乙醛和甲基酮

合集下载

乙醛

乙醛

乙醛【知识要点】1.乙醛的分子组成与结构乙醛的分子式是O H C 42,结构式是,简写为CHO CH 3。

注意 对乙醛的结构简式,醛基要写为—CHO 而不能写成—COH 。

2.乙醛的物理性质乙醛是无色、具有刺激性气味的液体,密度小于水,沸点为C 8.20。

乙醛易挥发,易燃烧,能与水、乙醇、氯仿等互溶。

注意 因为乙醛易挥发,易燃烧,故在使用纯净的乙醛或高浓度的乙醛溶液时要注意防火。

3.乙醛的化学性质从结构上乙醛可以看成是甲基与醛基()相连而构成的化合物。

由于醛基比较活泼,乙醛的化学性质主要由醛基决定。

例如,乙醛的加成反应(碳氧双键)和氧化反应(醛基氢),都发生在醛基上。

(1)乙醛的加成反应乙醛分子中的碳氧双键能够发生加成反应。

例如,使乙醛蒸气和氢气的混合气体通过热的镍催化剂,乙醛与氢气发生加成反应:说明:①在有机化学反应中,常把有机物分子中加入氢原子或失去氧原子的反应叫做还原反应。

乙醛与氢气的加成反应就属于还原反应。

②从乙醛与氢气的加成反应也属于还原反应的实例可知,还原反应的概念的外延应当扩大了。

(2)乙醛的氧化反应在有机化学反应中,通常把有机物分子中加入氧原子或失去氢原子的反应叫氧化反应。

乙醛易被氧化,如在一定温度和催化剂存在的条件下,乙醛能被空气中的氧气氧化成乙酸:注意 ①工业上就是利用这个反应制取乙酸。

②在点燃的条件下,乙醛能在空气或氧气中燃烧。

乙醛完全燃烧的化学方程式为: O H CO O CHO CH 22234452+−−→−+点燃乙醛不仅能被2O 氧化,还能被弱氧化剂(如银氨溶液和新制备氢氧化铜悬浊液)氧化。

银氨溶液的制备: 在洁净的试管里加入1 mL 2%的3AgNO 溶液,然后一边摇动试管,一边逐滴滴入2%的稀氨水,至最初产生的沉淀恰好溶解为止(此时得到的溶液叫做银氨溶液)。

再滴入3滴乙醛,振荡后把试管放在热水中温热。

实验现象 不久可以看到,试管内壁上附着一层光亮如镜的金属银。

醛和酮分子中都含有羰基( )官能团,它们都是羰基化合物 醛和酮

醛和酮分子中都含有羰基( )官能团,它们都是羰基化合物 醛和酮

第十章 醛和酮醛和酮分子中都含有羰基( )官能团,它们都是羰基化合物。

第一节 醛和酮的结构、分类和命名羰基碳原子上至少连有一个氢原子的化合物叫做醛,可用通式 表示。

在羰基的两端都连有烃基的化合物叫做酮,可用通式 表示。

一、醛和酮的结构羰基是醛和酮的官能团。

在羰基中,碳和氧以双键相连,与碳碳双键类似,碳氧双键也是由一个б键和一个π键组成,而且羰基也具有三角形平面结构。

(a) 羰基π键的形成 (b)甲醛的平面结构 (c)羰基π电子云分布示意图 二、醛和酮的分类根据羰基所连接的烃基结构和方式不同,醛和酮可分类如下:CH 3CHOOHCCH 2CHO 根据烃基结构分类根据烃基是否饱和分类根据羰基数目分类脂环族醛(酮) 例如:芳香族醛(酮) 例如:一元醛(酮) 例如:多元醛(酮) 例如:醛(酮)(乙醛)(环己酮)(苯甲醛)(丁酮)(丙烯醛)(丙酮)(丙二醛)脂肪族醛(酮) 例如:饱和醛(酮) 例如:不饱和醛(酮) 例如:三、醛和酮的命名1. 习惯命名法醛的习惯命名法与伯醇相似,只需把“醇”字改为“醛”字即可。

例如:正丁醇 异丁醇 苯甲醇正丁醛 异丁醛 苯甲醛还有一些醛的名称,是由相应羧酸的名称而来。

例如:H ____OH R OCHO CH 3CH 2CCH 3OCH 2CHCHO__OC __CH 3CH 3COR R'____O C O C δδ+-OC (CH 3)2CHCH 2OH CH 2OHCH 3CH 2CH 2CH 2OH CH 3CH 2CH 2CHO(CH 3)2CHCHO CHO蚁醛 肉桂醛 水扬醛酮的命名:在羰基所连接的两个烃基名称后再加上“甲酮”两字,“甲”字习惯上可以省略。

脂肪混酮命名时,要把“次序规则”中较优先烃基写在后面。

但芳基和脂基的混酮,要把芳基写在前面。

例如:二甲基(甲)酮(二甲酮) 甲基乙基(甲)酮(甲乙酮) 苯基乙烯基(甲)酮 2.系统命名法 其要点如下:(1) 选取主链(母体) 选择含有羰基的最长碳链作为主链。

有机化学反应方程式

有机化学反应方程式

有机化学反应方程式1. 烷烃的氧化反应2. 甲烷的氯代反应(游离基的链反应)3. 烷烃的卤代反应 (卤代反应活性:叔氢>仲氢>伯氢 F 2 > Cl 2 > Br 2 > I 2 )4. 环烷烃的自由基取代反应5. 环烷烃的加成反应1)催化加氢(催化加氢易到难:环丙烷>环丁烷>环戊烷。

≥6环烷烃更难。

)2)加卤素C H 2C CH 2+Br 2CH 2—CH 2—CH 2H 2BrBr3)加卤化氢环丙烷的烷基取代物与HX 开环加成, 环的开裂总是在含最多H 和最少H 的碳原子间进行, 氢加到含氢多的碳原子上。

6. 烯烃的亲电加成反应 1)加卤素卤素的活泼性次序:F 2>Cl 2>Br 2>>I 2 (不反应);烯烃与氟加成太剧烈,往往使反应物完全分解,与碘则难发生加成反应。

溴水褪色,可用于鉴别不饱和键:鉴别烷烃和烯、炔。

该加成反应一定是分步进行的 2)加卤化氢烯烃与卤化氢同样发生分步的、亲电性加成反应HX 对烯烃加成的相对活性:HI > HBr > HCl (与极化度有关)+Br2BrBr+ HBrCH 3CH 2CH 2Br+ HICH 3CH 2CH 2CH 2IC +X 2C C C X X C +C C C XHHX实验证明主要产物是(Ⅰ)不对称烯烃与卤化氢等极性试剂加成时,氢原子总是加到含氢较多的双键碳原子上。

这就是马尔可夫尼可夫最初提出的规则,简称马氏规则。

3)加硫酸将产物水解,是工业制备醇的一个方法(间接法)4)加水通常烯烃不易与水直接反应,但在硫酸等强酸存在下,烯烃可与水加成生成醇。

7. 烯烃的催化加氢主要得顺式加成产物。

用途主要有将汽油中的烯烃转化为烷烃;不饱和油脂的加氢;用于烯烃的化学分析8.烯烃的自由基加成反应主要产物是反马氏规则的这种现象又称为过氧化物效应,只局限于烯烃与溴化氢的反应。

这时烯烃与溴化氢发生是自由基加成反应。

有机化学 07-1 醛酮

有机化学 07-1 醛酮

将下列化合物与HCN反应的活性按由大到小顺序排列。
(2) 与亚硫酸氢钠的加成
醛、脂肪族甲基酮以及小于八个碳原子的脂环酮能与饱和的 NaHSO3(40 %) 反应生成α-羟基磺酸钠,反应可逆。 其他类型酮由于空间位阻增大,不利于发生反应,但是成环后,加 成物的产率大大增加
该反应试剂的亲核中心不是氧原子,而是硫原子。 生成的α-羟基磺酸钠能溶于水但不溶于饱和的亚硫酸氢钠而 以沉淀形式析出。
CH3CH CHCHO
① NaBH4 ② H2O/H
+
CH3CH CHCH2OH
硼氢化钠和氢化铝锂的还原性能不同: NaBH4: 只能还原醛、酮, LiAlH4: 不仅能还原醛、酮,而且还能还原羧酸、酯、酰胺、腈等
酸催化卤代时,反应可停留在一取代阶段。
碱催化下具有甲基酮结构的醛、酮,如乙醛或甲基酮(CH3CO-)
,则三个α-H都可被卤素取代。
这是由于α-H 被卤素取代 后,卤原子的吸电子诱导效应 使还没有取 代的α-H更活泼,更容易被取代。
因此甲基酮的氢原子就会被卤原子逐步取代。
由于卤素的强吸电子诱导效应,使α-三卤代衍生物羰基 碳的正电性大大增强,
醛、酮分子中的羰基可以与水分子形成氢键, 所以低级醛、酮能溶于水, 随着分子中碳原子数的增加,其在水中的溶解度逐渐降低,六个 碳原子以上的醛、酮不溶于水而溶于有机溶剂。
四、 醛、酮的化学性质
由于羰基本身的极性,使羰基碳原子容易受带有负电荷或含有未共用 电子对的亲核试剂的进攻而发生1)亲核加成反应 以及3) 还原反应, 受羰基的影响,α-H原子及醛基上的氢原子有一定的活性,容易 发生 2) α-H的取代以及 4) 醛的氧化反应。
8
醛 酮
醛和酮分子中都含有羰基(碳氧双键),故称为羰基化合物。

醛和酮的命名和反应特点

醛和酮的命名和反应特点

醛和酮的命名和反应特点醛和酮是有机化合物中常见的两类功能团,它们在有机合成和生物化学等领域具有重要的地位。

本文将介绍醛和酮的命名规则以及它们的主要反应特点。

一、醛的命名和反应特点醛是含有羰基(C=O)的有机化合物,它们的命名通常根据其碳链长度和取代基来进行。

以下是几个常见的醛的命名示例:1. 甲醛(HCHO)是最简单的醛,也称为福尔马林。

它的命名来自于甲基(CH3)和醛(al)这两个单词的组合。

2. 乙醛(CH3CHO)是一种含有两个碳原子的醛,它的命名来自于乙烯(C2H4)和醛(al)这两个单词的组合。

3. 丁醛(CH3CH2CH2CHO)是一种含有四个碳原子的醛,它的命名来自于丁烯(C4H8)和醛(al)这两个单词的组合。

醛通常具有以下几个反应特点:1. 氧化反应:醛可以被氧化为相应的羧酸。

常见的氧化剂有酸性高锰酸钾(KMnO4)和酸性过氧化氢(H2O2)。

2. 加成反应:醛具有与亲核试剂发生加成反应的能力。

其中最常见的是醛和水(H2O)发生加成反应生成醇。

3. 缩合反应:醛可以与胺或另一个醛发生缩合反应,生成相应的亚胺或醇醛。

这种反应被广泛应用于化学合成中。

二、酮的命名和反应特点酮是由两个碳原子上分别连接有两个烷基或芳基的羰基化合物。

与醛类似,酮的命名也根据碳链长度和取代基来进行。

以下是几个常见的酮的命名示例:1. 丙酮(CH3COCH3)是最简单的酮,它也是只含有三个碳原子的酮。

其命名来自于丙烯(C3H6)和酮(one)这两个单词的组合。

2. 甲基乙基酮(CH3COCH2CH3)是一种含有四个碳原子的酮,它的命名来自于甲基(CH3)、乙基(C2H5)和酮(one)这三个单词的组合。

3. 邻二甲苯酮(C6H4(COCH3)2)是一种含有苯环的酮,它的命名体现了对位取代基的位置关系。

酮的反应特点与醛类似,但也存在一些差异:1. 氧化反应:酮相较醛来说较不容易被氧化,但依然可以通过特定条件下的氧化反应将酮转化为相应的酸。

结构式

结构式

结构式结构简式:(—CO—)使含该结构的有机物有还原性如:草酸 HOOC—COOH在生物中,另有专业名称,羰基。

构成羰基的碳原子的另外两个键,可以单键或双键的形式与其他原子或基团相结合而成为种类繁多的羰基化合物。

羰基化合物可分为醛酮类和羧酸类两类(R为烷基):羰基的性质很活泼,容易起加成反应,如与氢生成醇。

性质编辑物理性质:具有强红外吸收。

化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。

其它常见化学反应包括:亲核还原反应,羟醛缩合反应。

反应:α-氢的反应羟醛缩合(1)羟醛缩合在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。

这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。

通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。

羟醛缩合反应历程,以乙醛为例说明如下:第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。

第三步,烷氧负离子与水作用得到羟醛和OH。

稀酸也能使醛生成羟醛,但反应历程不同。

酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。

泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。

凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。

而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。

因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。

高中化学有机化学竞赛辅导:第7章《醛酮》 Word版

高中化学有机化学竞赛辅导:第7章《醛酮》 Word版

第 1 页 共 6 页第七章 醛、酮一、结构、分类和命名醛和酮都是含有羰基官能团的化合物。

当羰基与一个羟基和一个氢原子相结合时就是醛,醛基的简写为-CHO 。

若羰基与两个烃基相结合,就是酮,酮分子中的羰基叫做酮基。

醛、酮的通式为:醛: 酮:结构:醛、酮羰基中的碳原子为SP 2杂化,而氧原子则是末经杂化的。

碳原子的三个SP 2杂化轨道相互对称地分布在一个平面上,其中之一与氧原子的2P 轨道在键轴方向重叠构成碳氧σ键。

碳原子末参加杂化的2P 轨道垂直于碳原子三个SP 2杂化轨道所在的平面,与氧原子的另一个2P轨道平等重叠,形成π键,即碳氧双键也是由一个σ键和一个π键组成。

由于氧原子的电负性比碳原子大,羰基中的π电子云就偏向于氧原子,羰基碳原子带上部分正电荷,而氧原子带上部分负电荷。

分类:根据烃基的不同可以分为脂肪醛酮、芳香醛酮。

根据羰基的个数可以分为一元醛酮、多元醛酮。

命名:普通命名法:醛的命名与醇的习惯命名法相似,称某醛。

如:CH 3CH 2OH CH 3CHO 乙醇 乙醛CH 3CH (CH 3)CH 2OH CH 3CH (CH 3)CHO异丁醇 异丁醛脂肪酮则按酮基所连接的两个烃基而称为某(基)某(基)酮。

例如:CH 3OCH 3 CH 3COCH 3甲醚 二甲酮CH 3OCH 2CH 3 CH 3COCH 2CH 3甲乙醚 甲乙酮系统命名法:选择含有羰基的最长碳链作为主链,称为某醛或某酮。

由于醛基是一价原子团,必在链端,命名时不必用数字标明其位置。

酮基的位置则需用数字标明,写在“某酮”之前,并用数字标明侧链所在的位置及个数,写在母体名称之前。

例如:CH 3CH (CH 3)CHO CH 3CH 2COCH (CH 3)CH 2CH 32-甲基丙醛 4-甲基-3-已酮CH 3CH ═CHCHO CH 3CH (CH 3)CH ═CHCOCH 32-丁烯醛 5-甲基-3-已烯-2-酮环已基甲醛 3-甲基环已酮3-苯丙烯醛 1-苯-2-丁酮醛酮命名时习惯上还采用希腊字母α、β、γ等,α碳指与醛基或酮基直接相连的碳原子。

实验七醛、酮、糖的性质-(一)醛、酮的性质_醋酸

实验七醛、酮、糖的性质-(一)醛、酮的性质_醋酸

实验七醛、酮、糖的性质:(一)醛、酮的性质_醋酸实验七醛、酮、糖的性质醛、酮的性质醛和酮统称羰基化合物.羰基的存在使醛和酮都能发生亲核加成反应及活泼氢的卤代反应.在亲核加成和活泼氢的反应中,醛和酮有很多相似的地方,但由于结构上的差异,它们在反应中又表现出不同的特点.与2.4一二硝基苯肼的加成,生成黄色或红色的沉淀,羰基化合物都有此反应.而与亚硫酸氢钠的加成则不是所有酮的反应,由于空间位阻的影响,只有醛和脂肪甲基酮能与饱和亚硫酸氢钠溶液作用生成白色沉淀.碳原子数少于8的环酮也有此反应.能与希夫试剂发生加成反应的只有醛,而所有的醛与希夫试剂加成反应中仅有甲醛反应所显示的颜色在加了硫酸后不消失.活泼氢反应只适用于有活泼氢的醛和酮.其中碘仿反应,不仅要求有活泼氢,而且必须有活泼甲基才行.如醛,甲基酮和具有结构的醇.区别醛,酮的另一类反应是与氧化剂的作用.酮一般不易被氧化,只有在强氧化剂的作用下才被分解.而醛却比较容易被氧化,甚至能被弱氧化剂氧化成酸,如托伦反应,斐林反应和本尼迪特反应等.不同的醛也表现出不同的活性,一般醛都能与托伦试剂发生反应,只有脂肪醛能与斐林试剂发生反应,而本尼迪特试剂则只能与甲醛以外的脂肪醛发生反应.一、实验内容1、与2.4一二硝基苯肼的反应取4支试管,分别滴加2滴甲醛、乙醛、丙酮、苯甲醛,然后再分别滴加2.4一二硝基苯肼试剂,边滴边摇动,一般滴10滴即可,观察在滴加过程中有无沉淀产生,是何种颜色,颜色不同又说明什么问题.2、亚硫酸氢钠试验取2支试管分别加入2mL亚硫酸氢钠饱和溶液,然后再各加入1mL丙酮、正丁醛用力振荡后,于冰水浴中冷却,若有结晶析出,表明样品是醛或甲基酮类.3、与希夫试剂的反应取3支试管,各加3—5滴希夫试剂,再分别滴加1滴甲醛、乙醛、丙酮、滴后摇动试管,注意观察它们的现象有何不同.另取2支试管,分别取出1滴与希夫试剂反应后的甲醛溶液,继续对应地滴加4滴甲醛、乙醛、丙酮边滴边摇摇动,然后,各加4滴浓硫酸,注意观察颜色有何变化.4、碘仿反应取5支试管,分别加入3滴甲醛、乙醛、丙酮、乙醇、异丙醇,然后又各加7滴碘溶液,接着滴加5%氢氧化钠溶液,边加边摇动试管,一直滴到深红色刚好消失为止.注意试管里的溶液,当深红色一消失后,有没有沉淀立即产生,是否嗅到碘仿的气味?如果有的试管里是出现白色乳浊液,还不能说是碘仿,应该将白色乳浊液的试管放到50~60℃水洛中温热几min,再观察有何现象?5、托伦试验托伦试剂的配制:在试管中加入2mL 5%的硝酸银溶液和2mL 5%氢氧化钠溶液,试管内立即产生黑色沉淀,用力摇动,使反应完全.然后再滴入氨水,边滴边摇动试管,一直滴到黑色沉淀刚好溶解溶液清亮为止.这时溶液呈无色清亮状,即得是为托伦试剂,或者叫硝酸银氨溶液.在4支盛有托伦试剂的试管中分别加入5滴甲醛、乙醛、丙酮,苯甲醛,边加边摇动试管,注意观察试管里溶液发生什么变化.最好是将试管放在烧杯热水浴中静置10min再观察之.6、斐林试验取4支试管各加入0.5mL斐林试剂A和0.5mL斐林试剂B用力摇匀,然后分别加入5滴甲醛、乙醛、丙酮、苯甲醛,边加边摇动试管,摇匀后将4支试管一起放入烧杯中的沸水加热3~5min,注意观察现象并解释之. 7、本尼迪特试验取4支试管各加1mL本尼迪特试剂.然后分别加1mL 甲醛、乙醛、苯甲醛和丙酮,边加边摇动试管,摇匀后,用沸水浴加热5min.注意观察试管里有何现象,这些现象说明什么问题?二、注释:醛、酮与亚硫酸氢钠的反应是可逆的.生成的2-羟基磺酸钠遇稀酸或碱即可分解而得到原来的醛或酮.对于某些醛和酮来说,与亚硫酸氢钠的加成反应比较容易生成沉淀,在酸和碱的作用下,分解成原来的醛或酮.因而,这一反应常被用来分离,提纯某些醛或酮.在分析上也用来作为亚硫酸根离子的隐蔽剂.除乙醛和甲基酮外,有些醇如乙醇,异丙醇等,能被次碘酸钠氧化成乙醛和甲基酮,因此这类醇也有碘仿反应.Tollens试剂久置后将形成雷银沉淀,容易爆炸,故必须临时配制.进行实验时,切忌用灯焰直接加热,以免发生危险.实验完毕后,应加少许硝酸,立即煮沸消去银镜. 硝酸银溶液与皮肤接触,立即形成难于洗去的黑色金属银,故滴加和摇荡时应小心操作.另外,乙酰基一类化合物,由于水解后可以产生不发生碘仿反应的乙酸,如乙酰乙酸及其酯类,乙酰苯胺等,虽然也具有甲羰基,但却没有碘仿反应.糖的性质糖类化合物是指多羟基醛或多羟基酮以及它们的缩合物,通常分为单糖、双糖和多糖.糖类化合物一个比较普遍的定性反应是Molisch反应,即在浓硫酸存在下,糖与α-萘酚作用生成紫色环.紫色环生成的原因通常认为是糖被浓硫酸脱水生成糠醛或糠醛衍生物,后者再进一步与α-萘酚缩合成有色物质.单糖又称还原性糖,能还原Fehling试剂、Benedict 试剂和Tollens试剂.并且能与过量的苯肼生成脎.单糖与苯肼的作用是一个很重要的反应,糖脎有良好的结晶和一定的溶点,根据糖脎的形状和熔点可以鉴别不同的糖.果糖和葡萄糖结构不同但能形成相同的脎.虽然葡萄糖和果糖形成相同的脎,但是由于反应速度不同,析出糖脎的时间也不同,所以还是可以用这一反应加以区别和鉴定的.双糖由于两个单糖的结合方式不同,有的有还原性,有的则没有.麦芽糖、乳糖、纤维二糖等分子里有一个半缩醛基,属于还原糖,也能成脎.蔗糖分子里没有半缩醛结构,所以没有还原性,也不能成脎.淀粉和纤维素都是由很多葡萄糖缩合而成.葡萄糖以α-苷键连接则形成淀粉;若以β-苷键结合则形成纤维素.两者均无还原性.淀粉与碘生成兰色,在酸和淀粉酶作用下水解成葡萄糖.一、实验内容1、α-萘酚在4支试管中分别加入0.5mLL5%葡萄糖水溶液,5%蔗糖水溶液,5%淀粉水溶液,5%滤纸浆水溶液,再分别滴入2滴10% α-萘酚的酒精溶液,混合均匀后把试管倾斜450,沿管壁慢慢加入1mL浓硫酸,硫酸在下层,试液在上层,若两层交界处出现紫色环,表示溶液含有糖类化合物2、Fehling试验:在4支试管中分别取Fehling I和Fehling II溶液各0.5mL混合均匀,并于水浴中微热后,再分别加入5滴葡萄糖、5滴果糖、5滴蔗糖、5滴麦芽糖的5%的水溶液,振荡再加热,注意颜色变化及有否沉淀析出.3、Benedict试验用Benedict试剂代替Fehling试剂检验上实验样品:葡萄糖、果糖、蔗糖、麦芽糖.4、Tollens试验在4支洗净的试管中分别加入1mLLTollens试剂,再分别加入0.5mL 5%葡萄糖溶液,5%果糖溶液,5%麦芽糖溶液,5%蔗糖溶液,在50℃水浴中温热,观察有无银镜生成.5、成脎反应在4支试管中分别加入1mL5%葡萄糖溶液,5%果糖溶液.5%蔗糖溶液、5%麦芽溶液,分别加入0.5mL10%苯肼盐酸盐溶液和0.5mL 15%醋酸钠溶液,在沸水浴中加热并不断振摇,比较产生脎结晶的速度,记录成脎的时间,并在低倍显微镜下观察脎的结晶形状.6、淀粉水解在试管中加入3mL淀粉溶液,再加0.5mL稀硫酸,于沸水浴中加热5min,冷却后用10%氢氧化钠溶液中和至中性.取2滴与Fehling试剂作用,观察现象.二、注释糖类化合物与浓硫酸作用生成糠醛及其衍生物等,其显色原因可能是糠醛及其衍生物与а-萘酚起缩合作用,生成紫色的缩合物.五碳糖六碳糖醋酸钠与苯肼盐酸盐作用生成苯肼醋酸盐,弱酸碱所生成的盐在水中容易水解成苯肼.苯肼毒性较大,操作时应小心,防止试剂溢出或沾到皮肤上.如不慎触及皮肤,应先用稀醋酸洗,继之以水洗.蔗糖不与苯肼作用生成脎,但经长时间加热,可能水解成葡萄糖与果糖,因而也有少量糖脎沉淀出现.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苯甲酰氯
二苯甲酮
• 该反应也是一个芳环上的亲电取代反应:
傅-克酰基化反应历程:
加酸处理得酮
• 芳烃与直链卤烷发生烷基化反应,往往得到重排产 物,但酰基化反应没有重排现象:
• 酰基是间位定位基,甲基,甲氧基为邻对位取代基。 • 在 AlCl3-Cu2Cl2催化剂下,芳烃与 CO、HCl 作用可在 环上引入一个甲酰基的产物,叫 伽特曼-科赫反应 。
-
• CN-离子为强的亲核试剂,它与羰基的加成反应历程:
注意:由于氰化氢剧毒,易挥发。通常由氰化钠和无 机酸与醛(酮)溶液反应。pH值约为8有利于反应。
• 羟基腈是一类很有用的有机合成中间体。氰基-CN能 水解成羧基,能还原成氨基。 例如: 有机玻璃 —聚-甲基丙烯酸甲酯的单体的合成:
丙酮氰醇 (78%)
-甲基丙烯酸甲酯(90%)
• 第二步包含:水解、酯化和脱水等反应。
伽特曼-科赫反应
氯甲基化反应
(2)与亚硫酸氢钠加成 • 醛和脂肪族甲基酮(或七元环以下的环酮P285)与 之反应,生成 -羟基磺酸钠
在酸碱下可逆反应,分离提纯
• -羟基磺酸钠易溶于水,不溶于饱和亚硫酸氢钠。将 醛酮与过量的饱和亚硫酸氢钠水溶液混合在一起,醛和 甲基酮很快会有结晶析出。可以此来鉴别醛酮。
易受亲核试剂进攻, 发生亲核加成
sp2
羰基π电子云示意图 甲醛的结构
偶极矩 2.27D
偶极矩 2.85D
(2)醛酮的命名 (1) 脂肪族醛酮命名 : 以含有羰基的最长碳链为主链 , 支链作为取代基,主链中碳原子的编号从靠近羰基 的一端开始(酮需要标明位次):
• 也可用希腊字母表示靠近羰基的碳原子,其次为、 、…...
例如:
(2)芳香醛、酮的命名,常将脂链作为主链,芳环为取 代基:
(3) 比较简单的酮还常用羰基两边烃基的名称来命名:
(4) 二元酮命名时,两个羰基的位置除可用数字标明外 , 也可用、、…表示它们的相对位置, 表示两个羰 基相邻, 表示两个羰基相隔一个碳原子:
12.2 醛酮的制法 12.2.1 醇的氧化和脱氢 • 伯醇和仲醇氧化或脱氢反应,可分别生成醛、酮。 例 1: 例 2:
半缩醛反应历程:
醛酮沸点与烷烃沸点的比较
• 由于羰基是个极性基团,分子间偶极的静电引力比 较大,所以醛酮的沸点一般比相对分子量的非极性化 合物(如烃类)高。
• 低级醛酮易溶于水,醛酮都能溶于水。丙酮能溶解 很多有机化合物,是很好的有机溶剂。
醛酮的红外光谱 • 羰基化合物在1680~1850cm-1处有一个强的羰基伸缩 振动吸收峰。醛基 C-H在 2720cm-1处有尖锐的特征吸 收峰。 例1:乙醛的红外光谱
1
2
• 羰基若与邻近基团发生共轭,则吸收频率降低:
例2:苯乙酮的红外光谱
12.4 醛酮的化学性质 12.4.1 加成反应 • 烯烃的加成一般为亲电加成; • 醛酮的加成为亲核加成,易于HCN、NaHSO3、ROH、 RMgX等发生亲核加成反应。 (1)与氰化氢加成
(氰醇)
• 在碱性溶液中反应加 速,在酸性溶液中反 应变慢:
例 1:
例 2:
12.2.3 同碳二卤化物水解 • 生成相应的羰基化合物,该法主要制备芳香族醛酮 (因为芳环侧链上-容易被卤化。) 例 1:
例 ห้องสมุดไป่ตู้:
补充: •用甲苯及其他必要的有机、无机试剂合成:
注意
12.2.4 傅-克酰基化反应 •芳烃在无水三氯化铝催化下,与酰卤 或酸酐 作用, 生成芳酮:
有机化学 Organic Chemistry
第十二章 酮和醛 核磁共振谱
醛和酮均含有羰基官能团: 羰基碳原子上至少连有一个氢原子的叫醛: —CHO 或 叫醛基。
• 羰基碳原子上同时连有两个烃基的叫酮。
O R H an aldehyde O R R an ketone
12.1 醛、酮的结构和命名 (1)醛酮的结构
补充1:完成下列转换
伽特曼-科赫反应
补充2:完成下列转换
傅-克酰基化反应
12.2.5 芳烃侧链的氧化 • 芳烃侧链上的-活泼易被氧化.
•控制条件可生成相应的芳醛和芳酮(注意选择适当的 催化剂)。
12.2.6 羰基合成 •烯烃与CO和H2在某些金属的羰基化合物催化下,与 110~200℃、10~20 MPa下,发生反应,生成多一个碳 原子的醛。
羰基与羟基互换
例 5 :醇在适当的催化剂条件下脱去一分子氢,生成 醛酮。
• 该反应得到的产品纯度高,但为一吸热反应,工业上常 在脱氢的同时,通入一定量的空气,使生成的氢与氧结 合放出的热量供脱氢反应。这种方法叫氧化脱氢法。
12.2.2 炔烃水合
• 主要生产乙醛。
•在汞盐催化下,生成羰基化合物,除乙炔外,其他炔 烃水合均生成酮:
• 羰基合成的原料多采用双键在链端的 -烯烃,其产 物以直链醛为主(直:支 = 4:1)。
12.3 醛酮的物理性质 • 室温下,甲醛为气体, 12 个碳原子以下的醛酮 为液体,高级醛酮为固 体。 • 低级醛有刺鼻的气味, 中级醛( C 8 ~C 1 3 )则有 果香。 •低级醛酮的沸点比相对 分子量相近的醇低。 (分子间无氢键)。
OH C H3C H2C HC H 3 OH O C H3C H2C C H 3 O
C rO3 H2S O4 Na2C r2O7 H2S O4
OH CHCH2CH3
H2C rO4
O CCH2CH3
例3:以三氧化铬和吡啶的络合物为催化剂制醛产率高:
例4:欧芬脑尔氧化法 (主要制酮):含有不饱和C=C 双键的醛氧化,需采取特殊催化剂,如:丙酮-异丙醇 铝(或叔丁醇铝)或三氧化铬-吡啶络合物作氧化剂达 到此目的。
(注意:苯甲醛可以,但苯乙酮不与之反应)
反应历程(亚硫酸氢根离子为亲核试剂):
• 该反应是个可逆反应,常被用来分离和提纯某些羰 基化合物:
• -羟基磺酸钠与等摩尔的NaCN作用,则磺酸基可被氰 基取代,生成 -羟基腈,避免用有毒的氰化氢,产率也 比较高。
( • 3)与醇加成 •将醛溶液在无水醇中通入 HCl 气体或其他无水强酸, 则在酸的催化下,醛能与一分子醇加成,生成半缩醛。 半缩醛不稳定,可以和另一分子醇进一步缩合,生成 缩醛:
相关文档
最新文档