专题卷概率统计答案

合集下载

高考概率统计试题及答案

高考概率统计试题及答案

高考概率统计试题及答案一、选择题1. 某次考试中,有100名学生参加,其中60人数学成绩优秀,40人英语成绩优秀,30人两科成绩都优秀。

那么,至少有一科成绩优秀的学生人数是()。

A. 70B. 80C. 90D. 100答案:C2. 甲、乙两人进行射击比赛,甲的命中率为0.6,乙的命中率为0.5。

则甲、乙两人至少有一人命中的概率是()。

A. 0.8B. 0.9C. 0.85D. 0.7答案:B二、填空题3. 一个袋子里有5个红球和3个白球,随机抽取一个球,抽到红球的概率是()。

答案:\(\frac{5}{8}\)4. 某工厂生产一种零件,合格率为95%,那么生产100个零件中,不合格零件的期望个数是()。

答案:5三、解答题5. 某公司有10名员工,其中5人会开车,3人会游泳,2人既会开车又会游泳。

现在要从这10人中随机抽取3人,求至少有1人会开车的概率。

答案:首先,计算总的组合数为C(10,3)。

然后,计算没有会开车的人的组合数为C(5,3)。

因此,至少有1人会开车的组合数为C(10,3) - C(5,3)。

最后,所求概率为(C(10,3) - C(5,3)) / C(10,3)。

6. 一批产品中有10%是次品。

现从这批产品中随机抽取100件,求其中次品数不超过10件的概率。

答案:设X为抽取的100件产品中次品的数量,X服从二项分布B(100,0.1)。

要求的概率为P(X ≤ 10),可以通过计算二项分布的累积分布函数得到。

具体计算方法为:P(X ≤ 10) = Σ[C(100,k) * (0.1)^k * (0.9)^(100-k)],其中k从0到10。

概率统计考试试题及答案

概率统计考试试题及答案

概率统计考试试题及答案一、选择题(每题3分,共30分)1.设随机变量X服从正态分布N(μ,σ^2),下列说法正确的是:A.X的期望值是μB.X的方差是σ^2C.X的取值范围是(-∞,+∞)D.以上说法均正确答案:D2.已知随机变量X的概率密度函数为f(x),下列关于X的分布函数F(x)的说法正确的是:A.F(x)是单调递增的B.F(x)是连续的C.F(x)在x=0处的值为0.5D.F(x)在x=0处的值为0答案:A3.设随机变量X服从二项分布B(n,p),下列说法正确的是:A.X的期望值是npB.X的方差是np(1-p)C.X的取值范围是{0,1,...,n}D.以上说法均正确答案:D4.已知随机变量X和Y相互独立,下列说法正确的是:A.X和Y的期望值之和等于它们的期望值B.X和Y的方差之和等于它们的方差C.X和Y的协方差为0D.以上说法均正确答案:C5.设随机变量X服从泊松分布,下列说法正确的是:A.X的期望值等于其方差B.X的取值范围是{0,1,2,...}C.X的概率质量函数为P(X=k)=λ^k/k!*e^(-λ)D.以上说法均正确答案:D6.已知随机变量X服从均匀分布U(a,b),下列说法正确的是:A.X的期望值是(a+b)/2B.X的方差是(b-a)^2/12C.X的概率密度函数为f(x)=1/(b-a)D.以上说法均正确答案:D7.设随机变量X服从指数分布,下列说法正确的是:A.X的期望值是1/λB.X的方差是1/λ^2C.X的概率密度函数为f(x)=λe^(-λx)D.以上说法均正确答案:D8.已知随机变量X和Y的联合概率密度函数为f(x,y),下列说法正确的是:A.X和Y的边缘概率密度函数可以通过对f(x,y)积分得到B.X和Y的期望值可以通过对f(x,y)积分得到C.X和Y的协方差可以通过对f(x,y)积分得到D.以上说法均正确答案:A9.设随机变量X服从正态分布N(0,1),下列说法正确的是:A.X的期望值是0B.X的方差是1C.X的概率密度函数为f(x)=1/√(2π)*e^(-x^2/2)D.以上说法均正确答案:D10.已知随机变量X服从t分布,下列说法正确的是:A.X的期望值是0B.X的方差是1C.X的概率密度函数为f(x)=Γ((ν+1)/2)/(√(νπ)*Γ(ν/2)*(1+x^2/ν)^((ν+1)/2))D.以上说法均正确答案:C二、填空题(每题2分,共20分)1.设随机变量X服从正态分布N(μ,σ^2),则X的期望值E(X)=________。

高考数学经典试题与解析 专题九 计数原理与概率统计

高考数学经典试题与解析 专题九 计数原理与概率统计

专题九计数原理与概率统计——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.[2023年全国高考真题]某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.231.答案:D解析:依题意,用1A ,2A 表示高一的2名学生,1B ,2B 表示高二的2名学生,则从4名学生中随机选2名学生的选法有()12,A A ,()12,B B ,()11,A B ,()12,A B ,()21,A B ,()22,A B ,共6种,其中2名学生来自不同年级的选法有()11,A B ,()12,A B ,()21,A B ,()22,A B ,共4种,所以所求概率4263P ==,故选D.2.将甲、乙等5名同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.120种 B.150种 C.180种 D.240种2.答案:B解析:根据题意,分2步进行分析:①先将甲、乙等5名同学分成3组:若分成1,2,2的3组,则有12254222C C C15 A =(种)方法;若分成1,1,3的3组,则有11354322C C C 10 A =(种)方法,故将5人分成3组,每组至少有1人,有151025+=(种)分组方法.②将分好的3组对应三所大学,则每所大学至少保送一人的不同保送方法有3325A 150=(种).3.[2023春·高二·四川内江·期中校考]在12nx ⎫-⎪⎭的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数是()A.454B.358-C.358D.73.答案:C解析:依题意知第五项的二项式系数最大,所以一共是9项,所以8n =,二项式展开项的通项公式为842218811C C 22rrr rr r r r T x x x -++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令462r +=,得4r =,所以6x 的系数为448135C 28⎛⎫-= ⎪⎝⎭.故选C.4.抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为8},则()P B A =∣()A.112B.29C.13D.234.答案:B解析:易知()()()n AB P BA n A =∣,其中AB 表示“两次的点数均为奇数,且两次的点数之和为8”,共有两种情况,即(3,5),(5,3),故()2n AB =.而1133()C C 9n A =⋅=,所以()2()()9n AB P B A n A ==∣.故选B.5.[2023春·高二·江苏盐城·月考联考]已知服从正态分布()2,N μσ的随机变量在区间(],μσμσ-+,(]2,2μσμσ-+和(]3,3μσμσ-+内取值的概率分别为68.26%,95.44%和99.74%.若某校高二年级1000名学生的某次考试成绩X 服从正态分布()290,15N ,则此次考试成绩在区间(]105,120内的学生大约有()A.477人B.136人C.341人D.131人5.答案:B 解析:根据题意,()()()60120751050.95440.68261051200.135922P X P X P X <≤-<≤-<≤===,则10000.1359135.9136⨯=≈,故此次考试成绩在区间(]105,120内的学生大约有136人.故选:B.6.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)99.29.49.69.810销量y (件)1009493908578预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为()参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.参考数据:615116iii x y==∑,622160.7i i x x =-=∑.A.9.4元B.9.5元C.9.6元D.9.7元6.答案:B解析:由题意,得1(99.29.49.69.810)9.56x =⨯+++++=,1(1009493908578)906y =⨯+++++=,6162216511669.590ˆ200.76i ii ii x y xybxx ==--⨯⨯===--∑∑,ˆ909.520280a=+⨯=,则ˆ20280y x =-+.设工厂获得利润L 元,则2(5)(20280)20(9.5)405L x x x =--+=--+,当9.5x =时,L 取得最大值.所以当单价定为9.5元时,工厂获得最大利润,故选B.7.[2024春·高一·河南三门峡·期末校考]某高中为了积极响应国家“阳光体育运动”的号召,调查该校3000名学生每周平均体育运动时长的情况,从高一、高二、高三三个年级学生中按照4:3:3的比例进行分层随机抽样,收集了300名学生每周平均体育运动时长(单位:小时)的数据,整理后得到如图所示的频率分布直方图.下列说法不正确的是()A.估计该校学生每周平均体育运动时长为5.8小时B.估计该校高一年级学生每周平均体育运动时长不足4小时的人数为300C.估计该校学生每周平均体育运动时长不少于8小时的百分比为10%D.估计该校学生每周平均体育运动时长不少于8小时的人数为6007.答案:C解析:对于A,估计该校学生每周平均体育运动时长为10.0530.250.370.2590.15110.05 5.8⨯+⨯+⨯+⨯+⨯+⨯=(小时),故选项A 正确;对于B,该校高一年级的总人数为430001200433⨯=++,由题中频率分布直方图可知,该校学生每周平均体育运动时长不足4小时的频率为()0.0250.120.25+⨯=,所以估计该校高一年级学生每周平均体育运动时长不足4小时的人数为12000.25300⨯=,故选项B 正确;对于C,估计该校学生每周平均体育运动时长不少于8小时的百分比为()0.0750.0252100%20%+⨯⨯=,故选项C 错误;对于D,估计该校学生每周平均体育运动时长不少于8小时的人数为300020%600⨯=,故选项D 正确.故选:C.8.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为12,23,34,且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17248.答案:D解析:设甲、乙、丙获得一等奖的概率分别是()12P A =,()23P B =,()34P C =,则不获一等奖的概率分别是()11122P A =-=,()21133P B =-=,()31144P C =-=,则这三人中恰有两人获得一等奖的概率为:()()()()()()()()()()()()P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C ++=++1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=,这三人都获得一等奖的概率为()()()()12312344P ABC P A P B P C ==⨯⨯=,所以这三人中至少有两人获得一等奖的概率1111724424P =+=.故选:D.二、多项选择题9.[2020年全国高考真题]我国新冠肺炎疫情防控进入常态化,各地有序推动复工复产.下面是某地连续11天的复工、复产指数折线图.根据该折线图,()A.这11天复工指数和复产指数均逐日增加B.在这11天期间,复产指数的增量大于复工指数的增量C.第3天至第11天,复工指数和复产指数都超过80%D.第9天至第11天,复产指数的增量大于复工指数的增量9.答案:CD解析:由题图可知第8,9天复工指数和复产指数均减小,故A 错误;第1天时复工指数小于复产指数,第11天时两指数相等,故复产指数的增量小于复工指数的增量,故B 错误;由题图可知第3天至第11天,复工复产指数都超过80%,故C 正确;第9天至第11天,复产指数的增量大于复工指数的增量,故D 正确.10.已知()*nx n ⎛+∈ ⎝N 的展开式中共有7项,则该二项展开式中()A.所有项的二项式系数和为64 B.所有项的系数和为1C.二项式系数最大的项为第4项 D.有理项共有4项10.答案:ACD解析:由题意知6n =,则6x ⎛⎝的展开式的通项为3666216C C (0,1,2,,6)2rr rr r r r T x x r --+===⋅ .对于A ,所有项的二项式系数和为6264=,故A 正确;对于B ,令1x =,得6613122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因此所有项的系数和为632⎛⎫⎪⎝⎭,不为1,故B 错误;对于C,由二项式系数的性质,可知6x ⎛⎝的展开式中第4项的二项式系数最大,为36C 20=,故C 正确;对于D ,当362r-∈Z ,即0,2,4,6r =时,对应的项为有理项,共有4项,故D 正确.故选ACD.11.[2023春·高二·江苏·期中联考]红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色,等量的红色加蓝色调配出紫色,等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各2瓶,甲同学从6瓶中任取2瓶颜料,乙同学再从余下的4瓶中任取2瓶颜料,两人分别进行等量调配,A 表示事件“甲同学调配出红色”,B 表示事件“甲同学调配出绿色”,C 表示事件“乙同学调配出紫色”,则下列说法正确的是()A.1()15P A =B.1()4P C A =∣C.4()45P BC =D.事件B 与事件C 相互独立11.答案:AC解析:从6瓶中任取2瓶颜料的方法数为26C .对于A ,A 表示事件“甲同学调配出红色”,若调出红色,需要2瓶颜料均为红色,有22C 种方法,则2226C 1()C 15P A ==,故A 正确;对于B ,事件A 发生需要2瓶颜料均为红色,事件C 发生需要1瓶红色颜料和1瓶蓝色颜料,在事件A 发生的条件下,事件C 不可能发生,所以()0P CA =∣,故B 错误;对于C ,若事件B 发生,则甲同学取出1瓶黄色颜料和1瓶蓝色颜料,则112226C C 4()C 15P B ==,此时还剩1瓶黄色颜料和1瓶蓝色颜料,2瓶红色颜料,则1224C 1()C 3P C B ==∣,故414()()()15345P BC P B P C B =⨯=⨯=∣,故C 正确;对于D ,若事件C 发生,则乙取了1瓶红色颜料和1瓶蓝色颜料,甲同学取了至少1瓶黄色颜料或甲同学取了一瓶红色颜料和一瓶蓝色颜料,则21111111222242222264C C C C C C C C 4()C C 15P C ++==,444()()()151545P B P C P BC ⋅=⨯≠=,事件B 与事件C 不相互独立,故D 错误.故选AC.三、填空题12.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若,,{1,2,3,4}a b c ∈,且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率是_________.12.答案:12解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个.所以这个三位数为“有缘数”的概率121242P ==.13.已知随机变量X 有三个不同的取值,分别是0,1,x ,其中(0,1)x ∈,又1(0)4P X ==,1(1)4P X ==,则随机变量X 方差的最小值为__________.13.答案:18解析:由1(0)4P X ==,1(1)4P X ==,得1()2P X x ==,所以随机变量X 的数学期望21()4x E X +=,则方差222221123121111()42444442162x x x D X x ⎡⎤+--⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯=⨯-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.当12x =时,()D X 取到最小值18,故答案为18.14.[2023届·西北工业大学附中·模拟考试]将8张连号的门票分给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张门票随机分给其余的3个家庭,并且甲、乙两个家庭不能连排在一起(甲、乙两个家庭内部成员的顺序不予考虑),则这8张门票不同的分配方法有_________种.14.答案:72解析:设8张门票的编号分别为1,2,3,4,5,6,7,8.若甲选123,则乙可以是56,67,78共3种,此时共有333A 18=种;若甲选234,则乙可以是67,78共2种,此时共有332A 12=种;若甲选345,则乙可以是78共1种,此时共有33A 6=种;若甲选456,则乙可以是12共1种,此时共有33A 6=种;若甲选567,则乙可以是12,23共2种,此时共有332A 12=种;若甲选678,则乙可以是12,23,34共3种,此时共有333A 18=种.综上所述,不同的分配方法有181266121872+++++=种.四、解答题15.[2024春·高一·青海西宁·期末]为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在[)20,25和[]25,30中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的25%分位数.15.答案:(1)1 5 ;(2)8.75小时.解析:(1)由图可知,40名学生中周末的学习时间在[)20,25的人数为0.035406⨯⨯=人,周末的学习时间在[]25,30的人数为0.0155403⨯⨯=人,从中用分层抽样抽取6人,则周末的学习时间在[)20,25的有4人,记为A,B,C,D;周末的学习时间在[]25,30的有2人,记为a,b;则再从中选派3人接受检测的基本事件有ABC,ABD,ABa,ABb,ACD,ACa,ACb, ADa,ADb,Aab,BCD,BCa,BCb,BDa,BDb,Bab,CDa,CDb,Cab,Dab共有20个,其中检测的3人来自同一区间的基本事件有ABC,ABD,ACD,BCD共有4个,所以检测的3人来自同一区间的概率41205 P==;(2)学习时间在5小时以下的频率为0.0250.10.25⨯=<,学习时间在10小时以下的频率为0.10.0450.30.25+⨯=>,所以25%分位数在区间[)5,10内,则0.250.1 558.750.30.1-+⨯=-,所以这40名同学周末学习时间的25%分位数为8.75小时.16.[2024春·高二·宁夏石嘴山·月考校考]2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G ,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G 信号覆盖的可能性,在持续高风速下5G 信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G 的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G 、中国5G 的底气来自哪里.现在,5G 的到来给人们的生活带来更加颠覆性的变革,某IT 公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该IT 公司在1月份至6月份的5G 经济收入y (单位:百万元)关于月份x 的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x 123456收入y (百万元)6.68.616.121.633.041.0(1)根据散点图判断,y ax b =+与e dx y c =⋅(a ,b ,c ,d 均为常数)哪一个更适宜作为5G 经济收入y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y 关于x 的回归方程,并预测该公司7月份的5G 经济收入.(结果保留小数点后两位)(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X ,求X 的分布列和数学期望.参考数据:x yu 621()i i x x =-∑61()()iii x x y y =--∑61()()iii x x uu =--∑ 1.52e 2.66e 3.5021.15 2.8517.70125.35 6.734.5714.30其中,设ln u y =,ln i i u y =(1,2,3,4,5,6i =).参考公式:对于一组具有线性相关关系的数据(),(21,2,3,,)i i x v n = ,其回归直线ˆˆˆvx βα=+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii Ri i x x v v x x β==--=-∑∑,ˆˆv x αβ=-16.答案:(1)e dx y c =⋅更适宜(2) 1.520.38e ˆx y +=,65.35百万元(3)分布列见解析,1解析:(1)根据散点图判断,e dx y c =更适宜作为5G 经济收入y 关于月份x 的回归方程类型;(2)因为e dx y c =,所以两边同时取常用对数,得ln ln y c dx =+,设ln u y =,所以ln u c dx =+,因为 3.50x =, 2.85u =,所以61621()( 6.73ˆ0.380,17.70(iii ii x x u u dx x ==--==≈-∑∑所以ˆln 2.850.380 3.50 1.52c u dx=-≈-⨯=.所以ˆ 1.520.38u x =+,即ˆln 1.520.38y x =+,所以 1.520.38e ˆx y +=.令7x =,得 1.520.387 1.52 2.66ˆe e e 4.5714.3065.35y +⨯==⨯≈⨯≈,故预测该公司7月份的5G 经济收入大约为65.35百万元.(3)前6个月的收入中,收入超过20百万元的有3个,所以X 的取值为0,1,2,2326C 1(0)C 5P X ===,113326C C 3(1)C 5P X ===,2326C 1(2)C 5P X ===,所以X 的分布列为:X 012P153515所以()1310121555E X =⨯+⨯+⨯=.17.[2024春·高三·内蒙古赤峰·开学考试校考]卫生纸主要供人们生活日常卫生之用,是人民群众生活中不可缺少的纸种之一.某品牌卫生纸生产厂家为保证产品的质量,现从甲、乙两条生产线生产的产品中各随机抽取500件进行品质鉴定,并将统计结果整理如下:合格品优等品甲生产线250250乙生产线300200(1)判断能否有99.9%的把握认为产品的品质与生产线有关;(2)用频率近似为概率,从甲、乙两条生产线生产的产品中各随机抽取2件进行详细检测,记抽取的产品中优等品的件数为X ,求随机变量X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d=+++()20P K k ≥0.100.050.0250.0100.0010k 2.7069.8415.0246.63510.82817.答案:(1)没有;(2)分布列见解析,95解析:(1)补充列联表如下:合格品优等品总计甲生产线250250500乙生产线300200500总计5504501000根据列联表中的数据,经计算得到221000(250200250300)10.10110.828550450500500K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99.9%的把握认为产品的品质与生产线有关.(2)由题意,甲生产线生产的产品中抽取优等品的频率为25015002=,乙生产线生产的产品中抽取优等品的频率为20025005=,所以估计从甲、乙生产线生产的产品中各随机抽取优等品的概率分别为12,25,由题意随机变量X 的所有可能取值是0,1,2,3,4,()22139025100P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22211221312331C C 2525510P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2222211221313212372C C 2525525100P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()22211221212313C C 252555P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2212142525P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列为:X 01234P91003103710015125所以X 的期望()933711901234100101003255E X =⨯+⨯+⨯+⨯+⨯=.18.[2024春·高二·福建宁德·期末]毒品是人类的公敌,禁毒是社会的责任,当前宁德市正在创建全国禁毒示范城市,我市组织学生参加禁毒知识竞赛,为了解学生对禁毒有关知识的掌握情况,采用随机抽样的方法抽取了500名学生进行调查,成绩全部分布在75145~分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)由频率分布直方图可认为这次全市学生的竞赛成绩X 近似服从正态分布()2,N μσ,其中μ为样本平均数(同一组数据用该组数据的区间中点值作代表),13.σ=现从全市所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过135.2分的人数为Y ,求随机变量Y 的期望.(结果精确到0.01);(3)全市组织各校知识竞赛成绩优秀的同学参加总决赛,总决赛采用闯关的形式进行,共有20个关卡,每个关卡的难度由计算机根据选手上一关卡的完成情况进行自动调整,第二关开始,若前一关未通过,则其通过本关的概率为12;若前一关通过,则本关通过的概率为13,已知甲同学第一关通过的概率为13,记甲同学通过第n 关的概率为n P ,请写出n P 的表达式,并求出n P 的最大值.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.18.答案:(1)0.012;(2)0.23;(3)13217216n n P -⎛⎫=+ ⎪⎝⎭,n P 的最大值为49.解析:(1)由频率分布直方图,得()100.0050.0190.030.020.0021a a ⨯++++++=,解得0.012a =.(2)由题意得:800.05900.121000.191100.3μ=⨯+⨯+⨯+⨯1200.21300.121400.02109.2+⨯+⨯+⨯=,()2109.2,13X N ~,()()()122135.220.022752P X P X P X μσμσμσ--<≤+>=>+=≈,()10,0.02275Y B ~,()0.22750.23E Y np ==≈.(3)记甲同学第()*n n ∈N 关通过为事件n A ,依题意,113P =,当2n ≥时,()113n n P A A -=,()112n n P A A -=,()n n P P A =,所以()()()()()1111n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P +⎛⎫-=- ⎪⎝⎭,又因为113P =,则1320721P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为221-,公比为16-的等比数列,所以13217216n n P -⎛⎫=-- ⎪⎝⎭,当n 为奇数时,113213213721672167n n n P --⎛⎫⎛⎫=--=-<⎪⎪⎝⎭⎝⎭,当n 为偶数时,13217216n n P -⎛⎫=+ ⎪⎝⎭,则n P 随着n 的增大而减小,所以,249n P P ≤=,又4397>,所以n P 的最大值为49.19.[2024春·高二·江苏南通·月考校考]篮球运动是在1891年由美国马萨诸塞州斯普林尔德市基督教青年会训练学校体育教师詹姆士·奈史密斯博士,借鉴其他球类运动项目设计发明的.起初,他将两只桃篮钉在健身房内看台的栏杆上,桃篮上沿离地面约3.05米,用足球作为比赛工具,任何一方在获球后,利用传递、运拍,将球向篮内投掷,投球入篮得一分,按得分多少决定比赛胜负.在1891年的12月21日,举行了首次世界篮球比赛,后来篮球界就将此日定为国际篮球日.甲、乙两人进行投篮,比赛规则是:甲、乙每人投3球,进球多的一方获得胜利,胜利1次,则获得一个积分,平局或者输方不得分.已知甲和乙每次进球的概率分别是12和p ,且每人、每次进球与否都互不影响.(1)若23p =,求在进行一轮比赛后甲比乙多投进2球的概率;(2)若1223p ≤≤,且每轮比赛互不影响,乙要想至少获得3个积分且每轮比赛至少要超甲2个球,求:①设事件C 表示乙每轮比赛至少要超甲2个球,求()P C ;(结果用含p 的式子表示)②从数学期望的角度分析,理论上至少要进行多少轮比赛?19.答案:(1)124;(2)①321388p p +;②15解析:(1)设事件i A 表示甲在一轮比赛中投进i 个球,i B 表示乙在一轮比赛中投进i 个球,()0123i =,,,,D 表示进行一轮比赛后甲比乙多投进2球所以2031D A B A B =+()()()2031P D P A B P A B =+2332203133331111211C C C C 22323324⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⨯⨯⨯⨯⎭⎝⎭⎝⎭(2)①()()()()203031P C P B A P B A P B A =++()3332231323311113C 1C 22288p p p p p ⎛⎫⎛⎫⎛⎫=-⨯++⎡⎤⎢⎥⎢⎥=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎣⎭⎦⎝;②设随机变量X 表示n 轮比赛后,乙在每轮比赛至少要超甲2个球的情况下获得的积分,则有3213,88X B n p p ⎛⎫~+ ⎪⎝⎭,故()321388E X n p p ⎛⎫=+ ⎪⎝⎭,要满足题意,则()3E X ≥,即3213388n p p ⎛⎫+≥ ⎪⎝⎭,又12,23p ⎡⎤∈⎢⎥⎣⎦,故3231388n p p ≥+,令()321388f x x x =+,12,23x ⎡⎤∈⎢⎥⎣⎦,则()()3208f x x x '=+>在12,23⎡⎤⎢⎥⎣⎦恒成立,即()f x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,故()f x 的最大值为211354f ⎛⎫=⎪⎝⎭,即321388p p +的最大值为1154,于是,3231388p p +的最小值为16211,因162141511<<,故理论上至少要进行15轮比赛.。

高中试卷-专题30 条件概率与全概率公式(含答案)

高中试卷-专题30 条件概率与全概率公式(含答案)

专题30 条件概率与全概率公式一、单选题1.(2020·河南南阳高二二模(理))根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )A .B .C .D .【答案】C 【解析】分析:在下雨条件下吹东风的概率=既吹东风又下雨的概率 下雨的概率详解:在下雨条件下吹东风的概率为,选C2.(2020·安徽省六安中学高二期中(理))根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续2天有客人入住的概率为,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( )A .B .C .D .【答案】D 【解析】设第二天也有客人入住的概率为P ,根据题意有,解得,故选D.3.(2020·河南开封高三二模(理))已知正方形,其内切圆与各边分别切于点,,、,连接,,,.现向正方形内随机抛掷一枚豆子,记事件:豆子落在圆内,事件:豆子落在四边形外,则( )A .B .C .D .【答案】B 【解析】93011308302589811911¸8830=11113045351312353443=55P ×34P =ABCD I E F G H EF FG GH HE ABCD A I B EFGH ()P B A =2π21π-12π142-由题意,设正方形的边长为,则圆的半径为,面积为;正方形,面积为;所求的概率为.故选:B .4.(2020·河南高二期末(理))把一枚硬币连续抛两次,记“第一次出现正面”为事件,“第二次出现正面”为事件,则=( )A .B .C .D .【答案】A 【解析】“第一次出现正面”:,“两次出现正面”: ,则故选A5.(2020·陕西临渭高二期末(文))已知,,等于( )A .B .C .D .【答案】C 【解析】根据条件概率的定义和计算公式:把公式进行变形,就得到,故选C.ABCD 2a I r a =2a p EFGH 22a \22222(|)1a a P B A a p p p-==-A B ()P B A 121416182(1)P A =111()=224P AB =´()1()14|==1()22P AB P B A P A =()1P B|A 2=()35P A =()P AB 56910310110()()0(|),()P AB P A P B A P A >=当时,()0()(|)()P A P AB P B A P A >=当时,6.(2020·黑龙江南岗哈师大附中高二期末(理))从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则( )A .B .C .D .【答案】B 【解析】由题意事件为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有个事件由条件概率的定义:故选:B7.(2020·西夏宁夏大学附属中学高二月考(理))将两颗骰子各掷一次,设事件“两个点数不相同”, “至少出现一个6点”,则概率等于( )A .B .C .D .【答案】A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=8.(2020·广东东莞高二期末)一个袋中装有大小相同的3个白球和3个黑球,若不放回地依次取两个球,设事件为“第一次取出白球”,事件为“第二次取出黑球”,则概率( )A .B .C .D .【答案】B 【解析】(|)P B A =3813401345345()9P A =A B I 223313´+´=1313()9872P A B ==´I ()13(|)()40P A B P B A P A ==I A =B =()|P A B 10115115185361011A B ()P B A =56351225设事件为“第一次取出白球”,事件为“第二次取出黑球”,,第一次取出白球的前提下,第二次取出黑球的概率为:.故选:B.二、多选题9.(2020·大名中学高二月考)甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件为“两个四面体朝下一面的数字之和为奇数”,事件为“甲四面体朝下一面的数字为奇数”,事件为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .B .C .D .【答案】ABD 【解析】由已知,,由已知有,,,所以,则A 正确;,则B 正确;事件、、不相互独立,故错误,即C 错误,则D 正确;综上可知正确的为ABD.故选:ABD .10.(2020·江苏海安高级中学高二期中)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以,,表示由甲箱中取出的是红球,白A B ()()31333==,==626510P A P A B ´()()3()5P AB P B A P A ==A B C ()()()P A P B P C ==()()()P BC P AC P AB ==1()8P ABC =1()()()8P A P B P C ××=22221()44442P A =´+´=21()()42P B P C ===1()()()4P AB P A P B ==1()4P AC =1()4P BC =()()()P A P B P C ==()()()P BC P AC P AB ==A B C 1()8P ABC =1()()()8P A P B P C ××=1A 2A 3A球和黑球的事件;再从乙箱中随机取出一球,以表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A .B .C .事件与事件相互独立D .、、两两互斥【答案】BD 【解析】因为每次取一球,所以,,是两两互斥的事件,故D 正确;因为,所以,故B 正确;同理,所以,故AC 错误;故选:BD11.(2020·江苏海安高级中学高一期中)以下对各事件发生的概率判断正确的是( )A .连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为B .每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为C .将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是【答案】BCD 【解析】A.连续抛两枚质地均匀的硬币,有4个基本事件,包含两正,两反,先反再正,先正再反,出现一正一反的概率,故A 不正确;B 2()5P B =15()11P B A =B 1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010p A p A p A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=13115536122142P ==B.不超过15的素数包含2,3,5,7,11,13,共6个数字,随机选取两个不同的数字,和等于14的包含,则概率为,故B 正确;C.将一个质地均匀的骰子先后抛掷2次,共36种情况,点数之和为6包含,共5种,所以点数之和为6的概率,故C 正确;D.由题意可知取出的产品全是正品的概率,故D 正确.12.(2020·山东昌乐二中高二月考)一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.则其中正确命题的序号是( )A .①B .②C .③D .④【答案】ABD 【解析】一袋中有大小相同的4个红球和2个白球,①从中任取3球,恰有一个白球的概率是故正确;②从中有放回的取球6次,每次任取一球,每次抽到白球的概率为,则恰好有两次白球的概率为,故正确;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为,故错误;④从中有放回的取球3次,每次任取一球,每次抽到红球的概率为:则至少有一次取到红球的概率为,故正确.()3,11261115P C ==()()()()()1,5,2,4,3,3,4,2,5,1536P =232412C P C ==358024325262721423635C C p C ==2163p ==4226218033243p C æöæö==ç÷ç÷èøèø1143114535C C C C =4263p ==3031261327p C æö=-=ç÷èø故选:ABD.三、填空题13.(2020·全国高三课时练习(理))一个口袋中装有6个小球,其中红球4个,白球2个.如果不放回地依次摸出2个小球,则在第1次摸出红球的条件下,第2次摸出红球的概率为________.【答案】【解析】故答案为:14.(2020·邢台市第二中学高二期末)某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.【答案】【解析】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一个给甲,再将余下的4个人全排列有种;第二类:乙没有在最后,则优先从中间4个位置中选两个给甲乙,再将余下的4个人全排列有种,故总的有.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有种故.故答案为:15.(2020·湖南天心长郡中学高三其他(理))甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论35()()235(|)253P AB P B A P A ===35141444C A ×2444A A ×()14244444n A C A A A =×+×1444C A ×()()()14441424444414n AB C A P B A n A C A A A ×===×+×141A 2A 3A中正确的是___________.①;②;③事件B 与事件相互独立;④,,是两两互斥的事件【答案】②④【解析】因为每次取一球,所以,,是两两互斥的事件,故④正确;因为,所以,故②正确;同理,所以,故①③错误.故答案为:②④16.(2018·全国高二课时练习)某气象台统计,该地区下雨的概率为,刮四级以上风的概率为,既刮四级以上的风又下雨的概率为,设为下雨,为刮四级以上的风,则=_______,=__________【答案】 【解析】由已知,,,∴ , 故答案为,求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=,其中n(AB)表示()25P B =()1511P B A =1A 1A 2A 3A 1A 2A 3A ()()()123523,,101010P A P A P A ===11155()51011()5()1110P BA P B A P A ´===3223232434()()4410111011(),()23()11()111010P BA P BA P B A P B A P A P A ´´======1235524349()()()()10111011101122P B P BA P BA P BA =++=´+´+´=415215110A B ()P B A ()P A B 3438()415P A =()215P B =()110P AB =()()()3|8P AB P B A P A ==()()()3|4P AB P A B P B ==3438n AB n A ()()事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数.二是直接根据定义计算,P(B|A)=,特别要注意P(AB)的求法.四、解答题17.(2020·甘肃省静宁县第一中学高二月考(理))有件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【答案】(1);(2);(3).【解析】(1)因为有5件是次品,第一次抽到次品,有5中可能,产品共有20件,不考虑限制,任意抽一件,有20中可能,所以概率为两者相除.(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可.(3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为18.(2020·阜新市第二高级中学高二月考)甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为和,两地同时下雨的比例为,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少【答案】(1)0.67(2)0.60【解析】(1)设 “甲地为雨天”, “乙地为雨天”,则根据题意有,,.所以乙地为雨天时甲地也为雨天的概率是.(2)甲地为雨天时乙地也为雨天的概率是.p AB p A ()()20521411941941920%18%12%A =B =()0.20P A =()0.18P B =()0.12P AB =()()0.12|0.67()0.18P AB P A B P B ==»()()0.12|0.60()0.20P AB P B A P A ===19.(2020·山东平邑高二期中)已知口袋中有2个白球和4个红球,现从中随机抽取两次,每次抽取1个.(1)若采取放回的方法连续抽取两次,求两次都取得白球的概率;(2)若采取不放回的方法连续抽取两次,求在第一次取出红球的条件下,第二次取出的是红球的概率.【答案】(1)(2)【解析】(1)两次都取得白球的概率;(2)记事件:第一次取出的是红球;事件:第二次取出的是红球,则, ,利用条件概率的计算公式,可得.20.(2019·攀枝花市第十五中学校高二期中(理))先后抛掷一枚骰子两次,将出现的点数分别记为.(1)设向量,,求的概率;(2)求在点数之和不大于5的条件下,中至少有一个为2的概率.【答案】(1);(2)【解析】先后抛掷一枚骰子两次,“将出现的点数分别记为”包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)记“向量,,且”为事件,由得:,从而事件包含共3个基本事件,故.(2)设“点数之和不大于5”为事件,包含(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),1935221669P =´=A B 452()653P A ´==´432()655P AB ´==´()233(|)()525P AB P B A P A ==´=,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r r,a b ,a b 11212,a b (,)m a b =u r (2,1)n =-r 1m n ×=u r rA 1m n ×=u r r21a b -=B (1,1),(2,3),(3,5)31()3612P A ==,a b B(2,3),(3,1),(3,2),(4,1),共10个基本事件;设“中至少有一个为2”为事件,包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数之和不大于5的条件下,中至少有一个为2” 的概率:.21.(2020·延安市第一中学高二月考(文))10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.【答案】(1);(2);(3)【解析】(1)设“甲中奖”为事件,则(2)设“乙中奖”为事件,则又,所以(3)因为,所以22.(2020·河南南阳高二期中(文))某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率;(3)在要求被选中的两人中必须一男一女的条件下,求女生乙被选中的概率.,a b C ,a b ,a b ()51()102n BC P n B ===31031013A ()310P A =B ()()()()P B P AB AB P AB P AB =+=+()32110915P AB =´=()73710930P AB =´=()()()179315303010P B P AB P AB =+=+==()710P A =()730P AB =()()()7130|7310P AB P B A P A ===【答案】(1);(2);(3).【解析】(1)记4名男生为A ,B ,C ,D ,2名女生为a ,b ,从6名成员中挑选2名成员,有,,,,,,,,,,,,,,共有15种情况,,记“男生甲被选中”为事件M ,不妨假设男生甲为A事件M 所包含的基本事件数为,,,,共有5种,故.(2)记“男生甲被选中”为事件,“女生乙被选中”为事件,不妨设女生乙为,则,又由(1)知,故.(3)记“挑选的2人一男一女”为事件,则,“女生乙被选中”为事件,,故.131512AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab AB AC AD Aa Ab ()51153P M ==M N b ()115P MN =()13P M =()()()15P MN P N M P M ==S ()815P S =N ()415P SN =()()()12P SN P N S P S ==。

《概率统计》 试题试卷及答案(B卷)

《概率统计》 试题试卷及答案(B卷)

2 页,共 )5)p - (C) C ),(2σμ∑=-n i i X X n12)(1 )2(μ已知)的下列估计量中,为无偏估计量的是 。

B )=-=ni n 2211σ(D )-=i n 2411σ (B )114X (D)115X 4.0)=B ,则P }4=,则(X D +2(X D 3,假如该厂中2.设(),(),()P AB P AB P AB P A B P A B ===,求概率(),(),(),(),() P A p P B q P A B r第 3 页,共10 页3.设随机变量X的概率密度为232, ()0,xXx e x f xx-⎧⎪=⎨⎪⎩4.二维随机变量(,)X Y的联合密度为(,)f x y 密度()f x y及()f y x.第 4 页,共10第 5 页,共 10 页5.设随机变量Y 是随机变量X 的线性函数,65+=X Y ,且3)(=X D ,求Cov()X ,Y 和XY ρ..6.设总体X 服从参数为λ的泊松分布,即 ,2,1,0 ,!}{===-x e x x X P xλλ.n X X X ,,,21 是来自X 的样本,求参数λ的最大似然估计.第 6 页,共 10四、综合应用题:(13分)设连续型随机变量X 的分布函数为()1,F x A B ⎧⎪⎪=+⎨⎪⎪⎩(1)参数,A B ;(2)X 的概率密度函数()f x ;(3《概率统计》 参 考 答 案 与 评 分 标 准一、单项选择题(每小题3分,共30分) 1~5:BBBAB ;6~10:BBDBB 。

二、填空(每小题3分,共15分)1、0.52; 2、 3、=-)13(X E 2;=+)52(X D 36; 4、27; 5、02()0,Yy f y others<<=⎩三、计算题(每小题7分,共42分)1.解:(1)设事件B 表示“新工人参加了培训”,则B 就表示“新工人没有参加培训”,从而B 与B 构成一完备文件组。

概率统计考试题和答案

概率统计考试题和答案

概率统计考试题和答案一、单项选择题(每题3分,共30分)1. 随机变量X服从正态分布N(0,1),则P(X>0)等于()。

A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(10,0.3),则E(X)等于()。

A. 3B. 2C. 1D. 0.3答案:A3. 两个相互独立的随机变量X和Y,如果P(X=0)=0.5,P(Y=0)=0.6,则P(X=0且Y=0)等于()。

A. 0.3B. 0.5C. 0.6D. 0.3答案:D4. 设随机变量X服从泊松分布,其参数为λ=2,则P(X=3)等于()。

A. 0.25B. 0.125C. 0.0625D. 0.03125答案:D5. 已知随机变量X服从均匀分布U(0,1),则P(0.5<X<0.7)等于()。

A. 0.2B. 0.3C. 0.4D. 0.5答案:A6. 设随机变量X服从正态分布N(2,4),则P(X<1)等于()。

A. 0.1587B. 0.8413C. 0.8413D. 0.1587答案:A7. 已知随机变量X服从指数分布,其参数为λ=0.1,则E(X)等于()。

A. 10B. 5C. 1D. 0.1答案:A8. 设随机变量X服从正态分布N(0,1),则P(-1<X<2)等于()。

A. 0.6826B. 0.9544C. 0.8413D. 0.9772答案:B9. 已知随机变量X服从二项分布B(5,0.4),则P(X=3)等于()。

A. 0.2048B. 0.3456C. 0.4096D. 0.5120答案:B10. 设随机变量X服从正态分布N(3,9),则P(X>4)等于()。

A. 0.5B. 0.1587C. 0.8413D. 0.8413答案:B二、填空题(每题4分,共20分)11. 已知随机变量X服从正态分布N(μ,σ^2),则X的期望E(X)等于______。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。

本文将提供一套概率统计的试题及答案,以供学习和复习之用。

一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。

答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。

答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。

答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。

答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。

答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。

所以,答案为0.6。

2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。

已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。

所以,答案为0.62。

3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。

所以,答案为0.4。

4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。

已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题卷:概率与统计1、某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表:以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.(1)求ξ的分布列;(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望. 解:(1)50,49,48,47,46,45,44=ξ由题设可知,一台打印机在5年内消耗墨盒数为22,23,24,25的概率分别为101,52,52,101, 且每台打印机消耗墨盒数发生的事件是相互独立事件。

因此111122(44),(45)210101001052512226112217(46)2,(47)2210555251010555012226212(48)2,(49)2105552551025111(50)1010100p p p p p p p ξξξξξξξ==⨯===⨯⨯===⨯⨯+⨯===⨯⨯+⨯⨯===⨯⨯+⨯===⨯⨯===⨯=故ξ的分布列为(2) 记y 表示在题设条件下,购买2台新机使用五年在消耗墨盒上所需的费用 (单位:元)若在购买两台新机时,每台机随机购买23盒墨,则需付款2223150462230163942⨯⎛⎫⨯-⨯⨯+⨯= ⎪⎝⎭则()()126176639463942006394220010025255025Ey ⎛⎫=⨯++++⨯++⨯⨯⎪⎝⎭()()216394320063944200661425100++⨯⨯++⨯⨯=2、某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为1,2,3,4,5的五批疫苗,供全市所辖的,,A B C 三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种. (1)求三个区注射的疫苗批号中恰好有两个区相同的概率;(2)记,,A B C 三个区选择的疫苗批号的中位数为X ,求 X 的分布列及期望. 试题解析:(1) P ( 三个区注射的疫苗批号恰好两个区相同)= 222532312525C C A ⋅⋅=. (2) 设三个区选择的疫苗批号的中位数为X 所有可能取值为1,2,3,4,5.()()2213333333141413311,251255125C C C A P X P X +⋅+⋅+⋅======,()()2113213322333333141437313,451255125C C C A C C A P X P X +⋅+⋅⋅+⋅+⋅======, ()233141355125C P X +⋅===.所以 X 的分布列:即X 的期望: 1331373113123453125125125125125EX =⨯+⨯+⨯+⨯+⨯=.3、已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒DNA 来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA ,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒DNA ,则在另外一组中逐个进行化验.(1)求依据方案乙所需化验恰好为2次的概率.(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元? 解:(1)方案乙所需化验恰好为2次的事件有两种情况:第一种,先化验一组,结果不含病毒DNA ,再从另一组中任取一个样品进行化验,则恰含有病毒DNA 的概率为611133635=⨯C C C ,第二种,先化验一组,结果病毒,再从中逐个化验,恰第一个样品含含有病毒的概率为611133625=⨯C C C ,所以依据方案乙所需化验恰好为2次的概率为316161=+。

(2)设方案甲化验的次数为ξ,则ξ可能的取值为1,2,3,4,5,对应的化验费用为η元,则()()11106P P ξη====, ()()511218656P P ξη====⨯=, ()()54113246546P P ξη====⨯⨯=, ()()5431143065436P P ξη====⨯⨯⨯=,()()5432153665433P P ξη====⨯⨯⨯=则其化验费用η的分布列为所以11111771018243036666633E η=⨯+⨯+⨯+⨯+⨯=(元).所以甲方案平均需要化验费773元4、2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事。

多家央企为了配合国家战略支持雄安新区建设,纷纷申请在新区建立分公司.若规定每家央企只能在雄县、容城、安新3个片区中的一个片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不影响且必须在其中一个片区建立分公司.向雄安新区申请建立分公司的任意4家央企中,(1)求恰有2家央企申请在“雄县”片区建立分公司的概率;(2)用X 表示这4家央企中在“雄县”片区建立分公司的个数,用Y 表示在“容城”或“安新”片区建立分公司的个数,记ξ=|X -Y |,求ξ的分布列.解:(1)法一 依题意,每家央企在“雄县”片区建立分公司的概率为13,去另外两个片区建立分公司的概率为23,这4家央企恰有2家央企在“雄县”片区建立分公司的概率为P =C 242231131)()(-=827. 法二 所有可能的申请方式有34种,恰有2家央企申请在“雄县”片区建立分公司的方式C 24·22种,从而恰有2家央企在“雄县”片区建立分公司的概率为:P =C 24·2234=827. (2)由独立重复试验概率得:P (X =k )=C k4kk--431131)()((k =0,1,2,3,4), 随机变量ξ的所有可能取值为0,2,4.P (ξ=0)=P (X =2)=827,P (ξ=2)=P (X =1)+P (X =3)=4081,P (ξ=4)=P (X =0)+P (X =4)=1781.所以随机变量ξ的分布列为:5、襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求y 关于x 的线性回归方程ˆˆˆybx a =+; (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?注: ()()()1122211ˆnni i iii i nni ii i x y nx y x x y y bx n x x x ====-⋅-⋅-==-⋅-∑∑∑∑, ˆˆa y bx =-⋅.试题解析:(1)恰好是不相邻的2天数据的概率是254315C -=. (2)由数据得:311126133212261014i ii x y==⨯+⨯+⨯=∑;()1111312123x =++=, ()1263226283y =++=, 3312281008x y ⋅=⨯⨯=;∴ 1ni i i x y nx y =-⋅=∑ 3131014100828i i i x y x y =-⋅=-=∑,322221111312434ii x==++=∑, 223312432x =⨯=;∴ 32222113nii i i x n x x x ==-⋅=-⋅=∑∑ 4344322-=,∴ 1221ˆni i i ni i x y nx y bx n x ==-⋅=-⋅∑∑31322136323i ii i i x y x y x x==-⋅⋅===-⋅∑∑;28ˆ28ˆ31ay bx =-=-⨯=-.故y 关于x 的线性回归方程38y x =-. (3)当10x =时, 38310822ˆyx =-=⨯-=, 22231-≤; 当8x =时, 383ˆ8816yx =-=⨯-=, 16161-≤,故得到的线性回归方程是可靠的.6、某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()y g 与尺寸()x mm 之间近似满足关系式b y ax =(,a b 为大于0的常数),现随机抽取6件合格产品,测得数据如下:(1)根据所给数据,求y 关于x 的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品,现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.附:对于一组数据()()()1122,,,,...,n n v v v μμμ,其回归直线v μαβ=+的斜率和截距的最小二乘估计分别为1221,,ˆˆˆni i i n i i v nv v v nv μμβαμβ==∑-⋅==-∑-.试题解析:(1)对(,0)by ax a b =>,两边取自然对数得ln ln ln y b x a =+,令ln ,ln i i i i v x u y ==,得ln u bv a =+, 1222124.618.375.36,0.271660.54224.6101.4ˆ66ni i i ni i v u nvubv nv ==-⨯⨯∑-====⎛⎫∑--⨯ ⎪⎝⎭, 18.3124.6ln 16ˆ6ˆ2a u bv =-=-⨯=,得ˆae =,故所求回归方程为12y ex =. (2)由1212,97y ex e e e x x x ⎛⎫==∈ ⎪⎝⎭,解得4981,58,68,78x x <<=,即优等品有3件.所以, ()199130123202020202E ξ=⨯+⨯+⨯+⨯=7、人耳的听力情况可以用电子测听器检测,正常人的听力在0~25 dB (分贝)之间,并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图如图:(1)现从听力测试值为(0,10]的同学中任意抽取4人,记听力非常优秀的同学人数为X ,求X 的分布列与数学期望;(2)在(1)中抽取的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发声情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号1234,,,,a a a a (其中1234,,,,a a a a 为1,2,3,4的一个排列).若Y 为两次排序偏离程度的一种描述,1234Y 1234a a a a =-+-+-+-,求Y ≤2的概率.解:(1)由频率分布直方图知,50名同学中听力测试值为(0,10]的同学人数为50×(0.016+0.024)×5=10,其中听力非常优秀的同学人数为4,听力优秀的人数为6.则X 的可能取值为0,1,2,3,4.P(X =0)=C 46C 410=114, P(X =1)=C 14·C 36C 410=821,P(X =2)=C 24·C 26C 410=37,P(X =3)=C 34·C 16C 410=435,P(X =4)=C 44C 410=1210.所以X 的分布列为E(X)=0×114+1×821+2×37+3×435+4×1210=1.6.(2)序号1234,,,,a a a a 的排列总数为A 44=24,当Y =0时,12341,2,3,4a a a a ====只有1种情况.当1234Y 12342a a a a =-+-+-+-=时,1234,,,,a a a a 的取值情况有3种,分别12341,2,4,3a a a a ====;12341,3,2,4a a a a ====;12342,1,3,4a a a a ====.故P(Y ≤2)=424=16.8、甲乙两家快递公司其“快递小哥”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超过45单的部分每单抽成6元(1)设甲乙快递公司的“快递小哥”一日工资y (单位:元)与送货单数n 的函数关系式为()(),f n g n ,求()(),f n g n ;(2)假设同一公司的“快递小哥”一日送货单数相同,现从两家公司各随机抽取一名“快递小哥”,并记录其100天的送货单数,得到如下条形图: 若将频率视为概率,回答下列问题:①记乙快递公司的“快递小哥”日工资为X (单位:元),求X 的分布列和数学期望;②小赵拟到两家公司中的一家应聘“快递小哥”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.(2)①记乙快递公司的“快递小哥”日工资为X (单位:元),由条形图得X 的可能取值为100,106,118,130,()()()101030401000.2,1060.3,1180.4,100100100P X P X P X +=========()101300.1100P X ===, 所以X 的分布列为:②乙快递公司的“快递小哥”日平均送单数为: 420.2440.4460.2480.1500.145⨯+⨯+⨯+⨯+⨯=, 所以乙快递公司的“快递小哥”日平均工资为70451115+⨯=(元), 由①知,甲快递公司的“快递小哥”日平均工资为112元. 故推荐小赵去乙快递公式应聘.9、2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:(1)由频率分布直方图可以认为,此次问卷调查的得分Z 服从正态分布(,210)N μ,μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求(50.594)P Z <<. (2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案;①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;②每次赠送的随机话费和对应概率如下:现有一位市民要参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列.附:21014.5≈, 若2(,)Z N μδ,则()0.6826P Z μδμδ-<<+=,(22)0.9544P Z μδμδ-<<+=.(1),,, ,,,(2),X 的可能取值为为,,,,的分布列为: X 10203040P13 718 29 118赠送话费(单位:元) 10 20概率23 1310、微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关? 附:()()()()()22n ad bc k a b c d a c b d -=++++,()20P K k ≥ 0.10 0.05 0.025 0.010 0k2.7063.8415.0246.635(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X 人,超过10000步的有Y 人,设X Y ξ=-,求ξ的分布列及数学期望.(Ⅰ)()2240141268403.8412020221811K ⨯⨯-⨯==<⨯⨯⨯,故没有95%以上的把握认为二者有关; -.积极型 懈怠型 总计 男 14 6 20 女 8 12 20 总计22184058E ξ=。

相关文档
最新文档