第二章 气固两相流动的基本概念和特性参数
合集下载
第2章 气液两相流的模型

多相管流理论与计算
讨论
对于水平管流
dp 0, 0 dZ 重位
x表示流向坐标
2
dp dv v v dx dx d 2
对于垂直管流
90
sin 1
以h表示高度
dp dv v2 g v dh dh d 2
多相管流理论与计算
而对于不可逆过程来讲:
以 dlw 表示摩擦消耗的功,则:
dqr dlw
dqr —摩擦产生的热量
dU dq pdV dlw
代入 dU 并整理得
dlw—摩擦消耗的功
dU mvdv mgsin dZ d ( pV ) dq 0
Vdp mvdv mgsin dZ dlw 0
连续性方程
质量守恒
动量方程 能量方程
动量守恒 能量守恒
多相管流理论与计算
一、均流模型的基本方程式
1.连续方程式
根据质量守恒定律
G vA 常数
2.动量方程式
取一维流段来研究,根据动量
定理,可得动量方程式:
稳定的一维均相流动
Adp dF gAdzsin Gdv
2-2
多相管流理论与计算
分气相流动
dFsg dpsg A f sg
f f sg
l v
2
2 sg
Ddz
v 2
2
dF dp 2 g dFsg dpsg
Ddz Ddz
2 g vsg
fv 2 2 f sg g vsg
2
2 dp g dpsg
分气相折算 系数
多相管流理论与计算
由于 f 0 、 f sl 和 f sg ,都是单相流动的范宁系数,很 容易求得。所以引入折算系数的实质是将求解两相流动 的范宁系数
气液两相流课件

40
5.2 均相流模型的摩擦压降计算
一.均相流模型计算法
➢ 两相摩擦压力梯度
dp f Ph 0
dz A
对于圆管,控制体周界长度(m):Ph D
通流面积(m2):A D2
4
流体与壁面的摩擦剪应力(N/m2):
o
f
m j2
全气相摩擦压降梯度
dPf dz
l
分液相摩擦压降梯度
dPf dz
g
分气相摩擦压降梯度
dPfl 液相部分摩擦压降梯度 dz
dPfg 分气相摩擦压降梯度 dz
2 lo
全液相折算系数
2go 全气相折算系数
2 l
分液相折算系数
2g 分气相折算系数
dPf 两相摩擦压降梯度 dz
X 2 马蒂内里参数
5
第一章 两相流基本参数及其 计算 方法
1.1 基本概念 1.2 气相介质含量 1.3 两相流的流量和流速 1.4 两相介质密度及比容
6
1.1 基本概念
1.物态:在某一条件下,物质存在的一种状态。 常见的物态是气态、液态和固态。有时物态 也称之为相,常见的物质三态也称为:气相、 液相、固相。
11
1.2 气相介质含量
1.2.1 定义
气相介质含量表示两相流中气相所占的份额。
1.2.2 几种表示方式
1.质量含气率x
单位时间内,流过通道某一截面的两相流体总质量 M中气相所占的比例份额。
x M M M M M
式中,M、 M分别表示气相和液相的质量流量,kg/s。
那么,质量含液率(湿度)可以表示为
4
课程目录
第一章 两相流基本参数及其计算方法(4学时) 第二章 两相流的流型和流型图(6学时) 第三章 两相流的基本方程(4学时) 第四章 截面含气率的计算(8学时) 第五章 直管的两相流压降计算(10学时) 第六章 两相流局部压降计算(2学时) 第七章 两相临界流动(4学时) 第八章 两相流流动不稳定性(2学时)
5.2 均相流模型的摩擦压降计算
一.均相流模型计算法
➢ 两相摩擦压力梯度
dp f Ph 0
dz A
对于圆管,控制体周界长度(m):Ph D
通流面积(m2):A D2
4
流体与壁面的摩擦剪应力(N/m2):
o
f
m j2
全气相摩擦压降梯度
dPf dz
l
分液相摩擦压降梯度
dPf dz
g
分气相摩擦压降梯度
dPfl 液相部分摩擦压降梯度 dz
dPfg 分气相摩擦压降梯度 dz
2 lo
全液相折算系数
2go 全气相折算系数
2 l
分液相折算系数
2g 分气相折算系数
dPf 两相摩擦压降梯度 dz
X 2 马蒂内里参数
5
第一章 两相流基本参数及其 计算 方法
1.1 基本概念 1.2 气相介质含量 1.3 两相流的流量和流速 1.4 两相介质密度及比容
6
1.1 基本概念
1.物态:在某一条件下,物质存在的一种状态。 常见的物态是气态、液态和固态。有时物态 也称之为相,常见的物质三态也称为:气相、 液相、固相。
11
1.2 气相介质含量
1.2.1 定义
气相介质含量表示两相流中气相所占的份额。
1.2.2 几种表示方式
1.质量含气率x
单位时间内,流过通道某一截面的两相流体总质量 M中气相所占的比例份额。
x M M M M M
式中,M、 M分别表示气相和液相的质量流量,kg/s。
那么,质量含液率(湿度)可以表示为
4
课程目录
第一章 两相流基本参数及其计算方法(4学时) 第二章 两相流的流型和流型图(6学时) 第三章 两相流的基本方程(4学时) 第四章 截面含气率的计算(8学时) 第五章 直管的两相流压降计算(10学时) 第六章 两相流局部压降计算(2学时) 第七章 两相临界流动(4学时) 第八章 两相流流动不稳定性(2学时)
锅炉气固两相流基础理论

2. 颗粒球形度 表征颗粒接近球形的程度。球形度数值越小,颗 粒偏离球形越远。用实测方法获得。 •
3.宽筛分颗粒的平均粒径
• 筛分重量平均直径:dav=∑xidi • Xi—不同直径颗粒份额 • Di—颗粒各种不同粒径,用不同孔径的筛子表示 • 对孔径小于25.4mm的孔,用25.4mm长度上的 孔数表示,简称“目” • 表3-3 为我国常用的泰勒标准筛的目数(25.4mm 长度上孔数)和对应孔径(相邻网线间的孔径)
3.颗粒的扬析和夹带
• 夹带:指单一颗粒或多组分系统中,气流从床层 • 中带走固体颗粒的现象。 • 扬析:从混合物中分离和带走细粉的现象。
二、 炉内颗粒浓度分布
• • • • • • • • •
1. 颗粒浓度沿床高(轴向) 分布规律 从颗粒浓度沿床高的分 布特征看,处于不同流型 状态的流化床内的颗粒浓 度沿床高分布规律差别很大。 从总体上讲,循环流化床炉 内颗粒浓度一般呈上稀下浓 的不均匀分布,如图2-21所示。
•
通常,对于挥发分较高的煤,粒径允许范围较 大,筛分较宽;对于挥发分较低的无烟煤、煤矸 石,一般要求粒径较小,相对筛分较窄。 • 国内目前运行的循环流化床锅炉,其燃料粒径 要求一般在0.1~10mm、0.1~l5mm,特殊的要求 0.1~20mm,这些燃料粒径要求范围较大,均属 宽筛分。
• 6.燃料颗粒特性—称燃煤的粒比度 • 是选择制煤设备和锅炉运行的参数 • 细颗粒多,一般炉温整体高,燃烧后燃 • 粗颗粒多,影响排渣,炉膛易结焦 • 7.流化速度--空塔速度,不是一个常量,指床料或物 料流化时动力流体的速度 • 运行中控制和调整风量,就控制盒调整了流化速 度,即控制炉内物料的流化状态 • 一次风:通过布风板和风帽使床料(或物料)流化起 • 来的空气
材料工程《两相运动现象》课件

第二章 两相运动现象
一.基本概念 二.粒子-流体的相互作用 三.连续相方程及数值模拟
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
1.相
某一系统中具有相同成分和相同物理、 化学性质的均匀物质部分,即物质的单一 状态。
气-固、气-液、液-固、气-液-固 对动力学系统:不同速度、不同温度和不
二.粒子-流体的相互作用
2.2降尘室工作原理 含
净 化
入口截面:矩形
尘 气
气 体
降尘室底面积:
体
A b L
含尘气流通截面积:
S bH
颗粒
降尘室操作示意图
含尘气体积流量:
qV H bu
含尘气体
u
ut
净化气体
材料工程基础及设备多媒体课件
第二章 两相运动现象
二.粒子-流体的相互作用
颗粒的停留时间 颗粒的沉降时间
一.基本概念 混合型喷雾干燥器
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念 气力输送原理
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
气体输送类型及装置-吸引式
低真空吸引 气源真空度<13kPa 高真空吸引 气源真空度<0.06kPa
3.离心沉降设备
工业上应用的两种型式: 旋流器:设备静止,流体旋转运动; 离心沉降机:设备本身和液体一起旋转。
3.1旋风分离器
旋风分离器是工业上应用比较广泛的气、固离 心分离设备之一,是利用离心沉降原理从气流 中分离出固体颗粒的设备。
材料工程基础及设备多媒体课件
一.基本概念 二.粒子-流体的相互作用 三.连续相方程及数值模拟
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
1.相
某一系统中具有相同成分和相同物理、 化学性质的均匀物质部分,即物质的单一 状态。
气-固、气-液、液-固、气-液-固 对动力学系统:不同速度、不同温度和不
二.粒子-流体的相互作用
2.2降尘室工作原理 含
净 化
入口截面:矩形
尘 气
气 体
降尘室底面积:
体
A b L
含尘气流通截面积:
S bH
颗粒
降尘室操作示意图
含尘气体积流量:
qV H bu
含尘气体
u
ut
净化气体
材料工程基础及设备多媒体课件
第二章 两相运动现象
二.粒子-流体的相互作用
颗粒的停留时间 颗粒的沉降时间
一.基本概念 混合型喷雾干燥器
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念 气力输送原理
材料工程基础及设备多媒体课件
第二章 两相运动现象
一.基本概念
气体输送类型及装置-吸引式
低真空吸引 气源真空度<13kPa 高真空吸引 气源真空度<0.06kPa
3.离心沉降设备
工业上应用的两种型式: 旋流器:设备静止,流体旋转运动; 离心沉降机:设备本身和液体一起旋转。
3.1旋风分离器
旋风分离器是工业上应用比较广泛的气、固离 心分离设备之一,是利用离心沉降原理从气流 中分离出固体颗粒的设备。
材料工程基础及设备多媒体课件
4 湍流气固两相流动模型

k
(nkd
3 k
/
6)
p
(58)
式中 m— 混合物密度;
— 流体(气体)的表观密度;
p , k — 颗粒的表观密度; p — 颗粒材料密度。
颗粒相及气相的体积分数定义为:
p p / p
1 p
(59)
对于稀疏气固两相流动有
3 单颗粒动力学模型 气固两相流的最简化的模型
模型假设: 忽略颗粒存在对流体流动的影响 已知流体中互不相关的无脉动的单颗粒的运动,包括颗粒平 均运动或对流运动的轨道,以及颗粒速度及温度沿轨道的变 化
mp
dv pi dt p
Fdi
Fvmi Fpi
FBi
FM i
Fsi
m k nkvi nkvim k
vki nk m k
nk vkim k
m nk vki
nk vkim k
/ mk
t
(nk vki )
(79)
流体能量分方程
t
(
h)
xj
(
v jh)
xj
(
k ckTk
)
xj
(
v jcpT
k
k vkjckTk )
(73)
xj
(
T xj
)
wsQs
qr
nkQh
nkQrk
流体(气)相组分方程
t
( Ys )
xj
(
v jYs )
xj
(D
气固两相流体力学

颗粒在气相中做变速运动,由于变速运动增加的阻力,其表达 式为:
F B a3 2d p 2(
1t
1d
g g)2t0(t t')2d t(v g vp)d t'
对其气固两相流,Basset力为颗粒沉降阻力(斯托克斯阻力) 的十分之一,通常忽略其影响;但对于液固流,该力必须考虑。
10.2.7 Saffman升力
颗粒开始出现运动噎塞,形成料栓,运动变为不稳定状态。
9
气固颗粒两相流体力学
4. 柱状流 栓状的固相颗粒聚集,形成料柱。
10.3.2 水平管道内的流型 1. 均匀流
固相在管道横截面内分布均匀,流动通畅。 2. 疏密流
重力作用显现,颗粒分布呈疏密不一分布,底部颗粒跳跃前进。 3. 沙丘流
颗粒在重力作用下开始沉降,在管道下部形成波纹状沙丘。 4. 栓状流
单位管长中颗粒质量与输送气体的质量之比称为真实混合比。
'q qm m g p//v vg p g p '' 1 g p1 v vg p
5
气固颗粒两相流体力学
10.2 作用在固体颗粒上的力 气固两相流问题的解决依赖于颗粒相与气相之间的动量交换,
为了很好地计算动量交换,必须对它们之间相互作用力给出描述。 10.2.1 重力
固体颗粒在有速度梯度的流场中运动时,颗粒两侧流速不同导致
一个由低速区指向高速区的作用力。对于低雷诺数流动区域
(Re<1):
F s 1 .6 1 d p 2 (gg ) 1 /2 ( v g v p )|d v g /d y |1 /2
8
气固颗粒两相流体力学
10.2.8 Magnus效应 固体颗粒在气相中存在旋转时,会产生一个与流动方向垂直的、
气液两相流 第2章-两相流的基本理论

2.1管内气液两相流的基本参数
9、滑动比s:(slip ratio) 气相真实平均速度和液相真实平均速度之比。 s=VG/VL(反映两相间流速的不同)
10、滑移速度Vs:(slip velocity) m/s 两相间速度之差。(与两相间的动量交换密切相关) Vs=VG-VL=VGL=-VLG
11、两相流体的平均密度:kg/m3 有两种表示方法:真实密度 VS 流动密度
2、半理论半经验方法(semi-Empirical) ①根据所研究具体过程的特点适当简化; ②再从基本方程中求得简化了的该两相流过程的函数形式; ③用实验方法定出方程中的经验系数。
2.2 气液两相流的处理方法
3、流体力学分析法(Fluid-dynamic Analysis)
①首先分析流型或流动的具体特征; ②根据具体流型或流动的具体特征建立相应的描述方程 ③求解。
(1 )(VL
Vm )
(1 )VLd
注意:流率(flux)和流量(flow rate)意义上的不同。
2.2 气液两相流的处理方法
两相流研究处理中的问题
两相流是流体力学的一个分支,流体力学的基本方程仍然 适用于两相流,但是应当做如下考虑:
①应对各相列出各自的守恒方程(质量守恒、动量守恒、能量守恒);
该方法能较深入地探究两相流的本质,更具有普遍意义,应当说更准确和 有前途。
另一流体力学分析法是:现在已有人直接从两相或多相流体的基本微分 方程出发进行求解,不过在寻求方程封闭时,仍可能要根据具体问题( 或流型的特点)来找出特定封闭方程
2.3 气液两相流的基本模型
(主要用于泡状流、雾状流)
这是一种最简单的分析方法,又称为“摩擦因子”模型或 “雾状流”模型。 基本思想:将两相混合物看作是混合均匀的、具有平均流动 特性和平均物性的单一流体来处理。 基本假定:⑴两相具有相等的线速度;⑵两相间处于热力学 平衡;
气力输送之气固两相流

用气力输送系统输送物料必须保持一定的压力,尽管使用300lb/in2(2MPa)高气源压 力是不常见的,临界高背压输送相对来说是少的,如果有,需要管道分段。在分段基础 上设计长距离气力输送系统。
1.4 输送气体速度
气力输送系统的风机、压缩机或负压风机除气源压力外引入容积流量参数,尽管输
送空气速度尤其是输送线入口速度或拾取速度决定气力输送设计参数。在单一管径下不 管是正压或负压输送系统,管线始端的物料给料点总是风速最小。
2.2.2 案例分析
输送管线压力损失对粒子浓度影响超过了输送空气流量,用普通的硅酸盐水泥、含 沙的矾土和聚乙烯颗粒三种完全不同的物对应的输送方式。
用同一轴上显示三种物料输送资料以便于直观比较它们的输送能力,这三种物料分 别经图4.2所示管线进行输送研究。气速200ft/min(10m/s)表压100lb/in2(689.5KPa),发送 罐以上出料形式将物料送至管道,用来输送物料最大压力值是表压40lb/in2(275.8KPa)。
试验范围应包括物料输送模式,以往的可用经验很少时,按比例增加气源压力、 管径、输送距离、用已有的资料预测管道参数。假如不能按比例增加输送模型,推断出 长距离、高固体填充率和最低输送气速范围是多少,不要冒然用于实际,除非证明物料 就是像这样产能输送的。
2.1 输送模式
高压常见于稀相输送,假如物料适合稀相输送模式。物料特性影响输送形式,同一 输送条件下物料流量也存在差异,成功设计以前未曾尝试过的物料输送,试验是至关重 要的。所以输送试验中必须有附加的高压空气,建立输送界限和一个非常宽输送范围条 件。
稀相悬浮流阻力是输送管线压力损失主要贡献者,不管从给料点或直管段或弯头加 速粒子,不同的物料表现不同,这差异在本章中将成为重点,作为主要参数将贯穿本手册。
1.4 输送气体速度
气力输送系统的风机、压缩机或负压风机除气源压力外引入容积流量参数,尽管输
送空气速度尤其是输送线入口速度或拾取速度决定气力输送设计参数。在单一管径下不 管是正压或负压输送系统,管线始端的物料给料点总是风速最小。
2.2.2 案例分析
输送管线压力损失对粒子浓度影响超过了输送空气流量,用普通的硅酸盐水泥、含 沙的矾土和聚乙烯颗粒三种完全不同的物对应的输送方式。
用同一轴上显示三种物料输送资料以便于直观比较它们的输送能力,这三种物料分 别经图4.2所示管线进行输送研究。气速200ft/min(10m/s)表压100lb/in2(689.5KPa),发送 罐以上出料形式将物料送至管道,用来输送物料最大压力值是表压40lb/in2(275.8KPa)。
试验范围应包括物料输送模式,以往的可用经验很少时,按比例增加气源压力、 管径、输送距离、用已有的资料预测管道参数。假如不能按比例增加输送模型,推断出 长距离、高固体填充率和最低输送气速范围是多少,不要冒然用于实际,除非证明物料 就是像这样产能输送的。
2.1 输送模式
高压常见于稀相输送,假如物料适合稀相输送模式。物料特性影响输送形式,同一 输送条件下物料流量也存在差异,成功设计以前未曾尝试过的物料输送,试验是至关重 要的。所以输送试验中必须有附加的高压空气,建立输送界限和一个非常宽输送范围条 件。
稀相悬浮流阻力是输送管线压力损失主要贡献者,不管从给料点或直管段或弯头加 速粒子,不同的物料表现不同,这差异在本章中将成为重点,作为主要参数将贯穿本手册。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体-颗粒流的主要特点是它们有不同的速度, 也可以有不同的温度,以致两相间必然发生相互 作用;颗粒受到气流的阻力作用,而且与气体有 热交换。这样互相作用的结果,就使它们的速度、 温度逐渐接近,最终达到某种相对平衡状态。它 们接近的瞬时速率决定于该瞬时的速度差和温度 差。这样的接近过程称为松弛过程,并用松弛时 间表示其特征时间
其中 W 和 W 分别是单位时间通过的颗粒质 量和气体质量,当颗粒速度 u 等于输送气 流速度 u g 时,则
p
g
p
z
p
(1 )
g
(2-6)
• 混合比z是一个无量纲量。它是气固两相流
中一个很重要的参数。它的大小直接影响 输送管道内压力损失。混合比越大,对于 增大输送能力来说是有利的。但混合比过 大,在同样气流速度下可能产生堵塞,输 送压力也增高。因此混合比的数值受物料 的物理性质、输送方式以及输送条件等因 素的控制。
第二章 气固两相流动
• 气固两相流广泛存在于煤粉燃烧、气力输
送、环保除尘等场合。 • 其特性参数主要包括浓度、空隙度、密度、 比面积、粘度、比热、导热系数、颗粒松 弛时间、颗粒平均尺寸等等。
2.1 气固两相流动的基本概念和特性参数 2.1.1 气固两相流动的基本概念 1.气固两相流的基本特点 气体分子分布均匀,而颗粒是分散的、直径大小不同,为 了简便起见仅考虑一个平均尺寸。 颗粒相一般不作为连续介质。 颗粒相的惯性比较大,气体和颗粒之间存在着速度的滑移, 因而各自运动规律会相互影响。 颗粒之间以及颗粒和壁面的碰撞和摩擦可以产生静电效应。 由于颗粒尺寸大小不一,形状也不同,使得每个颗粒都有 不同速度。
n V
两相混合物的密度
W / V
g
(1 )
p
(2-10)
这是按体积份额计算的。如按质量份额计算,则 有 1 1 (2-11) g p
5.球形度 实际的颗粒大都是不规则的形状,并不是球形的。 因此,把颗粒看作为球形进行理论分析一定会与 实际情况不一致。一般需要将理论公式进行修正。 球形度表示颗粒接近球形的程度,它的表达式是 非球形颗粒的实际表面 A 与非球形颗粒同体积的 圆球表面积 A s 之比,即
• 2.粒径
粒径表示每个固体颗粒的大小程度,是判断固体 颗粒粗细程度的一个指标。。如果颗粒是球形的 或近似于球形的,那么可以取其直径作为粒径。 若颗粒的大小和形状不同,要对颗粒进行准确测 定并将其表示出来是几乎不可能的。许多人提出 了各种各样的粒径测定方法,在这些方法中,实 际应用的大致有两种。
1)直接测定的当量直径(显微镜粒径):当颗粒的 大小能用显微镜直接测定时可以取投影面一定方 向上的各个颗粒的最大尺寸作为颗粒的粒径。 2)间接测定的有效直径(沉降颗粒直径):根据颗 粒在气体或液体中的沉降速度求得颗粒的有效直 径。它主要用于测定不能用筛网计测的极小微粒。 首先测定出球体颗粒的沉降速度,再根据公式求 出沉降速度相应的球体直径。
浓度通常的指单位容积的气固两相混合物 内所含的颗粒质量。
c Wp V Vp Wp V Vp (1 )
p
(2-7)
输送浓度是指单位时间内单位容积的气体 所输送的固体重量,用符号 表示。
Wpg Vg Wpg Wg Wg Vg z g g
(2-8)
• 输送浓度是有量纲量。对于稳定的均匀流
• 3.粒度分布
颗粒物料中通常包含有各种不同粒径的颗粒,对 不同粒径的颗粒在物料中所占的百分数,可以用 粒度分布表示。颗粒度分布曲线的作法如下:首 先取出一部分代表性物料,将颗粒径按几微米大 小的间隔进行分区,分别测定个颗粒粒径间隔间 的颗粒重量或颗粒个数。然后以颗粒径为横坐标, 以相同颗粒径间隔(10) 之间的颗粒重量(或颗粒数) 的百分数为纵坐标,画出矩形图。最后将所画出 的各矩形上面的线段的中点连接,便可以得到颗 粒度分布曲线。
p
As / A p
(2-12)
• 球形度与空隙率有关,球形度越小,在密
度填充时,由于表面形状极不规则,颗粒 可以互相交错,使空隙率减小。在松散填 充时,颗粒间空隙增大,空隙率也增大。
2.1.3 气固两相流动的基本特性 1.稀相和浓相 顾名思义,稀相是指气相中悬浮着很少的 固体颗粒。浓相是指气相中含有很多的悬 浮颗粒。要确切地给出稀相和浓相的界限 是很困难的。
1)速度松弛? 2)温度松弛?
Thanks for your attention!
Байду номын сангаас
• 4.平均粒径
平均粒径是颗粒群中大小各不相同的粒径的平均 值。平均粒径可定量地表示颗粒群的大小。确定 平均粒径的方法很多,大致有算术平均、几何平 均、调和平均、面积长度平均、体面积平均、重 量平均、平均表面积、平均体积、比表面积、中 径和多数径等。其中应用最多的是中径和多数径。 同一颗粒群用各种方法平均后,会得到各种不同 的平均粒径值。
2.1.2 气固两相流动的特性参数 设气体-固体颗粒混合物的体积为V,质量 为W,其中气体的体积为 V ,质量为 ; W 固体颗粒的体积为 ,质量为 ,颗粒 V W 数为 N 。
g
g
p
p
1. 质量含气率 气体质量占两相混合物质量的份额为质量 含气率,即 W W (2-1)
g g
W
Wg W
W
p
而
1
W W
p
p p
Wg W
(2-2)
为质量含固率。
2. 容积含气率 气体体积占两相混合物体积的份额为容积 含气率,即
Vg V
1 Vp V
Vg Vg Vp
Vp Vg Vp
(2-3) (2-4)
而
• 为容积含气率。它是研究气体-固体颗
粒两相流的重要参数之一。容积含气率与颗 粒的球形度、均匀程度和堆积情况有关。颗 粒的球形度小的,即形状不规则的,由于颗 粒群可以相互交错,容积含气率小;颗粒粒 径不均匀的,颗粒群中的细颗粒可以填充在 粗颗粒之间,比粒径均匀的容积含气率要小; 密实堆积比较松散堆积的容积含气率小。一 般物料任意堆积时的容积含气率约为0.4。
• 有两种常用的区分方法:一是以颗粒的百分含量区分;用
颗粒的容积百分含量区分时,把颗粒的容积百分含量大于 某一浓度指标的气固两相混合物称为浓相,低于该浓度指 标的称为稀相。 二是从颗粒群的运动机理来加以区分。颗粒群中的颗粒运 动是受空气动力以及颗粒之间相互碰撞的两种力所支配。 如果颗粒的运动的由当地气动力所支配,与颗粒-颗粒的 碰撞无关,这意味着气流中颗粒极稀少,粒子在下一次碰 撞前有足够的时间响应当地的流场变化,这种气体-固体 两相混合物的流动称为稀相流动。相反,如果颗粒的运动 主要由碰撞所支配,与当地的流场无关。这种情况意味着 颗粒很浓,颗粒在下一次碰撞前没有充裕时间响应流场变 化,这种气体-固体两相混合物的流动称为浓相流动。
• 3.混合比和浓度
气固两相流中的混合比(或载荷比)是指 单位时间内通过输送管道有效截面的颗粒 的质量与气体的质量之比值,用符号z表示。
z W
p
pu p Ap g u g Ag
p u p (1 ) A g u gA
Wg
p
u p (1 )
g ug
(2-5)
St 1
• 3.颗粒的沉降速度和悬浮速度
研究气流中颗粒的运动,很重要的问题是 要知道颗粒的大小以及它的特性。颗粒的 特性首先明显的表现在沉降或悬浮速度上。
沉降速度的计算式
u
2 w
4 gd 3C D
p
p g g
(2-14)
通常称为“标准阻力系
圆球的阻力系数 数”。
CD
• 4. 松弛过程
•
• 2.平衡流和冻结流 斯托克斯数
气体-颗粒两相混合物的流动中,颗粒的速度与 输送气体的速度相等时,即 u p = u g 称为平衡流。 如果颗粒的速度不受输送气体的影响,或者说, 颗粒有足够的时间来响应气体流场的变化,对于 这种流动称为冻结流。因此,平衡流也可以理解 为颗粒有充分时间响应气体流场的变化,使颗粒 始终保持与气体的速度相等。
动,混合比在管道内各部分都是一定的。 但是,输送浓度由于空气的膨胀(或压 缩),引起空气密度的减小(或增大), 而使输送浓度逐渐变小(或增大)。在流 道的不同位置上,输送浓度的变化又直接 影响该处的能量消耗,所以对于这种流动 可以用输送浓度来计算压力损失值。
4. 数密度 单位体积混合物所含固体颗粒的数目称为固相的 数密度,即 N (2-9)
平衡流与冻结流可以用斯托克斯相似准则数加以 区别,该相似准则是空气动力响应时间和流动的 滞留时间的比值。
St
u r
pd
2 p
ug L
18 g
(2-13)
u St 1 时,即 u r , p 接近 u g ,称平衡流。
时,即 u r ,不受流场变化的影响而 接近常数,称冻结流。根据经验,St 0 . 1 的流 动可看着平衡流。
其中 W 和 W 分别是单位时间通过的颗粒质 量和气体质量,当颗粒速度 u 等于输送气 流速度 u g 时,则
p
g
p
z
p
(1 )
g
(2-6)
• 混合比z是一个无量纲量。它是气固两相流
中一个很重要的参数。它的大小直接影响 输送管道内压力损失。混合比越大,对于 增大输送能力来说是有利的。但混合比过 大,在同样气流速度下可能产生堵塞,输 送压力也增高。因此混合比的数值受物料 的物理性质、输送方式以及输送条件等因 素的控制。
第二章 气固两相流动
• 气固两相流广泛存在于煤粉燃烧、气力输
送、环保除尘等场合。 • 其特性参数主要包括浓度、空隙度、密度、 比面积、粘度、比热、导热系数、颗粒松 弛时间、颗粒平均尺寸等等。
2.1 气固两相流动的基本概念和特性参数 2.1.1 气固两相流动的基本概念 1.气固两相流的基本特点 气体分子分布均匀,而颗粒是分散的、直径大小不同,为 了简便起见仅考虑一个平均尺寸。 颗粒相一般不作为连续介质。 颗粒相的惯性比较大,气体和颗粒之间存在着速度的滑移, 因而各自运动规律会相互影响。 颗粒之间以及颗粒和壁面的碰撞和摩擦可以产生静电效应。 由于颗粒尺寸大小不一,形状也不同,使得每个颗粒都有 不同速度。
n V
两相混合物的密度
W / V
g
(1 )
p
(2-10)
这是按体积份额计算的。如按质量份额计算,则 有 1 1 (2-11) g p
5.球形度 实际的颗粒大都是不规则的形状,并不是球形的。 因此,把颗粒看作为球形进行理论分析一定会与 实际情况不一致。一般需要将理论公式进行修正。 球形度表示颗粒接近球形的程度,它的表达式是 非球形颗粒的实际表面 A 与非球形颗粒同体积的 圆球表面积 A s 之比,即
• 2.粒径
粒径表示每个固体颗粒的大小程度,是判断固体 颗粒粗细程度的一个指标。。如果颗粒是球形的 或近似于球形的,那么可以取其直径作为粒径。 若颗粒的大小和形状不同,要对颗粒进行准确测 定并将其表示出来是几乎不可能的。许多人提出 了各种各样的粒径测定方法,在这些方法中,实 际应用的大致有两种。
1)直接测定的当量直径(显微镜粒径):当颗粒的 大小能用显微镜直接测定时可以取投影面一定方 向上的各个颗粒的最大尺寸作为颗粒的粒径。 2)间接测定的有效直径(沉降颗粒直径):根据颗 粒在气体或液体中的沉降速度求得颗粒的有效直 径。它主要用于测定不能用筛网计测的极小微粒。 首先测定出球体颗粒的沉降速度,再根据公式求 出沉降速度相应的球体直径。
浓度通常的指单位容积的气固两相混合物 内所含的颗粒质量。
c Wp V Vp Wp V Vp (1 )
p
(2-7)
输送浓度是指单位时间内单位容积的气体 所输送的固体重量,用符号 表示。
Wpg Vg Wpg Wg Wg Vg z g g
(2-8)
• 输送浓度是有量纲量。对于稳定的均匀流
• 3.粒度分布
颗粒物料中通常包含有各种不同粒径的颗粒,对 不同粒径的颗粒在物料中所占的百分数,可以用 粒度分布表示。颗粒度分布曲线的作法如下:首 先取出一部分代表性物料,将颗粒径按几微米大 小的间隔进行分区,分别测定个颗粒粒径间隔间 的颗粒重量或颗粒个数。然后以颗粒径为横坐标, 以相同颗粒径间隔(10) 之间的颗粒重量(或颗粒数) 的百分数为纵坐标,画出矩形图。最后将所画出 的各矩形上面的线段的中点连接,便可以得到颗 粒度分布曲线。
p
As / A p
(2-12)
• 球形度与空隙率有关,球形度越小,在密
度填充时,由于表面形状极不规则,颗粒 可以互相交错,使空隙率减小。在松散填 充时,颗粒间空隙增大,空隙率也增大。
2.1.3 气固两相流动的基本特性 1.稀相和浓相 顾名思义,稀相是指气相中悬浮着很少的 固体颗粒。浓相是指气相中含有很多的悬 浮颗粒。要确切地给出稀相和浓相的界限 是很困难的。
1)速度松弛? 2)温度松弛?
Thanks for your attention!
Байду номын сангаас
• 4.平均粒径
平均粒径是颗粒群中大小各不相同的粒径的平均 值。平均粒径可定量地表示颗粒群的大小。确定 平均粒径的方法很多,大致有算术平均、几何平 均、调和平均、面积长度平均、体面积平均、重 量平均、平均表面积、平均体积、比表面积、中 径和多数径等。其中应用最多的是中径和多数径。 同一颗粒群用各种方法平均后,会得到各种不同 的平均粒径值。
2.1.2 气固两相流动的特性参数 设气体-固体颗粒混合物的体积为V,质量 为W,其中气体的体积为 V ,质量为 ; W 固体颗粒的体积为 ,质量为 ,颗粒 V W 数为 N 。
g
g
p
p
1. 质量含气率 气体质量占两相混合物质量的份额为质量 含气率,即 W W (2-1)
g g
W
Wg W
W
p
而
1
W W
p
p p
Wg W
(2-2)
为质量含固率。
2. 容积含气率 气体体积占两相混合物体积的份额为容积 含气率,即
Vg V
1 Vp V
Vg Vg Vp
Vp Vg Vp
(2-3) (2-4)
而
• 为容积含气率。它是研究气体-固体颗
粒两相流的重要参数之一。容积含气率与颗 粒的球形度、均匀程度和堆积情况有关。颗 粒的球形度小的,即形状不规则的,由于颗 粒群可以相互交错,容积含气率小;颗粒粒 径不均匀的,颗粒群中的细颗粒可以填充在 粗颗粒之间,比粒径均匀的容积含气率要小; 密实堆积比较松散堆积的容积含气率小。一 般物料任意堆积时的容积含气率约为0.4。
• 有两种常用的区分方法:一是以颗粒的百分含量区分;用
颗粒的容积百分含量区分时,把颗粒的容积百分含量大于 某一浓度指标的气固两相混合物称为浓相,低于该浓度指 标的称为稀相。 二是从颗粒群的运动机理来加以区分。颗粒群中的颗粒运 动是受空气动力以及颗粒之间相互碰撞的两种力所支配。 如果颗粒的运动的由当地气动力所支配,与颗粒-颗粒的 碰撞无关,这意味着气流中颗粒极稀少,粒子在下一次碰 撞前有足够的时间响应当地的流场变化,这种气体-固体 两相混合物的流动称为稀相流动。相反,如果颗粒的运动 主要由碰撞所支配,与当地的流场无关。这种情况意味着 颗粒很浓,颗粒在下一次碰撞前没有充裕时间响应流场变 化,这种气体-固体两相混合物的流动称为浓相流动。
• 3.混合比和浓度
气固两相流中的混合比(或载荷比)是指 单位时间内通过输送管道有效截面的颗粒 的质量与气体的质量之比值,用符号z表示。
z W
p
pu p Ap g u g Ag
p u p (1 ) A g u gA
Wg
p
u p (1 )
g ug
(2-5)
St 1
• 3.颗粒的沉降速度和悬浮速度
研究气流中颗粒的运动,很重要的问题是 要知道颗粒的大小以及它的特性。颗粒的 特性首先明显的表现在沉降或悬浮速度上。
沉降速度的计算式
u
2 w
4 gd 3C D
p
p g g
(2-14)
通常称为“标准阻力系
圆球的阻力系数 数”。
CD
• 4. 松弛过程
•
• 2.平衡流和冻结流 斯托克斯数
气体-颗粒两相混合物的流动中,颗粒的速度与 输送气体的速度相等时,即 u p = u g 称为平衡流。 如果颗粒的速度不受输送气体的影响,或者说, 颗粒有足够的时间来响应气体流场的变化,对于 这种流动称为冻结流。因此,平衡流也可以理解 为颗粒有充分时间响应气体流场的变化,使颗粒 始终保持与气体的速度相等。
动,混合比在管道内各部分都是一定的。 但是,输送浓度由于空气的膨胀(或压 缩),引起空气密度的减小(或增大), 而使输送浓度逐渐变小(或增大)。在流 道的不同位置上,输送浓度的变化又直接 影响该处的能量消耗,所以对于这种流动 可以用输送浓度来计算压力损失值。
4. 数密度 单位体积混合物所含固体颗粒的数目称为固相的 数密度,即 N (2-9)
平衡流与冻结流可以用斯托克斯相似准则数加以 区别,该相似准则是空气动力响应时间和流动的 滞留时间的比值。
St
u r
pd
2 p
ug L
18 g
(2-13)
u St 1 时,即 u r , p 接近 u g ,称平衡流。
时,即 u r ,不受流场变化的影响而 接近常数,称冻结流。根据经验,St 0 . 1 的流 动可看着平衡流。