安徽六校联考高三(理数)试题
安徽省合肥市六校联盟2024届高三上学期期末数学试题含答案

合肥市普通高中六校联盟2024届高三第一学期期末考试数学试卷(答案在最后)(考试时间:120分钟满分:150分)命题学校:一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个正确答案,请把正确答案涂在答题卡上)1.已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃=A.{1} B.{12}, C.{0123},,, D.{10123}-,,,,【答案】C 【解析】【详解】试题分析:集合{}{|12,}0,1B x x x Z =-<<∈=,而{1,2,3}A =,所以{}0,1,2,3A B ⋃=,故选C.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.若复数z 满足i 34i z ⋅=-,则z =()A.1B.5C.7D.25【答案】B 【解析】【分析】利用复数四则运算,先求出z ,再计算复数的模.【详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .3.已知向量()()1,3,2a m b ==- ,,且()a b b +⊥,则m =A.−8B.−6C.6D.8【答案】D 【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=- ,又()a b b +⊥,∴3×4+(﹣2)×(m﹣2)=0,解得m=8.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.4.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l ⊂α,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.5.若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为A.x=26k ππ-(k ∈Z )B.x=26k ππ+(k ∈Z )C.x=212k ππ-(k ∈Z )D.x=212k ππ+(k ∈Z )【答案】B 【解析】【详解】试题分析:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B .考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数()sin()f x A wx ϕ=+的图象与性质,着重考查了三角函数的图象变换及三角函数的对称轴方程的求解,通过将函数2sin 2y x =的图象向左平移12π个单位长度,得到函数的解析式2sin(2)6y x π=+,即可求解三角函数的性质,同时考查了学生分析问题和解答问题的能力以及推理与运算能力.6.函数y =x cos x +sin x 在区间[–π,π]的图象大致为()A. B.C. D.【答案】A 【解析】【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.7.若2233x y x y ---<-,则()A.ln(1)0y x -+>B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A 【解析】【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.8.已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为()A.eB. C. D.2e【答案】B 【解析】【分析】利用函数奇偶性的定义可求得函数()f x 的解析式,再利用基本不等式可求得()f x 的最小值.【详解】因为函数()e xy f x =+为偶函数,则()()e e x x f x f x --+=+,即()()e e x x f x f x ---=-,①又因为函数()3e xy f x =-为奇函数,则()()3e3e xx f x f x ---=-+,即()()3e 3e x x f x f x -+-=+,②联立①②可得()e 2e xxf x -=+,由基本不等式可得()e 2e x x f x -=+≥=,当且仅当e 2e x x -=时,即当1ln 22x =时,等号成立,故函数()f x 的最小值为故选:B.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知,,a b c ∈R ,则()A.若0a b >>,则11a b> B.若22ac bc >,则a c b c ->-C.若0a b >>,则a b>> D.若1a b <<,则11a b a b <--【答案】BC 【解析】【分析】由列举法可判断A 项错误;由不等式性质可判断BC 正确;由作差法可判断D 项错误.【详解】对于A ,若0a b >>,令2a =,1b =,则112a =,11b=,11a b <,故A 错误;对于B ,显然20c >,则a b >,则a c b c ->-,故B 正确;对于C ,因为0a b >>1=>,所以a >b >,即a >b >,故C 正确;对于D ,(1)(1)11(1)(1)(1)(1)a b a b b a b aa b a b a b -----==------,因为1a b <<,所以10a -<,10b -<,0b a ->,故0(1)(1)b a a b ->--,即11a ba b >--,故D 错误.故选:BC10.已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示,则下列结论中正确的是()A.()f x 的最小正周期为πB.1212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭C.()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递增 D.6f x π⎛-⎫⎪⎝⎭为奇函数【答案】ABD 【解析】【分析】首先根据函数的图象求A 的值;然后根据()03f =求ϕ的值;根据图象过点,03π⎛⎫⎪⎝⎭和32T π<求出2ω=,从而可求出函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后再逐个判断选项即可.【详解】由图知2A =,由()02sin 3f ϕ==,得3sin 2ϕ=,又因为02πϕ<<,所以3πϕ=,由233k πωπππ+=+得26k ω=+,又32T ππω<=,所以3ω<,所以2ω=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭.故T π=,选项A 正确;又212f π⎛⎫= ⎪⎝⎭,所以12x π=为函数的一条对称轴,故选项B 正确;由222,232k x k k πππ-+π≤+≤+π∈Z ,得5,1212k x k k Z ππππ-+≤≤+∈,由3222,232k x k k Z πππππ+≤+≤+∈,得7,1212ππππ+≤≤+∈k x k k Z ,()f x 在7,212ππ⎡⎤⎢⎥⎣⎦上单调递减,在7,12ππ⎡⎤⎢⎥⎣⎦上单调递增,故C 错误;2sin 22sin 2663f x x x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦为奇函数,故D 正确.故选:ABD .11.已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是()A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【解析】【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l 的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2<d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r =,直线l 与圆C 相切,故D 正确.故选:ABD.12.已知{}n a 是等差教列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则()A.10a d >B.10a d < C.40dS > D.40dS <【答案】BD 【解析】【分析】由3a ,4a ,8a 成等比数列,求得153a d =-,再求得4S ,从而判断14,a d dS 与0的关系.【详解】由3a ,4a ,8a 成等比数列知,2111(3)(2)(7)a d a d a d +=++,化简得153a d =-,(0d ≠),则21503a d d =-<,故A 错误,B 正确;4152464()633S a d d d d =+=⨯-+=-,故24203dS d =-<,故C 错误,D 正确;故选:BD三、填空题(本大题共4小题,每小题5分,共20分)13.在平面直角坐标系xOy 中,若双曲线2221(0)yx b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =.【解析】【分析】根据条件求b ,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431b-=,解得b =或b =,因为0b >,所以b =.因为1a =,所以双曲线的渐近线方程为y =.【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.14.已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f⎡⎤=⎣⎦,则=a ___________.【答案】2【解析】【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【详解】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2.15.若3sin sin (cos cos )3αββα+=-,且(0,π),(0,π)αβ∈∈,则αβ-=________.【答案】2π3【解析】【分析】由已知,可以和差化积可得2sincos 2sin sin 22322αβαβαββα+-+-⎛⎫=- ⎪⎝⎭,从而tan2αβ-=,可求值.【详解】因为(0,π),(0,π)αβ∈∈,所以sin sin 0αβ+>,又3sin sin (cos cos )3αββα+=-,所以cos cos 0βα->,又cos y x =在()0,π上单调递减,所以βα<,则0παβ<-<,所以π022αβ-<<,由已知可得2sin cos 2sin sin 22322αβαβαββα+-+-⎛⎫=- ⎪⎝⎭,则tan2αβ-=,所以π23αβ-=,所以2π3αβ-=.故答案为:2π3.16.已知90ACB ∠=︒,M 为平面ABC 外一点,M C ,点M 到ACB ∠两边,AC BC ,那么M 到平面ABC 的距离为__________.【答案】1【解析】【分析】通过空间垂直关系的转化,找到点M 在平面ABC 内的射影在ACB ∠的平分线上,利用勾股定理即可得解.【详解】作,MD ME 分别垂直于,AC BC ,MO ⊥平面ABC ,连CO ,知,CD MD CD MO ⊥⊥,=MD OD M ,MD ⊂平面MDO ,MO ⊂平面MDO ,CD \^平面MDO ,OD ⊂平面MDO ,CD OD ∴⊥,又CD DM ⊥,==MD ME M C所以1CD ==,同理1,CE =所以Rt Rt CDO CEO ,则CO 为ACB ∠平分线,45OCD ︒∴∠=,1,OD CD OC ===,又M C ,1MO ∴==.故答案为:1四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足()sin ()(sin sin )a c C a b A B -=+-.(1)求角B ;(2)若2b =,ABC ,求ABC 的周长.【答案】(1)π3(2)6【解析】【分析】(1)利用正弦定理和余弦定理实现边角互化,求出cos B 的值即得;(2)利用三角形面积公式和余弦定理建立边的关系,整体求得a c +即得.【小问1详解】因()sin ()(sin sin )a c C a b A B -=+-,由正弦定理得,()()()a c c a b a b -=+-,化简得:222a c b ac +-=,由余弦定理得,2221cos 222a cb ac B ac ac +-===,因0πB <<,故π3B =.【小问2详解】由ABC 1πsin 23ac =4ac =,由余弦定理,22π2cos 43a c ac +-=,即:224a c ac +-=,从而,222()()316a c a c ac ac +=+-+=,则4a c +=.故ABC 的周长为:42 6.a b c ++=+=18.已知函数()()e 1,R x f x x a a =+∈.(1)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若2()f x x ≥在(0,)+∞上恒成立,求实数a 的取值范围.【答案】(1)2y x=(2))2e ,∞-⎡+⎣【解析】【分析】(1)由给定条件求出()f x 的导数,进而求得切线斜率即可得解;(2)分离参数得1e x x a -≥,设1()e x x g x -=,利用导数得2max ()(2)e g x g -==,可得a 的取值范围.【小问1详解】当1a =时,()()1x f x x e =+,()()e 11x f x x '=++,则(0)2f '=,而(0)0f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =;【小问2详解】(0,)∀∈+∞x ,由2()f x x ≥,得1ex x a -≥,设1()e xx g x -=,则2()e x x g x -'=,令2()0e x x g x -'==,得2x =,则()0,2x ∈时,()0g x '>,函数()g x 单调递增,()2,x ∈+∞时,()0g x '<,函数()g x 单调递减,故2max ()(2)e g x g -==,故2e a -≥,即实数a 的取值范围为)2e ,∞-⎡+⎣.19.如图,圆柱的轴截面ABCD 是边长为6的正方形,下底面圆的一条弦EF 交CD 于点G ,其中2DG DE DF ==,.(1)证明:平面AEF ⊥平面ABCD ;(2)判断母线BC 上是否存在点P ,使得直线PE 与平面AEF 所成的角的正弦值为45,若存在,求CP 的长;若不存在,请说明理由.【答案】(1)证明见详解;(2)存在,4CP =.【解析】【分析】(1)将面面垂直转化为EF ⊥平面ABCD ,根据圆和圆柱的性质可证;(2)建立空间直角坐标系,利用向量可解.【小问1详解】由题意可知:在下底面圆中,CD 为直径.因为DE DF =,所以G 为弦EF 的中点,且EF CD ⊥.因为,,、EF AD AD CD D AD CD ⊥⋂=⊂平面ABCD .所以EF ⊥平面ABCD ,因为EF ⊂平面AEF .所以平面AEF ⊥平面ABCD .【小问2详解】分别以下底面垂直于DG 的直线、、DG DA 为x y z 、、轴,建立空间直角坐标系如图所示.因为2DG =,底面圆半径为3,所以EG FG ==.则(0,0,6),2,0),(2,0)A E F -,设(0,6,)(06)P m m <≤.所以6),(6),()AE AF EP m =-=--=- ,设平面AEF 的一个法向量为(,,)m x y z =.由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩得:260260y z y z ⎧+-=⎪⎨-+-=⎪⎩即:03x y z =⎧⎨=⎩令1z =则(0,3,1)m =.设直线PE 与平面AEF 所成的角为θ,所以||4sin |cos ,|5||||m EP m EP m EP θ⋅=<>==⋅ ,解得4m =,所以存在点P ,使得直线PE 与平面AEF 所成的角的正弦值为45,CP 的长为4.20.已知函数()22sin cos 1f x x x x =+-.(1)求函数()f x 的最小正周期;(2)将函数()f x 图象向右平移π6个单位长度得到()g x 的图象,若π22127g θ⎛⎫+=- ⎪⎝⎭,π0,2θ⎛⎫∈ ⎪⎝⎭,求sin θ的值.【答案】(1)πT =(2)1114【解析】【分析】(1)利用二倍角公式及两角差的正弦公式化简,再根据正弦函数的性质计算可得;(2)由(1)可得πcos 671θ⎛⎫+= ⎪⎝⎭,即可求出πsin 6θ⎛⎫+ ⎪⎝⎭,再根据6si ππsin n 6θθ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦计算可得.【小问1详解】因为()22sin cos 1f x x x x =+-1cos 21x x =-+-132cos 2sin222x x ⎛⎫=-+ ⎪ ⎪⎝⎭π2sin 26x ⎛⎫=- ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==.【小问2详解】将函数()f x 图象向右平移π6个单位长度得到()πππ2sin 22sin 22cos 2662g x x x x ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,则πππ22cos 22cos 21221267g θθθ⎛⎫⎛⎫⎛⎫+=-+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以πcos 671θ⎛⎫+= ⎪⎝⎭,因为π0,2θ⎛⎫∈ ⎪⎝⎭,所以ππ2π,663θ⎛⎫+∈ ⎪⎝⎭,所以πsin 67θ⎛⎫+= ⎪⎝⎭,所以6s πin πππππsin sin cos cos sin 66666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎣⎦1111727214=⨯-⨯=.21.已知正项数列{}n a 的前n 项和为n S ,2*11,2,N n n n a S a a n ==+∈.(1)求数列{}n a 的通项公式;(2)设1(1)2nn n n n b a a +-=,求数列{}n b 的前n 项和n T 【答案】(1)n a n=(2)1221n n T n +=-+【解析】【分析】(1)利用1nn n a S S -=-整理可得1n n a a -=-(舍)或11n n a a --=,即可根据数列类型求出通项公式;(2)利用裂项相消法即可求出.【小问1详解】因为22n n n S a a =+,0n a >,当1n =时,11a =,当2n ≥时,2211122n n n n n n n a a a a a S S ---++=-=-,整理可得()()1110n n n n a a a a --+--=,则1n n a a -=-(舍),或11n n a a --=,所以11n n a a --=时,{}n a 是首项为1,公差为1的等差数列,所以()111n a n n =+-⨯=;【小问2详解】因为n a n =,所以()11(1)2(1)22211n n n nn n n n n b a a n n n n++--===-++,所以2324311222222222221324311n n n n T n n n ++=-+-+-++=-++ .22.已知函数()ln(1),R f x x a x a =-+∈.(1)讨论()f x 的单调性;(2)证明:对于任意正整数n ,都有11111ln(21)35212n n ++++>+-L .【答案】22.答案见解析23.证明见详解.【解析】【分析】(1)由1()1x a f x x +-'=+,又()f x 的定义域为(1,)-+∞,讨论1a -与1-的大小关系,即可判定函数的单调性;(2)当1a =时,()f x 在()1,0-上单调递减,在()0,∞+上单调递增,则()(0)f x f ≥,即()ln 10x x -+≥,对于任意正整数n ,令221x n =-,有()()22ln 1ln 21ln 212121n n n n ⎛⎫>+=+-- ⎪--⎝⎭,即可得证.【小问1详解】()f x 的定义域为(1,)-+∞,1()111a x a f x x x +-'=-=++,若0a ≤,当()1,x ∞∈-+,则()0f x '>,所以()f x 在()1,∞-+上单调递增;若0a >,当()1,1x a ∈--,则()0f x '<,所以()f x 在()1,1a --上单调递减;当()1,x a ∞∈-+,则()0f x '>,所以()f x ()f x 在()1,a ∞-+上单调递减;综上所述,当0a ≤时,()f x 在()1,∞-+上单调递增;当0a >时,()f x 在()1,1a --上单调递减,()f x 在()1,a ∞-+上单调递减.【小问2详解】由(1)知当1a =时,()f x 在()1,0-上单调递减,在()0,∞+上单调递增,所以,min ()(0)0f x f ==,即当()1,x ∞∈-+时,()ln 10x x -+≥,对于任意正整数n ,令221x n =-,有()()22ln 1ln 21ln 212121n n n n ⎛⎫>+=+-- ⎪--⎝⎭,所以()()11121ln 3ln1ln 5ln 3ln 21ln 213521n n n ⎛⎫++++>-+-+++-- ⎪-⎝⎭ ,即()11121ln 213521n n ⎛⎫++++>+ ⎪-⎝⎭,即11111ln(21)35212n n ++++>+-L .【点睛】关键点点睛:本题的关键是令1a =,用已知函数的单调性构造()ln 10x x -+≥,再令221x n =-,恰当地利用对数求和进行解题.。
安徽六校教育研究会2025届高三第二次联考数学试卷含解析

安徽六校教育研究会2025届高三第二次联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米3.已知向量11,,2a b m ⎛⎫==⎪⎝⎭,若()()a b a b +⊥-,则实数m 的值为( )A .12B .2C.12±D .2±4.已知双曲线2221x y a -=的一条渐近线方程是y x =,则双曲线的离心率为()ABCD 5.复数()()2a i i --的实部与虚部相等,其中i 为虚部单位,则实数a =( ) A .3B .13-C .12-D .1-6.已知()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩ 若()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则m 的取值范围是( )A .()0,∞+B .[)1,2C .[)1,+∞D .()0,17.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭ B .2935,2424⎡⎤⎢⎥⎣⎦ C .2935,2424⎛⎫⎪⎝⎭D .2935,2424⎛⎤⎥⎝⎦8.已知ABC △的面积是12,1AB =,2BC = ,则AC =( ) A .5B .5或1C .5或1D .59.()()()cos 0,0f x A x A ωϕω=+>>的图象如图所示,()()sin g x A x ωϕ=--,若将()y f x =的图象向左平移()0a a >个单位长度后所得图象与()y g x =的图象重合,则a 可取的值的是( )A .112π B .512π C .712π D .11π1210.已知a >b >0,c >1,则下列各式成立的是( ) A .sin a >sin bB .c a >c bC .a c <b cD .11c c b a--< 11.棱长为2的正方体1111ABCD A B C D -内有一个内切球O ,过正方体中两条异面直线AB ,11A D 的中点,P Q 作直线,则该直线被球面截在球内的线段的长为( ) A .22B .21-C .2D .112.若点(2,k)到直线5x-12y+6=0的距离是4,则k 的值是( ) A .1B .-3C .1或53D .-3或173二、填空题:本题共4小题,每小题5分,共20分。
2023-2024学年安徽省合肥市六校联盟高三(上)期末数学试卷【答案版】

2023-2024学年安徽省合肥市六校联盟高三(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共50分。
每小题只有一个正确答案,请把正确答案涂在答题卡上)1.已知集合A ={1,2,3},B ={x |(x +1)(x ﹣2)<0,x ∈Z },则A ∪B =( ) A .{1}B .{1,2}C .{0,1,2,3}D .{﹣1,0,1,2,3}2.若复数z 满足i •z =3﹣4i ,则|z |=( ) A .1B .5C .7D .253.已知向量a →=(1,m ),b →=(3,﹣2),且(a →+b →)⊥b →,则m =( ) A .﹣8B .﹣6C .6D .84.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,1在同一平面”是“m ,n ,1两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后的图象的对称轴为( )A .x =kπ2−π6(k ∈Z ) B .x =kπ2+π6(k ∈Z )C .x =kπ2−π12(k ∈Z ) D .x =kπ2+π12(k ∈Z ) 6.函数y =x cos x +sin x 在区间[﹣π,π]上的图象可能是( )A .B .C .D .7.若2x ﹣2y <3﹣x ﹣3﹣y ,则( ) A .ln (y ﹣x +1)>0 B .ln (y ﹣x +1)<0 C .ln |x ﹣y |>0D .ln |x ﹣y |<08.已知函数f (x )的定义域为R ,y =f (x )+e x 是偶函数,y =f (x )﹣3e x 是奇函数,则f (x )的最小值为( ) A .eB .2√2C .2√3D .2e二、多选题(本大题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分) 9.已知a ,b ,c ∈R ,则( ) A .若a >b >0,则1a >1bB .若ac 2>bc 2,则a ﹣c >b ﹣cC .若a >b >0,则a >√ab >bD .若a <b <1,则a a−1<bb−110.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2)的部分图象如图所示,则下列结论中正确的是( )A .f (x )的最小正周期为πB .f(π12+x)=f(π12−x)C .f (x )在[π2,π]上单调递增D .f(x −π6)为奇函数11.已知直线l :ax +by ﹣r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( ) A .若点A 在圆C 上,则直线l 与圆C 相切 B .若点A 在圆C 外,则直线l 与圆C 相离C .若点A 在直线l 上,则直线l 与圆C 相切D .若点A 在圆C 内,则直线l 与圆C 相离12.已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0B .a 1d <0C .dS 4>0D .dS 4<0三、填空题(本大题共4小题,每小题5分,共20分)13.在平面直角坐标系xOy 中,若双曲线x 2−y 2b2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是 .14.已知a ∈R ,函数f (x )={x 2−4,x >2|x −3|+a ,x ≤2,若f [f (√6)]=3,则a = .15.若sinα+sinβ=√33(cosβ−cosα),则α﹣β的值是 .16.已知∠ACB =90°,M 为平面ABC 外一点,MC =√3,点M 到∠ACB 两边AC ,BC 的距离均为√2,那么M 到平面ABC 的距离为 . 四、解答题(共6小题,满分70分)17.(10分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足(a ﹣c )sin C =(a +b )(sin A ﹣sin B ). (1)求角B ;(2)若b =2,△ABC 的面积为√3,求△ABC 的周长. 18.(12分)已知函数f (x )=x (ae x +1),a ∈R .(1)若a =1,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)若f (x )≥x 2在(0,+∞)上恒成立,求实数a 的取值范围.19.(12分)如图,圆柱的轴截面ABCD 是边长为6的正方形,下底面圆的一条弦EF 交CD 于点G ,其中DG =2,DE =DF .(1)证明:平面AEF ⊥平面ABCD ;(2)判断母线BC 上是否存在点P ,使得直线PE 与平面AEF 所成的角的正弦值为45,若存在,求CP的长;若不存在,请说明理由.20.(12分)已知函数f(x)=2sin 2x +2√3sinxcosx −1. (1)求函数f (x )的最小正周期;(2)将函数f (x )图象向右平移π6个单位长度得到g (x )的图象,若g(θ2+π12)=−27,θ∈(0,π2),求sin θ的值.21.(12分)已知正项数列{a n }的前n 项和为S n ,a 1=1,2S n =a n 2+a n ,n ∈N +.(1)求数列{a n }的通项公式;(2)设b n =(n−1)2na n a n+1,求数列{b n }的前n 项和T n .22.(12分)已知函数f(x)=x﹣aln(1+x),a∈R.(1)讨论f(x)的单调性;(2)证明:对于任意正整数n,都有1+13+15+⋯+12n−1>12ln(2n+1).2023-2024学年安徽省合肥市六校联盟高三(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共50分。
安徽省“庐巢六校联盟”2025届数学高三第一学期期末统考试题含解析

安徽省“庐巢六校联盟”2025届数学高三第一学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C与圆22:(3C x y +='交于M ,N 两点,若||MN =则MNF 的面积为( )AB .38C.8D.42.双曲线2214x y -=的渐近线方程是( )A.y x = B.y x = C .2x y =±D .2y x =±3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞ B .(1,3)- C .(1,3)D .(,1)(3,)-∞+∞4.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .305.已知数列{}n a 是公比为2的正项等比数列,若m a 、n a 满足21024n m n a a a <<,则()21m n -+的最小值为( ) A .3B .5C .6D .106.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .87.函数()2ln xf x x x =-的图象大致为( )A .B .C .D .8.如图,抛物线M :28y x =的焦点为F ,过点F 的直线l 与抛物线M 交于A ,B 两点,若直线l 与以F 为圆心,线段OF (O 为坐标原点)长为半径的圆交于C ,D 两点,则关于AC BD ⋅值的说法正确的是( )A .等于4B .大于4C .小于4D .不确定9.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭C .21,e e ⎡⎫-+∞⎪⎢⎣⎭D .21,e e ⎛⎫-+∞ ⎪⎝⎭10.sin80cos50cos140sin10︒︒︒︒+=( ) A .3B .32C .12-D .1211.若复数211iz i=++(i 为虚数单位),则z 的共轭复数的模为( ) A 5 B .4C .2D 512.若复数z 满足(23i)13i z +=,则z =( ) A .32i -+B .32i +C .32i --D .32i -二、填空题:本题共4小题,每小题5分,共20分。
安徽省六校教育研究会高三数学2月联考试题 理(含解析)新人教A版

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数221zi i=++,其中i 是虚数单位,则复数z 的模为( ) (A )2 (B )22(C )3 (D ) 22.已知命题p :“1a =是0ax x x,+2>≥”的充分必要条件”;命题q :“存在0x R ∈,使得20020x x +->”,下列命题正确的是( )(A)命题“p q ∧”是真命题 (B)命题“()p q ⌝∧”是真命题 (C)命题“()p q ∧⌝”是真命题 (D)命题“()()p q ⌝∧⌝”是真命题3.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A) 4n >? (B) 8n >? (C) 16n >? (D) 16n <?4.在极坐标系中,点π(2,)3和圆θρcos2=的圆心的距离为( )(A) 3 (B) 22π19+2π49+【答案】A5.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) (A)1142+a b (B) 1124+a b (C) 2133+a b (D) 1233+a b6.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n N +=-∈*, 若32b =-,1012b =,则8a =( )(A) 0 (B) 3 (C) 8 (D) 11【答案】B7.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()(A)43(B)8 (C) 83 (D) 478.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( )(A )521(B )27 (C )13(D )8219.设1F ,2F 分别为双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,以12F F 为直径的圆交双曲线某条渐近线于M 、N 两点,且满足120MAN ∠=︒,则该双曲线的离心率为( ) (A)213 (B) 193 (C) 73(D) 73310.10.若实数,,,a b c d 满足222(3ln )(2)0b a a c d,则22()()a c bd 的最小值为( )2 (B) 2 (C) 22第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上) 11..已知0sin ,a xdx π=⎰则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为 .二项式5 1ax⎛⎫-⎪⎝⎭的展开式中3x-的系数为()()333510280C a-=⨯-=-考点:1、定积分的求法;2、二项式定理.12.如图所示,第n个图形是由正2n+边形拓展而来(1,2,n=),则第2n-个图形共有____ 个顶点.13.若不等式组50,5,02x yy kxx-+≥⎧⎪≥+⎨⎪≤≤⎩表示的平面区域是一个锐角三角形,则实数k的取值范是 .14.抛物线2(33)y x x =-≤≤绕y 轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是 .15.对于函数()f x ,若存在区间[],M a b =,使得{}|(),y y f x x M M =∈=,则称区间M 为函数()f x 的一个“好区间”.给出下列4个函数:①()sin f x x =;②()21xf x =-;③3()3f x x x =-;④()lg 1f x x =+.其中存在“好区间”的函数是 . (填入所有满足条件函数的序号)三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知向量33(sin ,cos ),(,)22m x x n ==,x R ∈,函数(),f x m n =⋅ (Ⅰ)求()f x 的最大值;(Ⅱ)在ABC ∆中,设角A ,B 的对边分别为,a b ,若2B A =,且26b af A π⎛⎫=- ⎪⎝⎭,求角C 的大小.17.(本小题满分12分)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --为直二面角,连结1A B 、1AC (如图2). (Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.直线1PA 与平面1A BD 所成的角1PA H ∠,设PB 的长为x ,用x 表示11,,A D A H DH ,在直角∆1A DH 中,Rt △1A DH 中,11A D =,122DH x =- ,由22211A D DH A H +=, 得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ ,解得18.(本小题满分12分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n a S n n N *+=++∈且2514,,a a a 恰好是等比数列{}n b 的前三项. (Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)记数列{}n b 的前n 项和为n T ,若对任意的*n N ∈,3()362n T k n +≥-恒成立,求实数k 的取值范围.考点:1、等差数列;等比数列的通项公式和前n 项和.2、参变量范围的求法. 19.(本小题满分12分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为 次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标 [)70,76[)76,82[)82,88[)88,94[]94,100元件A 8 12 40 32 8 元件B71840296(Ⅰ)试分别估计元件A 、元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B ,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i )求生产5件元件B 所获得的利润不少于300元的概率;(ii )记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望.20.(本小题满分13分)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =. (Ⅰ)若函数()f x 在区间1,3a a⎛⎫+⎪⎝⎭()0a >上存在极值,求实数a 的取值范围; (Ⅱ)如果对任意的1x ,)22x e ,⎡∈+∞⎣,有121211()()f x f x m x x -≥-,求实数m 的取值范围.递减,故()f x 在1x =处取得极大值. ……………………3分21.(本小题满分14分)在平面直角坐标系xoy 中,已知12,F F 分别是椭圆2222:1(0)x y G a b a b+=>>的左、右焦点,椭圆G 与抛物线24y x =-有一个公共的焦点,且过点6(. (Ⅰ)求椭圆G 的方程;(Ⅱ) 设点P 是椭圆G 在第一象限上的任一点,连接12,PF PF ,过P 点作斜率为k 的直线l ,使得l 与椭圆G 有且只有一个公共点,设直线12,PF PF 的斜率分别为1k ,2k ,试证明1211kk kk +为定值,并求出这个定值; (III )在第(Ⅱ)问的条件下,作22F Q F P ⊥,设2F Q 交l 于点Q , 证明:当点P 在椭圆上移动时,点Q 在某定直线上.。
2025届合肥市第一中学高三六校第一次联考数学试卷含解析

2025届合肥市第一中学高三六校第一次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知b a bc a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 3.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件4.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=,则“//a α”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.给出下列三个命题:①“2000,210x x x ∃∈-+≤R ”的否定;②在ABC 中,“30B ︒>”是“3cos B <的充要条件; ③将函数2cos2y x =的图象向左平移6π个单位长度,得到函数π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象. 其中假命题的个数是( )A .0B .1C .2D .36.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③7.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C .22D .249.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .10.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,122CC =,则异面直线1AC 与11A B 所成的角为( ) A .30︒B .45︒C .60︒D .90︒11.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) A .3B .2C .5D .612.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A .17B .4C .2D .117+二、填空题:本题共4小题,每小题5分,共20分。
安徽省六校教育研究会新高三素质测试数学(理)试题

安徽省六校教育研究会新高三素质测试数学(理)试题第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={1,3,zi },i 为虚数单位,B={4},A ∪B=A 则复数z =( )A .-2iB . 2i C.-4i D.4i 2.“2x =(2,1)a x =+与向量(2,2)b x =-共线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3. 函数)42sin()(π-=x x f 在]2,0[π上的单增区间是( ) A .]8,0[π B .]2,8[ππC .]83,0[πD .]2,83[ππ4.在正项等比数列{n a }中,1n a +<n a ,28466,5a a a a •=+=,则57a a =( ) A .56 B .65C .23D .325. 某流程图如图所示,现输入如下四个函数,则可以输出的函数是( )A .||()x f x x= B .()2()lg1f x x x =+C .()x x x x e e f x e e --+=-D .221()1x f x x-=+ 6. 已知正方形ABCD 的边长为2, H 是边DA 的中点.在正方形ABCD 内部随机取一点P ,则满足|PH|<2的概率为( )A .8π B .184π+ C .4π D .144π+7. ,e π分别是自然对数的底和圆周率,则下列不等式不成立的是( ) A. ()2log log 2e e ππ+> B. log log 1e e ππ> C. e e e e ππ->- D. ()3334()e e ππ+<+8.已知双曲线)0,0(12222>>=-b a by a x 的右焦点为F(2,0),设A 、B 为双曲线上关是是否否开始()f x 输入()()0?f x f x +-=()f x 有零点?()f x 输出结束于原点对称的两点,AF 的中点为M,BF 的中点为N,若原点O 在以线段MN 为直径的圆上,直线AB 的斜率为377,则双曲线的离心率为( )A .3B .5C .2D .49. 某动点在平面直角坐标系第一象限的整点上运动(含,x y 正半轴上的整点),其运动规律为(,)(1,1)m n m n →++或(,)(1,1)m n m n →+-。
安徽省合肥市普通高中六校联盟2025届高三上学期期中联考试题 数学含解析

合肥市普通高中六校联盟2024-2025学年第一学期期中联考高三年级数学试卷(答案在最后)(考试时间:120分钟满分:150分)命题学校:一、单选题:本题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上.1.已知p :201x A x x -⎧⎫=≤⎨⎬-⎩⎭,q :{}0B x x a =-<,若p 是q 的必要不充分条件,则实数a 的取值范围是()A.()2,∞+ B.2,+∞C.(),1∞- D.−∞,12.已知集合{A xy ==∣,{}Z2sin B y y x =∈=∣,则A B = ()A.{}012,, B.{}12,C.{}01,D.{}13.已知155222log 5555ca b ⎛⎫=== ⎪⎝⎭,,则()A.a b c <<B.b a c<< C.c b a<< D.a c b<<4.已知函数()y f x =是R 上的奇函数,且当0x ≥时,2()f x x x =+,则当0x <时有()A.2()f x x x =+B.2()f x x x =-+C.2()f x x x =-D.2()f x x x=--5.已知()443sincos ,0,π225θθθ-=∈,则221sin2cos cos sin θθθθ++=-()A.2635-B.325-C.314-D.1728-6.若函数()()2lg 2f x mx mx =-+的定义域为R ,则实数m 取值范围是()A.[)0,8 B.()8,+∞ C.()0,8 D.()(),08,-∞⋃+∞7.已知函数()f x 与()f x '的图象如图所示,则函数()ex f x y =()A.在区间(1,2)-上是减函数B.在区间31,22⎛⎫-⎪⎝⎭上是减函数C.在区间(0,2)上是减函数D.在区间(1,1)-上是减函数8.定义:如果函数()y f x =在区间[],a b 上存在()1212,x x a x x b <<<,满足()()()'1f b f a f x b a-=-,()()()'2f b f a f x b a-=-,则称函数()y f x =是在区间[],a b 上的一个双中值函数,已知函数()3265f x x x =-是区间[]0,t 上的双中值函数,则实数t 的取值范围是A.36,55⎛⎫ ⎪⎝⎭B.26,55⎛⎫⎪⎝⎭C.23,55⎛⎫⎪⎝⎭D.61,5⎛⎫⎪⎝⎭二、多选题:本题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分,请把正确的选项填涂在答题卡相应的位置上.9.已知奇函数()f x 的定义域为R ,若()()2f x f x =-,则()A.()00f =B.()f x 的图象关于直线2x =对称C.()()4f x f x =-+ D.()f x 的一个周期为410.函数()f x 满足()()f x f x '<,则正确的是()A.(3)e (2)f f <B.e (0)(1)f f <C .2e (1)(1)f f -> D.e (1)(2)f f <11.已知0,0,21x y x y >>+=,则()A.42x y +的最小值为22B.22log log x y +的最大值为3-C.y x xy --的最小值为1- D.22221x y x y +++的最小值为16三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()f x 对任意x 满足()()324f x f x x --=,则()f x =______.13.若函数()()2ln 2f x x x =++,则使得()()211f x f x +<-成立的x 的取值范围是______.14.已知点A 是函数2ln y x =图象上的动点,点B 是函数22xy =图象上的动点,过B 点作x 轴的垂线,垂足为M ,则AB BM +的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.16.已知函数()()ln R mf x x m x=+∈.(1)讨论函数()f x 的单调性;(2)当1m =时,证明:当1x ≥时,()e e 0xxf x x --+≤.17.在锐角ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sinCa b=+.(1)求角B 的值;(2)若2a =,求ABC V 的周长的取值范围.18.已知函数()22ln 2x f x x ax =+-,a ∈R .(1)若3a =,求()f x 的极值;(2)设函数()f x 在x t =处的切线方程为()y g x =,若函数()()y f x g x =-是()0,+∞上的单调增函数,求t 的值;(3)函数()f x 的图象上是否存在不同的两点,使得函数的图象在这两点处的切线重合,若存在则求出a 的取值范围,若不存在则说明理由.19.在平面直角坐标系xOy 中,利用公式x ax byy cx dy=+⎧⎨=+''⎩①(其中a ,b ,c ,d 为常数),将点s 变换为点(),P x y '''的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d ⎛⎫⎪⎝⎭唯一确定,我们将a b c d ⎛⎫⎪⎝⎭称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)在平面直角坐标系xOy 中,将点()3,4P 绕原点O 按逆时针旋转3π得到点P '(到原点距离不变),求点P '的坐标;(2)如图,在平面直角坐标系xOy 中,将点s 绕原点O 按逆时针旋转α角得到点(),P x y '''(到原点距离不变),求坐标变换公式及对应的二阶矩阵;(3)向量(),OP x y = (称为行向量形式),也可以写成x y ⎛⎫ ⎪⎝⎭,这种形式的向量称为列向量,线性变换坐标公式①可以表示为:x a b x y c d y '⎛⎫⎛⎫⎛⎫=⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭,则称x y '⎛⎫ ⎪'⎝⎭是二阶矩阵a b c d ⎛⎫ ⎪⎝⎭与向量x y ⎛⎫⎪⎝⎭的乘积,设A 是一个二阶矩阵,m ,n是平面上的任意两个向量,求证:()A m n Am An +=+.合肥市普通高中六校联盟2024-2025学年第一学期期中联考高三年级数学试卷(考试时间:120分钟满分:150分)命题学校:一、单选题:本题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上.1.已知p :201x A x x -⎧⎫=≤⎨⎬-⎩⎭,q :{}0B x x a =-<,若p 是q 的必要不充分条件,则实数a 的取值范围是()A.()2,∞+ B.2,+∞C.(),1∞- D.−∞,1【答案】D 【解析】【分析】解不等式确定集合A ,然后由必要不充分条件得B 是A 的真子集可得结论.【详解】∵{|(2)(1)0A x x x =--≥且1}x ≠{|2x x =≥或1}x <,{}B x x a =<,又p 是q 的必要不充分条件,∴B A ,∴1a ≤,故选:D .【点睛】结论点睛:本题考查由必要不充分条件求参数,一般可根据如下规则判断:命题p 对应集合A ,命题q 对应的集合B ,则(1)p 是q 的充分条件⇔A B ⊆;(2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.2.已知集合{A xy ==∣,{}Z2sin B y y x =∈=∣,则A B = ()A.{}012,, B.{}12,C.{}01,D.{}1【答案】D 【解析】【分析】根据偶次根下大于等于零,结合对数函数的单调性,可得集合A ;根据三角函数的性质可得集合B ,结合交集的运算可得答案.【详解】由题意()0.5log 210x -≥且210x ->,故0211x <-≤,解得112x <≤,故112A ⎛⎤= ⎥⎝⎦,;由1sin 1x -≤≤得22sin 2x -≤≤,故{}2,1,0,1,2B =--;综上{}1A B ⋂=.故选:D.3.已知155222log 5555ca b ⎛⎫=== ⎪⎝⎭,,则()A.a b c <<B.b a c<< C.c b a<< D.a c b<<【答案】C 【解析】【分析】化对数式为指数式判断1a >,判断(01)b ∈,,化指数式为对数式判断0c <,则答案可求.【详解】由52log 5a =,得205551a =>=;由1525b =,得50125()b ⎛⎫= ⎪⎝⎭∈,;由255c⎛⎫= ⎪⎝⎭,得25log 50c =<.∴c b a <<.故选:C .【点睛】本题考查指数式、对数式中的大小比较,一般可利用中介值01,和函数单调性进行大小比较,是基础题.4.已知函数()y f x =是R 上的奇函数,且当0x ≥时,2()f x x x =+,则当0x <时有()A.2()f x x x =+B.2()f x x x =-+C.2()f x x x =-D.2()f x x x=--【答案】B 【解析】【分析】根据函数的奇偶性,设0x <,则0x ->,()()2()f x x x -=-+-,再变形可得函数解析式.【详解】解:设0x <,则0x ->,因为当0x ≥时,2()f x x x=+()()22()f x x x x x∴-=-+-=-又函数()y f x =是R 上的奇函数()()f x f x =--∴2()f x x x∴=-+故当0x <时有2()f x x x =-+故选:B【点睛】本题考查函数的奇偶性,属于基础题.5.已知()443sincos ,0,π225θθθ-=∈,则221sin2cos cos sin θθθθ++=-()A.2635-B.325-C.314-D.1728-【答案】A 【解析】【分析】先由平方差公式化简已知条件并结合二倍角的余弦公式得cos θ,进而得sin θ,从而结合二倍角正弦公式即可计算求解.【详解】因为()443sincos ,0,π225θθθ-=∈,所以()22223,0,πsincos sin +cos 52222θθθθθ⎛⎫⎛⎫=∈- ⎪⎪⎝⎭⎝⎭,所以()223sincos cos cos ,0,π22522θθθθθθ⎛⎫-=-=-=∈+ ⎪⎝⎭,即3cos 5θ=-,所以由()0,πθ∈得4sin 5θ==,所以22222243121sin212sin cos 26355cos cos cos sin cos sin 3553455θθθθθθθθθ⎛⎫+⨯⨯- ⎪++⎛⎫⎝⎭+=+==-- ⎪--⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.故选:A.6.若函数()()2lg 2f x mx mx =-+的定义域为R ,则实数m 取值范围是()A.[)0,8 B.()8,+∞ C.()0,8 D.()(),08,-∞⋃+∞【答案】A 【解析】【分析】分析可知,220mx mx -+>在上恒成立,分0m =、0m ≠两种情况讨论,在0m =时,直接验证即可;在0m ≠时,可得出0Δ0m >⎧⎨<⎩,综合可解得实数m 的取值范围.【详解】由题意,函数()()2lg 2f x mx mx =-+的定义域为,等价于220mx mx -+>在上恒成立,若0m =,则2220mx mx -+=>在上恒成立,满足条件;若0m ≠,则2Δ80m m m >⎧⎨=-<⎩,解得08m <<.综上,实数m 的取值范围是[)0,8,故选:A .7.已知函数()f x 与()f x '的图象如图所示,则函数()e xf x y =()A.在区间(1,2)-上是减函数B.在区间31,22⎛⎫-⎪⎝⎭上是减函数C.在区间(0,2)上是减函数 D.在区间(1,1)-上是减函数【答案】B 【解析】【分析】求出函数y 的导数,结合图象求出函数的单调区间即可求解.【详解】因为()()e xf x f x y '-'=,由图象知,3122x -<<时,()()0f x f x '-<,又e 0x >,所以当3122x -<<时,0'<y ,即()e xf x y =在31,22⎛⎫-⎪⎝⎭上单调递减,当132x <<时,()()0f x f x '->,又e 0x >,所以当132x <<时,0'>y ,即()e xf x y =在1,32⎛⎫⎪⎝⎭上单调递增,所以选项A 、C 和D 错误,选项B 正确,故选:B .8.定义:如果函数()y f x =在区间[],a b 上存在()1212,x x a x x b <<<,满足()()()'1f b f a f x b a-=-,()()()'2f b f a f x b a-=-,则称函数()y f x =是在区间[],a b 上的一个双中值函数,已知函数()3265f x x x =-是区间[]0,t 上的双中值函数,则实数t 的取值范围是A.36,55⎛⎫ ⎪⎝⎭B.26,55⎛⎫⎪⎝⎭C.23,55⎛⎫⎪⎝⎭D.61,5⎛⎫⎪⎝⎭【答案】A 【解析】【详解】()()322612,355f x x x f x x x =-∴=-' ,∵函数()3265f x x x =-是区间[]0,t 上的双中值函数,∴区间[]0,t 上存在12120x x x x t ,(<<<),满足()()21206()()5f t f f x f x t t t ''--==,∴方程22126355x x t t -=-在区间[]0,t 有两个不相等的解,令221263055g x x x t t x t =--+≤ (),(<),则()()222212612()05520560056205t t tg t t g t t t ⎧⎛⎫∆---+⎪ ⎪⎝⎭⎪⎪<<⎪⎪⎪-+⎨⎪⎪-⎪⎪⎪⎪⎩=>=>=>,解得63 55t <<,∴实数t 的取值范围是36,55⎛⎫ ⎪⎝⎭.故选:A.二、多选题:本题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分,请把正确的选项填涂在答题卡相应的位置上.9.已知奇函数()f x 的定义域为R ,若()()2f x f x =-,则()A.()00f =B.()f x 的图象关于直线2x =对称C.()()4f x f x =-+D.()f x 的一个周期为4【答案】AD 【解析】【分析】由奇函数可得()00f =,再根据函数的周期性与对称性分别判断.【详解】由函数()f x 为奇函数,则()00f =,A 选项正确;又()()2f x f x =-,即()()11f x f x +=-,则函数()f x 关于直线1x =对称,B 选项错误;由()()2f x f x =-可知()()24f x f x -=+,即()()4f x f x =+,函数()f x 的一个周期为4,C 选项错误,D 选项正确;故选:AD.10.函数()f x 满足()()f x f x '<,则正确的是()A.(3)e (2)f f <B.e (0)(1)f f <C.2e (1)(1)f f ->D.e (1)(2)f f <【答案】AC 【解析】【分析】根据给定条件,构造函数()()ex f x g x =,利用导数探讨单调,再比较大小即得.【详解】依题意,令函数()()e x f x g x =,求导得()()()0exf x f xg x '-=<,函数()g x 在R 上递减,对于A ,(3)(2)g g <,32(3)(2)e ef f <,则(3)e (2)f f <,A 正确;对于B ,(1)(0)g g <,(1)(0)e f f <,则(1)e (0)f f <,B 错误;对于C ,(1)(1)g g <-,(1)e (1)ef f <-,则2e (1)(1)f f ->,C 正确;对于D ,(2)(1)g g <,2(2)(1)e ef f <,则e (1)(2)f f >,D 错误.故选:AC11.已知0,0,21x y x y >>+=,则()A.42x y +的最小值为 B.22log log x y +的最大值为3-C.y x xy --的最小值为1- D.22221x y x y +++的最小值为16【答案】ABD 【解析】【分析】根据指数运算,结合基本不等式即可判断A ;结合对数运算,利用基本不等式可判断B ;将y x xy --化为关于x 的二次函数,结合二次函数性质可判断是C ;通过变量代换,令2,1m x n y =+=+,得到26m n +=,根据“1”的巧用,将22221x y x y +++变形后,利用基本不等式,即可判断D..【详解】对于A ,由于0,0,21x y x y >>+=,故24222x y x y +=+≥==当且仅当2x y =,结合21x y +=,即11,42x y ==时,等号成立,即42x y +的最小值为,A 正确;对于B ,由于0,0x y >>,21x y +=≥18xy ≤,当且仅当11,42x y ==时,等号成立,故()22221log log log log 38x y xy +=≤=-,即22log log x y +的最大值为3-,B 正确;对于C ,又0,0,21x y x y >>+=,得12y x =-,故2(12)(12)241y x xy x x x x x x --=----=-+由于102102x x <<∴<<,而2241y x x =-+对称轴为1x =,则2241y x x =-+在1(0)2,上单调递减,在1(0)2,上无最值,C 错误;对于D ,令2,1m x n y =+=+,则|2,1x m y n =-=-,故22222288218121021x y m m n n m n x y m n m n-+-++=+=+++-++,由于0,0x y >>,故2,1m n >>,22(2)(1)256m n x y x y +=+++=++=,则()8118118212521717)6666n m m n m n m n m n ⎛⎫⎛⎫+=++=++≥=⎪ ⎪⎝⎭⎝⎭,当且仅当82n m m n =,结合26m n +=,即126,55m n ==时,等号成立,所以8125121061066m n m n +++-≥+-=,即22221x y x y +++的最小值为16,D 正确,故选:ABD【点睛】难点点睛:本题考查了基本不等式的应用,主要是求最值问题,难点是选项D 的判断,解答时要通过变量代换,令2,1m x n y =+=+,得到26m n +=,根据“1”的巧用,将22221x y x y +++变形后,利用基本不等式,即可求解.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()f x 对任意x 满足()()324f x f x x --=,则()f x =______.【答案】1x +【解析】【分析】采用方程组法消去()2f x -,得出()f x 的解析式即可.【详解】因为()()324f x f x x --=①,以2x -代替x 得:()()()3242,f x f x x --=-②,3+⨯②①得:()()888,1f x x f x x =+=+.故答案为:1x +.13.若函数()()2ln 2f x x x =++,则使得()()211f x f x +<-成立的x 的取值范围是______.【答案】()2,0-【解析】【分析】由题知函数为偶函数且在[0,)+∞单调递增,由此抽象出不等式,解出即可【详解】由函数的定义域为R ,()()()()()22ln 2ln 2f x x x x x f x -=-++-=++=所以函数()f x 为偶函数当[0,)x ∈+∞时,2y x =与()ln 2y x =+为单调递增函数所以()f x 在[0,)x ∈+∞单调递增所以()()()()211211f x f x fx f x +<-⇔+<-所以()()22211211x x x x +<-⇔+<-解得:20x -<<故答案为:()2,0-14.已知点A 是函数2ln y x =图象上的动点,点B 是函数22xy =图象上的动点,过B 点作x 轴的垂线,垂足为M ,则AB BM +的最小值为______.【答案】512【解析】【分析】根据抛物线的焦半径公式可将问题转化为F 到2ln y x =上一点A 的最小距离即可,根据点点距离公式,得()2214ln 2ln 4f x x x x =+-+,利用导数求解最小值即可.【详解】由于22x y =是焦点在y 轴上的抛物线,故设其焦点为10,2F ⎛⎫ ⎪⎝⎭,则12BM BF =-,所以1122AB BM AB BF AF +=+-≥-,故求F 到2ln y x =上一点A 的最小距离即可,设(),2ln A x x ,则22222112ln 4ln 2ln 24AF x x x x x ⎛⎫=+-=+-+ ⎪⎝⎭,记()2214ln 2ln 4f x x x x =+-+,则()28ln 228ln 22x x x f x x x x x+-=+-'=由于函数()228ln 2g x x x =+-在0,+∞单调递增,且()1,10x g ==,故当∈0,1时()()0,0g x f x <∴<',因此()f x 在0,1单调递减,当∈1,+∞时()()0,0g x f x >∴>',因此()f x 在1,+∞单调递增,故()()min 514f x f ==,因此min52AF=,故15122AB BM AF -+≥-≥,故答案为:512-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数π3()6sin(62cos f x x x =-+.(1)求()f x 的最小正周期和单调增区间;(2)若函数()y f x a =-在π5π[,]1212x ∈存在零点,求实数a 的取值范围.【答案】(1)π,()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)[]0,3【解析】【分析】(1)化简函数()π3sin 26f x x ⎛⎫=-⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)根据题意转化为方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,以π26x -为整体,结合正弦函数图象运算求解.【小问1详解】对于函数π3313()6cos sin 6cos sin cos 62222f x x x x x x ⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()231cos 231πcos 3cos 2332cos 23sin 222226x f x x x x x x x x ⎫+⎛⎫=-+=-⨯+=-=-⎪ ⎪⎪⎝⎭⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==,令πππ2π22π,Z 262k x k k -+£-£+Î,则ππππ,Z 63k xk k -+#+,∴函数()f x 的单调递增区间为()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】令()0y f x a =-=,即π3sin 206x a ⎛⎫--= ⎪⎝⎭,则πsin 263a x ⎛⎫-= ⎪⎝⎭,∵()y f x a =-在π5π,1212x ⎡⎤∈⎢⎥⎣⎦存在零点,则方程πsin 263a x ⎛⎫-= ⎪⎝⎭在π5π,1212x ⎡⎤∈⎢⎥⎣⎦上有解,若π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,则π2π20,63x ⎡⎤-∈⎢⎥⎣⎦,可得πsin 2[0,1]6x ⎛⎫-∈ ⎪⎝⎭,∴013a≤≤,得03a ≤≤故实数a 的取值范围是[]0,3.16.已知函数()()ln R mf x x m x=+∈.(1)讨论函数()f x 的单调性;(2)当1m =时,证明:当1x ≥时,()e e 0xxf x x --+≤.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)利用导数与函数单调性的关系,分类讨论即可得解;(2)构造函数()()e e xg x xf x x =--+,利用二次导数,结合函数的最值情况,证得()0g x ≤,从而得证.【小问1详解】因为()ln mf x x x=+的定义域为()0,∞+,所以()221m x mf x x x x -'=-=,当0m ≤时,()0f x '>恒成立,所以()f x 在()0,∞+上单调递增;当0m >时,令()0f x '=,得x m =,当()0,x m ∈时,()()0,f x f x '<单调递减,当(),x m ∈+∞时,()()0,f x f x '>单调递增,综上,当0m ≤时,()f x 在()0,∞+上单调递增;当0m >时,()f x 在()0,m 上单调递减,在(),m +∞上单调递增.【小问2详解】当1m =时,()1ln f x x x=+,令()()e e ln e e 1xxg x xf x x x x x =--+=--++,则()ln e xg x x =-',令()()ln e xh x g x x '==-,则()1e x h x x='-,因为1x ≥,所以11,e e 1x x≤≥>,所以当1x ≥时,()h x '1e 0xx=-<恒成立,所以()h x 在[)1,+∞上单调递减,即()ln e xg x x =-'在[)1,+∞上单调递减,所以()()1e 0g x g '≤-'=<,所以()g x 在[)1,+∞上单调递减,所以()()10g x g ≤=,即()e e 0xxf x x --+≤.【点睛】结论点睛:恒成立问题:(1)()0f x >恒成立()min 0f x ⇔>;()0f x <恒成立()max 0f x ⇔<.(2)()f x a >恒成立()min f x a ⇔>;()f x a <恒成立()max f x a ⇔<.(3)()()f x g x >恒成立()()min 0f x g x ⇔->⎡⎤⎣⎦;()()f x g x <恒成立()()max 0f x g x ⇔-<⎡⎤⎣⎦;(4)1x M ∀∈,2x N ∀∈,()()()()1212min max f x g x f x g x >⇔>.17.在锐角ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sinCa b=+.(1)求角B 的值;(2)若2a =,求ABC V 的周长的取值范围.【答案】(1)π6(2)(32++【解析】【分析】(1)根据正弦定理得到222a c b +-=,再利用余弦定理求出π6B =;(2)根据正弦定理得到13sin cos ,sin sin A Ab c A A+==,从而得到1tan b c A +=++,求出ππ,32⎛⎫∈ ⎪⎝⎭A ,得到10,tan 3A ⎛⎫∈ ⎪ ⎪⎝⎭,(1b c +∈+,从而求出周长的取值范围.【小问1详解】sinC a b =+,由正弦定理得:ca b =+,即222a c b +-=,由余弦定理得:222cos 222a cb B ac ac +-===,因为()0,πB ∈,所以π6B =;【小问2详解】锐角ABC V 中,2a =,π6B =,由正弦定理得:2πsin sin sin 6b cAC ==,故π2sin 12sin cos 6,sin sin sin sin A C A A b c A A A A⎛⎫+ ⎪+⎝⎭====,则11cos 11cos sin tan tan A A A b c AA A+++++===1tan A =+因为锐角ABC V 中,π6B =,则π0,2A ⎛⎫∈ ⎪⎝⎭,πππ0,62C A ⎛⎫=--∈ ⎪⎝⎭,解得:ππ,32⎛⎫∈⎪⎝⎭A ,故)tan A ∈+∞,10,tan 3A ⎛⎫∈ ⎪ ⎪⎝⎭,(11,13tan A ⎛⎫+++ ⎪ ⎪⎝⎭,故(1b c +∈+,(32a b c ++∈++所以三角形周长的取值范围是(32++.【点睛】解三角形中最值或范围问题,通常涉及与边长,周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值18.已知函数()22ln 2x f x x ax =+-,a ∈R .(1)若3a =,求()f x 的极值;(2)设函数()f x 在x t =处的切线方程为()y g x =,若函数()()y f x g x =-是()0,+∞上的单调增函数,求t 的值;(3)函数()f x 的图象上是否存在不同的两点,使得函数的图象在这两点处的切线重合,若存在则求出a 的取值范围,若不存在则说明理由.【答案】(1)()f x 的极大值为()512f =-,极小值为()22ln 24f =-(2(3)不存在,理由见解析【解析】【分析】(1)令()0f x '=,列极值表,即可求得()f x 的极值;(2)求出切线方程,设()()()h x f x g x =-,转化为()0h x '≥在()0,∞+恒成立,再由基本不等式成立可得答案;(3)假设存在符合题意的直线,设两个切点分别为()()11,t f t ,()()22,t f t ,分别代入切线方程和()f x 整理得22112122ln022t t t -+=,设212t m =,转化为12ln 0m m m -+=,设()12ln m m m m ϕ=-+,由导数判断出单调性可得答案.【小问1详解】当3a =时,()212ln 32f x x x x =+-,则()()()1223x x f x x x x--=='+-,令()0f x '=,解得:=1或=2,列表如下:x()01,1()12,2()2+∞,()f x '+-+()f x 单调递增极大单调递减极小单调递增值值由表可知,当=1时,()f x 的极大值为()512f =-,当=2时,()f x 的极小值为()22ln 24f =-;【小问2详解】因为()2f x x a x'=+-,所以()2'=+-f t t a t ,所以x t =处切线方程为()()2212ln 02y t a x t t t at t t ⎛⎫=+--++->⎪⎝⎭,整理得:()2212ln 22y g x t a x t t ⎛⎫==+-+--⎪⎝⎭,设()()()h x f x g x =-,则:()()()221212ln 2ln 222h x f x g x x x t x t t t ⎛⎫=-=+-+-++ ⎪⎝⎭,由题意可知,()220h x x t x t ⎛⎫=+-+≥ ⎪⎝⎭'在()0+∞,恒成立.因为()222h x x t t x t t ⎛⎫⎛⎫=+-+≥+ ⎪ ⎝⎭⎝'⎪⎭,当且仅当x =时,等号成立,所以应有20t t ⎛⎫+≥⎪⎝⎭,而0t >,2t t +≥,所以只有2t t=即t =时,2+=t t即20t t ⎛⎫-+≥ ⎪⎝⎭成立,所以t =.【小问3详解】由(2)可知,曲线=op 在()0x t t =>处切线方程为:2212ln 22y t a x t t t ⎛⎫=+-+-- ⎪⎝⎭,假设存在符合题意的直线,设两个切点分别为()()11,t f t ,()()22,t f t ,则:121222112222112ln 22ln 222t a t a t t t t t t ⎧+-=+-⎪⎪⎨⎪--=--⎪⎩①②,由①式可得:122t t =,代入②式,则:2112111222ln 2ln 2t t t t -=-,整理得:22112122ln 022t t t -+=,设212t m =,则12ln 0m m m -+=,设()12ln m m m m ϕ=-+,则()()22212110m m m m mϕ--=--=≤',所以()m ϕ单调递减,因为()10ϕ=,所以()0m ϕ=的解为1t =.即2112t =,解得1t =,此时2112t t t ===,所以不存在符合题意的两点,使得函数的图象在这两点处的切线重合.【点睛】本题考查导数与函数的单调性与极值,切线问题,转化与化归能力,准确计算是关键,第三问转化为函数与方程的关系是难点,是较难的题目.19.在平面直角坐标系xOy 中,利用公式x ax by y cx dy =+⎧⎨=+''⎩①(其中a ,b ,c ,d 为常数),将点s 变换为点(),P x y '''的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d ⎛⎫ ⎪⎝⎭唯一确定,我们将a b c d ⎛⎫ ⎪⎝⎭称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)在平面直角坐标系xOy 中,将点()3,4P 绕原点O 按逆时针旋转3π得到点P '(到原点距离不变),求点P '的坐标;(2)如图,在平面直角坐标系xOy 中,将点s 绕原点O 按逆时针旋转α角得到点(),P x y '''(到原点距离不变),求坐标变换公式及对应的二阶矩阵;(3)向量(),OP x y = (称为行向量形式),也可以写成x y ⎛⎫ ⎪⎝⎭,这种形式的向量称为列向量,线性变换坐标公式①可以表示为:x a b x y c d y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭,则称x y '⎛⎫ ⎪'⎝⎭是二阶矩阵a b c d ⎛⎫ ⎪⎝⎭与向量x y ⎛⎫ ⎪⎝⎭的乘积,设A 是一个二阶矩阵,m ,n 是平面上的任意两个向量,求证:()A m n Am An +=+ .【答案】(1)333,222P ⎛'-+ ⎝⎭(2)cos sin sin cos x x y y x y αααα=-'=+'⎧⎨⎩,cos sin sin cos αααα-⎛⎫ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)利用三角函数的定义得到旋转之前的cos θ和sin θ,再由两角和的正弦、余弦公式得到点P '的坐标;(2)利用三角函数的定义得到旋转之前的cos θ和sin θ,再由两角和的正弦、余弦公式得到点P '的坐标,再根据变换公式的定义得到变换公式及与之对应的二阶矩阵;(3)根据定义分别计算()A m n + 、 Am 、 An ,证明()A m n Am An +=+ 即可.【小问1详解】可求得5OP OP ='=,设POx θ∠=,则3cos 5θ=,4sin 5θ=,设点(),P x y ''',3POx πθ∠=+,故135cos 5cos sin 3222x πθθθ⎛⎫⎛⎫'=+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭15sin 5sin cos 23222y πθθθ⎛⎫⎛⎫'=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭所以3222P ⎛'-+ ⎝⎭.【小问2详解】设OP OP r ='=,POx θ∠=,则cos x r θ=,sin y r θ=,P Ox θα∠'=+,故()cos cos cos sin sin cos sin x r r r x y θαθαθααα'=+=-=-()sin sin cos cos sin sin cos y r r r x y θαθαθααα'=+=+=+所以坐标变换公式为cos sin sin cos x x y y x y αααα=-'=+'⎧⎨⎩,该变换所对应的二阶矩阵为cos sin sin cos αααα-⎛⎫ ⎪⎝⎭【小问3详解】设矩阵a b A c d ⎛⎫= ⎪⎝⎭,向量11x m y ⎛⎫= ⎪⎝⎭ ,22x n y ⎛⎫= ⎪⎝⎭ ,则1212x x m n y y +⎛⎫+= ⎪+⎝⎭ .()()()()()121212121212a x x b y y x x a b A m n c x x d y y y y c d ⎛⎫++++⎛⎫⎛⎫+== ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ ,对应变换公式为:()()()()12121212x a x x b y y y c x x d y y ⎧=+++⎪⎨=+++''⎪⎩,111111x ax by a b Am y cx dy c d +⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,222222x ax by a b An y cx dy c d +⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 所以()()()()1212112212121122a x x b y y ax by ax by Am An c x x d y y cx dy cx dy ⎛⎫+++++⎛⎫⎛⎫+==+= ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭ 故对应变换公式同样为()()()()12121212x a x x b y y y c x x d y y ⎧=+++⎪⎨=+++''⎪⎩所以()A m n Am An +=+ 得证.【点睛】方法点睛:利用三角函数的定义解题:(1)角α的顶点与坐标原点重合;(2)角的始边与x 轴正半轴重合;在角α的终边上任取一点(,)P x y ,该点到原点的距离r =则:sin y r α=;cos x r α=;tan y x α=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.设全集 U=R,集合 A x x 3 , B x x 6 ,则集合 U A B ( ) A.x 3 x 6 B.x 3 x 6 C.x 3 x 6 D.x 3 x 6
11.定义在
R
上的奇函数
f
(x)
,当
x
0
时,
f
(x)
1 log
x
1 (x
2
3
,x 1), x
1, 0,1
则关于
x
的函
数 F (x) f (x) a(0 a 1) 的所有零点之和为( )
A.1 2a
B. 0
C. 2a 2
D.
1 2
a
1
12.设 ABC 的内角 A, B,C 所对边的长分别为 a,b, c ,则下列命题正确的是( )
数学试题(理)第 2页 共 4 页
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.已知向量 a=(2,m),b=(-1,2),若 a⊥b,则 b 在向量 c a b 上的投影为________.
4x y 1 0
14.若实数
x,y
满足约束条件
y 1
则 z=ln y-ln x 的最小值是________.
数学试题(理)第 3页 共 4 页
19. (本小题满分 12 分)为调查人们在购物时的支付习惯,某超市对随机抽取的 600 名顾 客的支付方式进行了统计,数据如下表所示:
(x 6)2 y2 1上的动点,则 PQ 的最小值为( )
A. 21 1
B.
2
5 5
C. 2 5
D. 2 5 1
9.已知函数 f (x) 3 2sin x cosx 2 3 cos2 x( 0) 在区间 , 2 内没有极值点,
则 的取值范围为( )
A.
5 12
,
11 24
B.
Pn1(an1,0) ,Q1(a1, b1) 、Q2 (a2 , b2 ) …… Qn (an , bn ) ,若记 PnQn Pn1 的面积为 cn ,求数列 cn
的前 n 项和Tn .
18.(本小题满分 12 分)如图所示,直三棱柱 ABC-A′B′C′的侧棱长为 4,AB BC,且 AB=BC=4, 点 D,E 分别是棱 AB,BC 上的动点,且 AD=BE. (Ⅰ)求证:无论 D 在何处,总有 B′C⊥C′D; (Ⅱ)当三棱锥 B-DB′E 的体积取最大值时,求二面角 D-B′E-A′ 的余弦值.
A.-1-i
B.1+i
C.-1+i
D.1-i
4.若
sin(
4
)
5 5
,那么
cos(
4
)
的值为(
)
A.
25 5
B.
2
5 5
C.
5 5
D.
5 5
5.设
a
1
24
,
b
1 5
0.2
,
c
log
1 3
6
则(
)
A. a b c
B. c b a
C. c a b
D. b a c
6.一个几何体的三视图如图所示,其中俯视图是半径为
安徽六校教育研究会 2019 届高三第二次联考
数学试题(理)
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上; 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在 答题卡上,写在本试卷上无效。考试结束后,将本试卷和答题卡一并交回。
(1)若
a2
b2
c2
,则 C
2
;
(2)
若 ab c2 ,则 C
3
;
(3)若 a3
b3
c3 ,则 C
2
;
(4)
若 2ab (a b)c ,则 C
2
;
(5)若
a2 b2
c2
2a2b2 ,则 C
3
.
A.(1)(2)(3) B.(1)(2)(5)
C.(1)(3)(4) D.(1)(3)(5)
r
的圆,若该几何体的体积为
9 8
,
则它的表面积是( )
A.
9 2
B. 9
C.
45 4
D.
54 4
数学试题(理)第 1页 共 4 页
7.若执行如图所示的程序框图,输入 x1 1, x2 2, x3 3, x 2 ,则
输出的数等于( ) A. 1 3 B. 2 3 C.1
D. 2
8.已知抛物线 y2 2 px( p 0) 上一点 (5,t) 到焦点的距离为 6 , P、Q 分别为抛物线与圆
满足
BA
BC
, ABC
2
,点
P
在底面
ABC
的射
影为
AC
的中点,且该三棱锥的体积为
19 6
,当其外接球的表面积最小时,P
到底面
ABC
的
距离为
.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17-21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(本小题满分 12 分) 已知{an}是各项均为正数的等比数列,且 a1+a2 =3,a3 a2 2 ,
等差数列{bn}的前 n 项和为 Sn ,且 b3 5,S4 16 . (Ⅰ)求数列 {an } 、 {bn } 的通项公式; (Ⅱ)如图,在平面直角坐标系中,有点 P1(a1, 0) 、 P2 (a2 , 0) …… Pn (an , 0) 、
x y 4
15.已知双曲线
x a
2 2
y2 b2
1(a
0, b 0) 的左、右焦点分别为 F1、F2 ,直线 MN
过 F2 ,且
与双曲线右支交于 M、N
两点,若 cos F1MN
cos F1F2M
,
F1M F1N
1 2
,则双曲线的两
条渐近线的倾斜角分别为
和
.
16.三棱锥
P
ABC
中,底面
ABC
2.某工厂生产的 A,B,C 三种不同型号的产品数量之比为 2∶3∶5,为研究这三种产品的
质量,现用分层抽样的方法从该工厂生产的 A,B,C 三种产品中抽出样本容量为 n 的样
本,若样本中 A 型产品有 10 件,则 n 的值为( )
A.15
B.25
C.50
D.60
3.若复数 z 满足 zi=1+i,则 z 的共轭复数是( )
0,
1 2
C.
0,
5 24
5 12
,
11 24
D.
0,5 12Fra bibliotek11 24
,
1 2
10.某地举办科技博览会,有 3 个场馆,现将 24 个志愿者名额分配给这 3 个场馆,要求每
个场馆至少有一个名额且各场馆名额互不相同的分配方法共有( )种
A. 222
B. 253
C. 276
D. 284