。
1.2地理信息与地理信息系统
(1)地理:泛指地球表面各种自然现象和人文 现象,以及它们之间的相互关系和区域分异。
用 逐步向实用化、业务化、规模化 90年代 户 和专业化发展
以后
时 GIS进入信息高速公路计划和数 代 字地球构想
4.2 GIS发展的面临的问题
孤立的、各自为政的部门 专有的数据, 程式化的编程语言 昂贵的软硬件平台 工具使用艰难
4.3 GIS发展趋势
向非GIS用户发送空间数据 在更大的信息系统中集成空间信息 维护准确的、无缝连接的实时数据 提供快速的数据接入 GIS走向网络化 GIS、GPS、RS一体化 GIS工程化
GIS基本功能
采集
分析
存储
显示
查询
输出
数据采集
纸质地图
480585.5, 3769234 483194.1, 3768432 485285.8, 3768391 484327.3, 3768565
GIS的一些基本概念

GIS的一些基本概念GIS的一些基本概念一个好的、完整的GIS 系统,存储了该地区或该目标的众多空间信息,这些信息能随时方便地从数据库中调用,能快速地以图形、图象、表格或文本形式在屏幕上显示,或者打印、绘制出来,并且可以对这些信息进行综合分析、提取有用信息,通过计算来模拟真实世界,进而提出相应的决策意见,它是规划、管理和决策的有效工具。
图2.1表明了GIS的这么一个性能。
从GIS这个功能可看出,一个GIS 系统应有三个主要的组成部分:(1)计算机及其外围设备,这是其硬件基础;(2)一系列的应用软件模块,包括数据和图形的输入/输出、图形和图象处理、图形和图象的显示、数据库管理、统计分析、模拟计算以及实际应用模式等;(3)组织有序的信息内容,即数据库中要有充分的与地理位置有关的信息。
这些信息的含义与表达方式有其独自的特点,下面就它们的一些基本概念作一些说明。
2.1 地图和专业图早在古代文明时期,地图已用来描述地表信息了。
很早以前,在埃及发现了公元前2300年左右的粘土板,在板上刻有一些土地图形,这是世界上描述土地特征最早的样本,而在古墓中也发现几乎与此同年代的印制的地图。
一些资料表明,古巴比伦和古埃及时期,人们就试图把土地的形状和大小作为统一体表达出来。
在古希腊时期之前,地理学家就开始对地球的自然性质加以推测和总结。
在罗马时代,土地测量和地图制作成为政府的一项重要工作。
随着人们对大自然的探索和认识, 地图和专业图件越来越多地被用来记录和表达世界的真实地理信息。
从某种意义上讲,地图本身就是一种信息系统,它是在平面介质上表达的,具有一定比例尺的图件。
在图上可以标出与地表有关的、选定的物体的性质。
如同数学上常用图形这个形式来表达数据一样,制图家把地表的信息转移到图纸上,它也可广义地定义为信息的可视性表达,尤其是对一些信息的概括性的图解表达。
2.1.1 图件的类型除了地图之外,随着科学技术和社会生产发展的需要,又出现了不少专业图件,以满足专业活动的要求,例如:航海图:沿海地区和海域的地图,它提供有关导航的信息。
地理信息系统基本概念

地理信息系统基本概念地理信息系统基本概念GIS原理概述3.1.1 GIS概念地理信息系统(GIS)是在计算机软硬件⽀持下,以采集、存贮、管理、检索、分析和描述空间物体的地理分布数据及与之相关的属性,并回答⽤户问题等为主要任务的技术系统。
3.1.2 GIS发展1)起始发展阶段(60年代)1963年由加拿⼤测量学家R.F.Tomlinson提出并建⽴的世界上第⼀个地理信息系统是加拿⼤地理信息系统(CGIS)。
1963年美国哈佛⼤学城市建筑和规划师Howard T.Fisher设计和建⽴了SYMAP系统软件。
1966年美国成⽴了城市和区域信息系统协会(URISA),1968年国际地理联合会(IGU)设⽴了地理数据收集委员会(CGDSP)。
1969年,⼜建⽴起州信息系统国协会(NASIS)。
2)发展巩固阶段(70年代)70年代,GIS朝实⽤⽅向发展。
各国对GIS的研究均投⼊了⼤量⼈⼒、物⼒、财⼒。
不同规模、不同专题的信息系统得到很⼤发展。
从1970年到1976年美国地质调查局发展了50多个地理信息系统。
GIS受到政府、商业和学校的普遍重视。
3)推⼴应⽤阶段(80年代)80年代,GIS在全世界范围内全⾯推⼴应⽤,应⽤领域不断扩⼤,开始⽤于全球性的问题。
开展GIS⼯作的国家更为⼴泛,国际合作⽇益加强。
GIS软件开发具有突破性的进展,仅1989年市场上有报价的软件达70多个。
代表性的有ARC/INFO(美国)、GENAMAP(澳⼤利亚)、SPANS(拿加⼤)、MAPINFO(美国)、MGE(美国)、System9(瑞⼠/美国)、ERDAS(美国)。
4)蓬勃发展阶段(90年代以后)90年代,随着地理信息产⽣的建⽴和数字化信息产品在全世界的普及,GIS已成为确定性的产业,投⼊使⽤的GIS系统,每2~3年就翻⼀番,GIS市场的年增长率为35%以上,从事GIS的⼚家已超过300家。
G IS已渗透到各⾏各业,涉及千家万户,成为⼈们⽣产、⽣活、学习和⼯作中不可缺少的⼯具和助⼿。
GIS基本概念

GIS基本概念一、地理信息系统地理信息系统(Geographical Information System,GIS)是一种决策支持系统,它具有信息系统的各种特点。
地理信息系统与其他信息系统的主要区别在于其存储和处理的信息是经过地理编码的,地理位置及与该位置有关的地物属性信息成为信息检索的重要部分。
在地理信息系统中,现实世界被表达成一系列的地理要素和地理现象,这些地理特征至少由空间位置参考信息和非位置信息两个组成部分。
地理信息系统的定义是由两个部分组成的。
一方面,地理信息系统是一门学科,是描述、存储、分析和输出空间信息的理论和方法的一门新兴的交叉学科;另一方面,地理信息系统是一个技术系统,是以地理空间数据库(Geospatial Database)为基础,采用地理模型分析方法,适时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。
地理信息系统具有以下三个方面的特征:第一,具有采集、管理、分析和输出多种地理信息的能力,具有空间性和动态性;第二,由计算机系统支持进行空间地理数据管理,并由计算机程序模拟常规的或专门的地理分析方法,作用于空间数据,产生有用信息,完成人类难以完成的任务;第三,计算机系统的支持是地理信息系统的重要特征,因而使得地理信息系统能以快速、精确、综合地对复杂的地理系统进行空间定位和过程动态分析。
地理信息系统的外观,表现为计算机软硬件系统;其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。
当具有一定地学知识的用户使用地理信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据,用户可以按应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。
一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能方面进行模拟,信息的流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GIS基本概念集锦1、地理信息系统(geographic information system ,即gis )――一门集计算机科学、信息学、地理学等多门科学为一体的新兴学科,它是在计算机软件和硬件支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划、管理、决策和研究所需信息的空间信息系统。
gis有以下子系统:数据输入子系统,数据存储和检索子系统,数据操作和分析子系统,报告子系统.1、定义:不同领域、不同专业对GIS的理解不同,目前没有完全统一的被普遍接受的A、GIS是对地理环境有关问题进行分析和研究的一门学科,它将地理环境的各种要素,包括它们的空间位置形状及分布特征和与之有关的社会、经济等专题信息以及这些信息之间的联系等进行获取、组织、存储、检索、分析,并在管理、规划与决策中应用。
B、为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统。
---美国国家地理信息与分析中心(NCGIA)C、是在计算机软硬件支持下,以采集、存储、管理、检索、分析和描述空间物体的定位分布及与之相关的属性数据,并回答用户问题为主要任务的计算机系统。
D、GIS是一种获取、存储、检索、操作、分析和显示地球空间数据的计算机系统。
--英国教育部2、理解A、GIS是一计算机系统,既然是系统,就要具有系统的基本功能,数据采集、管理、分析和表达,所以每个GIS系统都是由若干具有一定功能的模块组成。
B、GIS的处理对象是有关的地理分布数据,也就是空间数据,为了能对这些空间数据进行定位,定性和定量的描述,决定了GIS要对空间数据按统一地理坐标进行编码,这是GIS与其他信息系统不同的根本所在。
信息系统非空间的空间的管理信息系统非地理学的 giscad/cam 其他gis lis社会经济,人口普查基于非地块,基于地块的2、比较gis与cad、cac间的异同。
cad――计算机辅助设计,规则图形的生成、编辑与显示系统,与外部描述数据无关。
cac――计算机辅助制图,适合地图制图的专用软件,缺乏空间分析能力。
gis――地理信息系统,集规则图形与地图制图于一身,且有较强的空间分析能力。
3、图层:将空间信息按其几何特征及属性划分成的专题。
4、地理数据采集――实地调查、采样;传统的测量方法,如三角测量法、三边测量法;全球定位系统(gps);现代遥感技术;生物遥测学;数字摄影技术;人口普查。
5、信息范例――传统的制图方法,称为信息范例,即假定地图本身是一个最终产品,通过使用符号、分类限制的选择等方式交换空间信息的模式。
这个范例是传统的透视图方法,由于原始而受到很多限制,地图用户不能轻易获得预分类数据。
也就是说,用户只限于处理最终产品,而无法将数据重组为更有效的形式以适应环境或需求的变化。
6、分析范例(整体范例)――存储保存原始数据的属性数据,可根据用户的需求进行数据的显示、重组和分类。
整体范例是一种真正的用于制图学和地理学的整体方法。
7、栅格――栅格结构是最简单最直接的空间数据结构,是指将地球表面划分为大小均匀紧密相邻的网格阵列,每个网格作为一个象元或象素由行、列定义,并包含一个代码表示该象素的属性类型或量值,或仅仅包括指向其属性记录的指针。
因此,栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。
特点:属性明显,定位隐含,即数据直接记录属性本身,而所在的位置则根据行列号转换为相应的坐标,即定位是根据数据在数据集中的位置得到的,在栅格结构中,点用一个栅格单元表示;线状地物用沿线走向的一组相邻栅格单元表示,每个栅格单元最多只有两个相邻单元在线上;面或区域用记有区域属性的相邻栅格单元的集合表示,每个栅格单元可有多于两个的相邻单元同属一个区域。
8、矢量――它假定地理空间是连续,通过记录坐标的方式尽可能精确地表示点、线、多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。
对于点实体,矢量结构中只记录其在特定坐标系下的坐标和属性代码;对于线实体,用一系列坐标对的连线表示;多边形是指边界完全闭合的空间区域,用一系列坐标对的连线表示。
9、“拓扑”(topology)一词来源于希腊文,它的原意是“形状的研究”。
拓扑学是几何学的一个分支,它研究在拓扑变换下能够保持不变的几何属性――拓扑属性(拓扑属性:一个点在一个弧段的端点,一个点在一个区域的边界上;非拓扑属性:两点之间的距离,弧段的长度,区域的周长、面积)。
这种结构应包括:唯一标识,多边形标识,外包多边形指针,邻接多边形指针,边界链接,范围(最大和最小x、y坐标值)。
地理空间研究中三个重要的拓扑概念(1)连接性:弧段在结点处的相互联接关系;(2)多边形区域定义:多个弧段首尾相连构成了多边形的内部区域;(3)邻接性:通过定义弧段的左右边及其方向性来判断弧段左右多边形的邻接性。
10、矢量的实体错误――伪节点:即需要假节点进行识别的节点,发生在线和自身相连接的地方(如岛状伪结点――显示存在一个岛状多边形,这个多边形处于另一个更大的多边形内部),或发生在两条线沿着平行路径而不是交叉路径相交的地方(节点――表示线与线间连接的特殊点)。
摇摆结点:有时称为摇摆,来源于3种可能的错误类型:闭合失败的多边形;欠头线,即结点延伸程度不够,未与应当连接的目标相连;过头线,结点的线超出想与之连接的实体。
碎多边形:起因于沿共同边界线进行的不良数字化过程,在边界线位置,线一定是不只一次地被数字化。
高度不规则的国家边境线,例如中美洲,特别容易出现这样的数字变形。
标注错误:丢失标注和重复标注。
异常多边形:具有丢失节点的多边形。
丢失的弧。
11、空间分析方法――1、空间信息的测量:线与多边形的测量、距离测量、形状测量;2、空间信息分类:范围分级分类、邻域功能、漫游窗口、缓冲区;3、叠加分析:多边形叠加、点与多边形、线与多边形;4、网络分析:路径分析、地址匹配、资源匹配; 5、空间统计分析:插值、趋势分析、结构分析;6、表面分析:坡度分析、坡向分析、可见度和相互可见度分析。
12、欧拉数――最通常的空间完整性,即空洞区域内空洞数量的度量,测量法称为欧拉函数,它只用一个单一的数描述这些函数,称为欧拉数。
数量上,欧拉数=(空洞数)-(碎片数-1),这里空洞数是外部多边形自身包含的多边形空洞数量,碎片数是碎片区域内多边形的数量。
有时欧拉数是不确定的。
13、函数距离――描述两点间距离的一种函数关系,如时间、摩擦、消耗等,将这些用于距离测量的方法集中起来,称为函数距离。
14、曼哈顿距离――两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|。
对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。
15、邻域功能――所谓邻域是指具有统一属性的实体区域或者焦点集中在整个地区的较小部分实体空间。
邻域功能就是在特定的实体空间中发现其属性的一致性。
它包括直接邻域和扩展邻域。
16、缓冲区分析――是指根据数据库的点、线、面实体基础,自动建立其周围一定宽度范围内的缓冲区多边形实体,从而实现空间数据在水平方向得以扩展的空间分析方法。
缓冲区在某种程度上受控于目前存在的摩擦表面、地形、障碍物等,也就是说,尽管缓冲区建立在位置的基础上,但是还有其他实质性的成分。
确定缓冲区距离的四种基本方法:随机缓冲区、成因缓冲区、可测量缓冲区、合法授权缓冲区。
17、统计表面――表面是含有z值的形貌,z值又称为高度值,它的位置被一系列x和y坐标对定义且在区域范围内分布。
z值也常被认为是高程值,但是不必局限于这一种度量。
实际上,在可定义的区域内出现的任意可测量的数值(例如,序数、间隔和比率数据)都可以认为组成了表面。
一般使用的术语是统计表面,因为在考虑的范围内z值构成了许多要素的统计学的表述(robinson et al., 1995)。
18、dem――数字高程模型(digital elevation model)。
地形模型不仅包含高程属性,还包含其它的地表形态属性,如坡度、坡向等。
dem通常用地表规则网格单元构成的高程矩阵表示,广义的dem还包括等高线、三角网等所有表达地面高程的数字表示。
在地理信息系统中,dem是建立数字地形模型(digital terrain model)的基础数据,其它的地形要素可由dem直接或间接导出,称为“派生数据”,如坡度、坡向。
19、空间插值――空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。
空间内插算法:通过已知点的数据推求同一区域未知点数据。
空间外推算法:通过已知区域的数据,推求其它区域数据。
20、泰森多边形――通过数学方法定义、平分点间的空间并以直线相连结,在点状物体间生成多边形的方法。
21、线密度――用所有区域内的线的总长度除以区域的面积。
22、连通性――连通性是衡量网络复杂性的量度,常用γ指数和α指数计算它。
其中,γ指数等于给定空间网络体节点连线数与可能存在的所有连线数之比;α指数用于衡量环路,节点被交替路径连接的程度称为α指数,等于当前存在的环路数与可能存在的最大环路数之比。
23、图形叠加――将一个被选主题的图形所表示的专题信息放在另一个被选主题的图形所表示的专题信息之上。
24、栅格自动叠加――基于网格单元的多边形叠加是一个简单的过程,因为区域是由网格单元组成的不规则的块,它共享相同的一套数值和相关的标注。
毫无疑问,网格单元为基础的多边形叠加缺乏空间准确性,因为网格单元很大,但是类似于简单的点与多边形和线与多边形叠加的相同部分,由于它的简单性,因此可以获得较高的灵活程度和处理速度。
25、拓扑矢量叠加――如何决定实体间功能上的关系,如定义由特殊线相连的左右多边形,定义线段间的关系去检查交通流量,或依据个别实体或相关属性搜索已选择实体。
它也为叠加多个多边形图层建立了一种方法,从而确保连结着每个实体的属性能够被考虑,并且因此使多个属性相结合的合成多边形能够被支持。
这种拓扑结果称作最小公共地理单元(lcgu)。
26、矢量多边形叠加――点与多边形和线与多边形叠加使用的主要问题是,线并不总是出现在整个区域内。
解决该问题的最强有力的办法是让软件测定每组线的交叉点,这就是所谓的结点。
进行矢量多边形的叠加,其任务是基本相同的,除了必须计算重叠交叉点外,还要定义与之相联系的多边形线的属性。
27、布尔叠加――一种以布尔代数为基础的叠加操作。