高考数学数列综合题 [人教版]
高考数学压轴专题人教版备战高考《数列》全集汇编含解析

【高中数学】数学《数列》复习资料一、选择题1.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.3.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.4.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( )A .1019892 B .1020192 C .1119892 D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.5.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--.根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.6.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.7.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42C .63D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.8.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.9.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.10.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.11.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=,当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- ,因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( )A .11121n +--B .1121n -+ C .1121n -+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.14.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35 B .33C .31D .29【答案】C 【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 考点:等比数列的通项公式及性质.15.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.16.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.17.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A 【解析】 【分析】按照程序框图模拟运行即可得解. 【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-,13222S =-+=;4i =,1112x ==--,31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3,所以输出112672110072S ⎛⎫=-++⨯-=⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,所以f(x)在(0,23π)上存在零点,即223ππω<,得到ω34>.故答案为33, 42⎛⎤ ⎥⎝⎦故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.43钱B.73钱C.83钱D.103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
2024届高考一轮复习数学课件(新教材人教A版):数列的综合问题

所以an=a1qn-1=3 2 .
123456
(2)若bn=log3a2n-1,求数列{bn}的前n项和Tn. 由(1)可得a2n-1=3n-1,所以bn=log3a2n-1=n-1, 故 Tn=0+1+2+…+n-1=nn- 2 1.
123456
2.(2022·潍坊模拟)已知等比数列{an}的前n项和为Sn,且a1=2,S3=a3+6. (1)求数列{an}的通项公式;
当n=1时,整理得a1=ma1-1,解得m=2时,Sn-1=2an-1-1,
(b)
123456
(a)-(b)得 an=2an-2an-1,整理得aan-n 1=2(常数),
所以数列{an}是以1为首项,2为公比的等比数列,
所以an=2n-1.
选条件③时,2a1+3a2+4a3+…+(n+1)an=kn·2n(k∈R),
123456
(2)设{an}的前n项和为Sn,求证:(Sn+1+an+1)bn=Sn+1bn+1-Snbn;
因为bn+1=2bn≠0, 所以要证(Sn+1+an+1)bn=Sn+1bn+1-Snbn, 即证(Sn+1+an+1)bn=Sn+1·2bn-Snbn, 即证Sn+1+an+1=2Sn+1-Sn, 即证an+1=Sn+1-Sn, 而an+1=Sn+1-Sn显然成立, 所以(Sn+1+an+1)bn=Sn+1·bn+1-Sn·bn.
123456
(2)设数列{an}中不在数列{bn}中的项按从小到大的顺序构成数列{cn}, 记数列{cn}的前n项和为Sn,求S100.
123456
由(1)得bn=2n=2·2n-1=a2n-1, 即bn是数列{an}中的第2n-1项. 设数列{an}的前n项和为Pn,数列{bn}的前n项和为Qn, 因为b7=a26=a64,b8=a27=a128, 所以数列{cn}的前100项是由数列{an}的前107项去掉数列{bn}的前7项 后构成的, 所以 S100=P107-Q7=107×22+214-21--228=11 302.
人教版高中数学必修5《数列》练习题(有答案)

②指出 S1, S2, , S12 中哪一个值最大,并说明理由. 解:① S12 6(a1 a12 ) 6(a3 a10 ) 6(2 a3 7 d ) 0
24 7d 0 24 8d 0
d
24
又 S13 13( a1 a13 )
13
Hale Waihona Puke 13(a3 a11)(2 a3 8d ) 0
7
2
2
2
d3
从而 24 d 3 7
三、等比数列
知识要点
1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做
等比数列,这个常数叫做等比数列的公比,记为
q,q 0 .
2. 递推关系与通项公式
递推关系: an 1 qan 通项公式: an a1 q n 1 推广: an am q n m
3. 等比中项: 若三个数 a, b,c 成等比数列, 则称 b 为 a 与 c 的等比中项, 且 b
故第二次相遇是在开始运动后 15 分钟
28(舍去)
1 10.已知数列 an 中, a1 3,前 n 和 Sn (n 1)( an 1) 1.
2
①求证:数列 an 是等差数列;
②求数列 an 的通项公式;
③设数列
1 的前 n 项和为 Tn ,是否存在实数 M ,使得 Tn
an an 1
M 对一切正整数 n 都成立 ?
② Q S12 6( a6 a7) 0 S13 13a7 0 a7 0, a6 0
S6 最大。
1. 已知等差数列 an 中, a7 a9 16, a 4 1,则 a12 等于 ( )
A . 15
B. 30
C. 31
D . 64
【2020】人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

编 辑:__________________
时 间:__________________
———综合训练篇
一、选择题:
1. 在等差数列中,,则的值为 ( D )
A.18B.20C.22D.24
2.等差数列满足:,若等比数列满足则为( B ) A.16B.32C.64D.27
(Ⅰ)求证:数列为等差数列;
(Ⅱ)若,求数列的前n项和Sn.
17.解:(Ⅰ),
,…………………………………………2分
,即
………………………………………………4分
∴数列为首项,公差为2的等差数列 …………………………6分
(Ⅱ)由(1)得:,即
……………………………………………………8分
b1 = 1,当,
(I)哪一年两产品获利之和最小?
(II)至少经过几年即可达到或超过预期计划?
16.
故第20xx年两产品获利最小.……………………………………………………(6分)
(II)
…………………………………………(1分)
17.(选做题)已知函数的反函数为,数列{an}满足:a1 = 1, ,数列是首项为1,公比为的等比数列.
三、解答题:
15.已知是等比数列,Sn是其前n项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6,成等比数列.
15.[解法1]由已知………………(2分)
当
…………(4分)
………………(8分)
当……(10分)
所以,成等比数列.………………………………………………(12分)
[解法2]由已知,……………(2分)
A. B. C. D.
高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
高三数学数列综合同步练习 人教版

高三数学数列综合同步练习 人教版一. 选择题:(每小题5分,共50分)1. 已知A ,B ,C 为常数且0≠C ,*N n ∈,数列}{n a 成等差数列的充要条件为( ) (1)n n n a a a +=+12(2≥n )(2)B An a n +=(3)Bn An S n +=2(4)C Bn An S n ++=22. 在等差数列}{n a 中,50,231741=++++-=a a a a d ,则421062a a a a ++++ =( )A. 60B. 82-C. 182D. 96-3. 等差数列}{n a 中的前12项的和为35412=S ,其中奇数项之和奇S 与偶数项之和偶S 的比为3227,则}{n a 的公差=d ( ) A. 10 B. 30 C. 5 D. 154. 设等差数列的项数n 为奇数,则奇数项之和与偶数项之和的比为( ) A.n n 1- B. n n 12+ C. n n 212+ D. 11-+n n 5. 设)}({*N n a n ∈是公差小于0的等差数列,它的前n 项和为n S ,则( )A. 1+≥n n S SB. 1+≤n n S SC. 1na S na n n ≤≤D. n n na S na ≤≤16. 已知数列}{n a 的通项公式为)34()1(1--=-n a n n ,n S 为其n 项和,则312215S S S -+的值为( )A. 13B. 76-C. 46D. 76 7. 数列}{n a 的通项公式为]1)32[()32(11-=--n n n a ,则下列表述正确的是( ) A. 最大项为1a ,最小项为3a B. 最大项为1a ,最小项不存在 C. 最大项不存在,最小项为3aD. 最大项为1a ,最小项为4a8. 数列}{n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-<≤=+121,12210,21n n n n n a a a a a ,若761=a ,则20a 的值为( )A.76 B. 75 C. 73 D. 719. 在ABC ∆中,b A c C a 232cos 2cos22=+,则( )A. c b a ,,依次成等差数列B. c a b ,,依次成等差数列C. b c a ,,依次成等差数列D. c b a ,,既成等差数列,也成等比数列10. 在ABC ∆中,三边c b a ,,依次成等差数列,c b a ,,也依次成等差数列,则ABC ∆是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 钝角三角形二. 填空题:(每小题4分,共24分) 11. 把数列}{n a 的各项排成三角形状:987654321a a a a a a a a a记A (n m ,)为第m 行第n 个数,则)8,10(A 是}{n a 的第 项。
人教版高考数学一轮专项复习:数列题型11种(含解析)

数列题型11种(方法+例题+答案)1.作差法求通项公式2.累乘法求通项公式3.累加法求通项公式4.构造法求通项公式(一)5.构造法求通项公式(二)6.取倒法求通项公式7.分组求和法求前n项和8.错位相减法求前n项和9.裂项相消法求前n项和10.数列归纳法与数列不等式问题11.放缩法与数列不等式问题1、作差法求数列通项公式已知n S (12()n a a a f n +++= )求n a ,{11,(1),(2)n n n S n a S S n -==-≥注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015∙湛江)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015∙茂名)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015∙中山)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。
(1)求数列}{n a ,}{n b 的通项公式4、(2015∙揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a (1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014∙汕头)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014∙肇庆)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014∙江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。
高考数学一轮专项复习 数列题型11种(含解析)新人教版-新人教版高三全册数学试题

数列题型11种(方法+例题+答案)1. 作差法求通项公式2. 累乘法求通项公式3. 累加法求通项公式4. 构造法求通项公式(一)5. 构造法求通项公式(二)6. 取倒法求通项公式7. 分组求和法求前n 项和8. 错位相减法求前n 项和9. 裂项相消法求前n 项和10. 数列归纳法与数列不等式问题11. 放缩法与数列不等式问题1、作差法求数列通项公式❖ 已知n S (12()n a a a f n +++=)求n a ,{11,(1),(2)n n n S n a S S n -==-≥❖ 注意:分两步,当2≥n 时和1=n 时一、例题讲解1、(2015•某某)已知数列{}n a 的前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,n *∈N ),且12a =,23a =. ()1求数列{}n a 的通项公式2、(2015•某某)已知数列}{n a 的前n 项和为n S ,11=a ,且)1()1(221+=+-+n n S n nS n n ,)(*∈N n ,数列}{n b 满足,0212=+-++n n n b b b )(*∈N n ,53=b ,其前9项和为63(1)求数列}{n a 和}{n b 的通项公式3、(2015•某某)设等差数列}{n a 的前n 项和为n S ,且,40,842==S a 数列}{n b 的前n 项和为n T ,且,032=+-n n b T *∈N n 。
(1)求数列}{n a ,}{n b 的通项公式4、(2015•揭阳)已知n S 为数列}{n a 的前n 项和,)1(3--=n n na S n n ,(*∈N n ),且,112=a(1)求1a 的值;(2)求数列}{n a 的通项公式5、(2014•某某)数列{}n a 中,11=a ,n S 是{}n a 前n 项和,且)2(11≥+=-n S S n n(1)求数列{}n a 的通项公式6、(2014•某某)已知数列}{n a 的前n 项和为n S ,且满足,21=a )1(1++=+n n S na n n (1)求数列}{n a 的通项公式7、(2014•江门)已知数列}{n a 的前n 项和122-=n S n ,求数列}{n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅲ)证明: n 1 a1 a2 ... an n (n N*).
2 3 a2 a3
an1 2
【分析及解】
(I) an1 2an 1(n N*), an1 1 2(an 1),
an 1 是以 a1 1 2 为首项,2 为公比的等比数列.
an 1 2n. 即 an 2n 1(n N*).
n
项和
Tn.
【分析及解】(Ⅰ)当 n 1时, a1 S1 2; 当n 2时, an Sn Sn1 2n2 2(n 1)2 4n 2,
故 {an}的 通 项公 式为 an 4n 2,即{an}是a1 2,公差d 4 的
等差数列.
设 {bn } 的公比为
q,
则 b2
a2
a1
(II)证法 1. 4 4 b11 b2 1 4bn 1 (an 1)bn (n N* ),
4 2 . (b1b2 bn )n
nbn
2[(b1 b2 ... bn ) n] nbn ,
①
2[(b1 b2 ... bn bn1) (n 1)] (n 1)bn1.
②
②-①,得 2(bn1 1) (n 1)bn1 nbn ,
令 n 1,得 b1 2.
设 b2 2 d(d R), 下面用数学归纳法证明 bn 2 (n 1)d.
(1)当 n 1, 2 时,等式成立。
(2)假设当 n k(k 2) 时, bk 2 (k 1)d, 那么
bk 1
k
k 1
bk
k
2 1
k
k [2 1
(k
1)d]
k
2 1
2 [(k
23
24
两式相减得
n
1 2n
n
1
1 2n
n
1 2n1
1 2
Sn
1 2
1 22
1 23
1 24
1 2n
n
1 2n1
,
Sn
1
n 1. 2n
【例 4】数列{an}满足下列关系式:a1 2a;(a 0, a 是常数),
an
2a
a2 an1
;
(Ⅰ)用数学归纳法证明: an a ;
(Ⅱ)若数列{bn}满足关系式 bn
即 (n 1)bn1 nbn 2 0,
③
nbn2 (n 1)bn1 2 0.
④
③-④,得 nbn2 2nbn1 nbn 0,
即 bn2 2bn1 bn 0, bn2 bn1 bn1 bn (n N* ),
bn 是等差数列。
证法 2.同证法 1,得
(n 1)bn1 nbn 2 0
, a1n
,
a2n
, a3n
Байду номын сангаас
, a4n
, ann
(Ⅲ)求 Sn a11 a22 a33 ann 的值.
【分析及解】(Ⅰ) a44 a43 a43 a42 ,
a44
2a43
a42
1 4
.
则 q 2 a44 1 , q 1 .
a24 4
2
(Ⅱ) a24 a14q, a14 2 .
a43 a13q 3 ,
3 a13 2 .
则 d1
a14
a13
1 2
.
1 a11 a13 2d1 2 .
a1k
1 2
(k
1) 1 2
1k. 2
(Ⅲ)
akk
a1k qk1
k
1 2
k
,
Sn
1
1 2
2
1 22
3
1 23
4
1 24
1 2
Sn
1 1 2 1 3 1
22
2 3 a2 a3
an1 2
【例 2】(2005 年·湖北卷·文 19)
设数列 {an} 的前 n 项和为 Sn=2n2, {bn} 为等比数列,且
a1 b1,b2 (a2 a1) b1. (Ⅰ)求数列 {an } 和 {bn } 的通项公式;
(Ⅱ)设 cn
an bn
,求数列 {cn } 的前
a2 a3
an1 2
ak 2k 1 1 1 ak1 2k1 1 2 2(2k1 1)
1 2
3.2k
1 2k
2
1 2
1 3
.
1 2k
,k
1, 2,..., n,
a1 a2 a2 a3
an an1
n 2
1 3
1 2
1 22
1 2n
n 2
1 3
1
1 2n
n 2
1 3
,
n 1 a1 a2 an n (n N*).
.
设 a24
1, a42
1 8
,
a43
3 16
.
(Ⅰ) 求公比 q 的值;
(Ⅱ) 求 a1k (1 k n) 的值;
a11, a12 , a13, a14 ,
a21
,
a22
,
a23
,
a24
,
a31
,
a32
,
a33
,
a34
,
a41, a42 , a43, a44 ,
an1, an2 , an3, an4 ,
3Tn 1 2(41 42 43 4n1 ) (2n 1)4n
1 [(6n 5)4n 5] 3
Tn
1 [(6n 9
5)4n
5].
【例 3】如图, n2 个( n 4) 正数排成 n 行
n 列方阵,其中每一行的数成等差数列, 每
一列的数成等比数列,并且所有公比 都相
等,
1 an a
.证明数列 {bn } 是等差
数列;
(Ⅲ)求
lim a
n
n
.
【分析及解】(Ⅰ)用数学归纳法.
当 n 1时,由 a1 2a 得 a1 a 2a a a 0,a1 a , 即 n 1时,结论成立.
数列综合题
一.等差数列与等比数列的综合
【例 1】(2006 年福建卷)
已知数列an 满足 a1 1, an1 2an 1(n N*).
(I)求数列an 的通项公式;
(II)若数列{bn}滿足 4b1 4 1 b2 1 4bn 1 (an 1)bn (n N* ), 证 明:数列{bn}是等差数列;
1)
1]d.
这就是说,当 n k 1时,等式也成立。
根据(1)和(2),可知 bn 2 (n 1)d 对任何 n N* 都成立。
bn1 bn d,bn 是等差数列。
(III)
ak ak 1
2k 1 2k1 1
2k 2(2k
1 1)
1,k 2
1, 2,..., n,
2
a1 a2 ... an n .
b1qd
b1, d
4,q
1. 4
故 bn
b1qn1
2
1 4n1
,即{bn}的通项公式为 bn
2 4n1
.
(Ⅱ) c n
an bn
4n 2 2
(2n 1)4n1 ,
4 n1
Tn c1 c2 cn 1 3 41 5 42
(2n 1)4n1,
4Tn 1 4 3 42 5 43 (2n 3)4n1 (2n 1)4n 两式相减得