复数的代数形式及其运算

合集下载

复数代数形式的加减运算及其几何意义

复数代数形式的加减运算及其几何意义

在信号处理中的应用
信号合成与分解
复数代数形式的加减运算可以用于信 号的合成与分解,例如在频谱分析和 滤波器设计中。通过加减运算,可以 将信号分解为不同的频率分量,便于 分析和处理。
调制与解调
在通信系统中,复数代数形式的加减 运算用于信号的调制和解调过程。通 过加减运算,可以实现信号的相位和 幅度调整,从而实现信号的传输和接 收。
复数减法的几何意义
复数减法可以理解为在复平面上的向量减法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的差 $z_1 - z_2 = (a-c) + (b-d)i$ 可以看作是两个向量在复平面上的差分。
向量差分:在复平面上,将 $z_1$ 的向量起点固定,然后 平移至 $z_2$ 的起点,得到向量差。这个过程对应于复数 减法运算。
部对应横轴,虚部对应纵轴。
03
复数代数形式的几何意义
复数加法的几何意义
复数加法可以理解为在复平面上的向量加法。给定两个复数 $z_1 = a + bi$ 和 $z_2 = c + di$,它们的和 $z_1 + z_2 = (a+c) + (b+d)i$ 可以看作是两个向量在复平面上的合成。
向量合成:在复平面上,将 $z_2$ 的向量起点固定,然后平 移至 $z_1$ 的起点,得到向量和。这个过程对应于复数加法 运算。
复数代数形式的加减运算 及其几何意义
• 引言 • 复数代数形式的加减运算 • 复数代数形式的几何意义 • 复数代数形式的加减运算的应用 • 结论
Hale Waihona Puke 1引言复数的基本概念
01
复数是由实部和虚部构成的数,一 般形式为$z=a+bi$,其中$a$和 $b$是实数,$i$是虚数单位,满足 $i^2=-1$。

第一节 复数及其代数运算

第一节 复数及其代数运算

若 z = x + iy ,
则 z = x − iy .
例2 计算共轭复数 = x + yi 与 z = x − yi 的积 z . 解
( x − yi )( x + yi ) = x − ( yi ) = x + y .
2 2 2 2
结论:两个共轭复数 z, z 的积是实数.
即 zz = x + y . :
3) Im(i + z ) = 4 .
解:1) 表示与 −i 的距离等于 2 的所有复数 z 的集合 的集合. 为圆心, 为半径的圆. 此曲线是以 −i 为圆心,2 为半径的圆
y
o
2
⋅ −i
x
24
2) | z − 2i | = | z + 2 | ;
20
(3)三角表示法 )
x = r cosθ , 利用直角坐标与极坐标的关系 y = r sinθ ,
复数可以表示成 z = r (cosθ + i sinθ ) (4)指数表示法 ) 利用欧拉公式 e iθ = cosθ + i sinθ , 复数可以表示成
z = re iθ
的指数表示式. 称为复数 z 的指数表示式

(5 − 5i )( −3 − 4i ) z1 5 − 5i = = z2 − 3 + 4i ( −3 + 4i )( −3 − 4i ) ( −15 − 20) + (15 − 20)i 7 1 = = − − i. 25 5 5
z1 7 1 = − + i. 5 5 z2
4
2 例1 实数 m 取何值时 , 复数 ( m − 3m − 4) +

复数的几种表示形式的转换及计算

复数的几种表示形式的转换及计算

u(t)
U
m
cos(t



u
i(t)
I m cos(t



i
--本书采用cosine函数。
二、正弦量的三要素
1.幅值Um/Im:
Um、Im --振幅,正弦量的极大值 当cos(ω t+)=1时,imax=Im;当cos(ω t+)=-1时,imin=-Im。 Imax-Imin=2Im --正弦量的峰-峰值
2.角频率ω :
ƒ --自然频率,单位:Hz(赫兹)
ƒ=50Hz--工频
ƒ=1/T
ω --角频率:正弦量的相位随时间变化的速度。
2f 2
T
单位:rad/s(弧度/秒)
二、正弦量的三要素
3.初相位:
ω t+ --相位,又称相角:随时间变化的角度。
单位:弧度
初相位:正弦量在t=0时刻的相位,简称初相。
⑤|12|=π
--u1和i2反相。
§8-3 相量法的基础
一、相量法的引入
正弦稳态电路频率特点: 在线性电路中,如果电路的激励都是同一频率
的正弦量,则电路全部的稳态响应都将是同频率的 正弦量。
由于正弦稳态电路频率的特点,将同频率的正 弦量的三要素之一()省去,其余两要素用复数形 式来表示正弦量的方法称为相量法。



u1
i2
2
Icos(t



i2
12 (t u1)(t i2) u1 i2
①12>0 ②12<0 ③12=0 ④|12|=π /2
--u1超前i2; --u1滞后i2; --u1和i2同相; --u1和i2正交;

3.2.1复数代数形式的加减运算及其几何意义 课件

3.2.1复数代数形式的加减运算及其几何意义 课件
(4)若z1=x+2i, z2=3-yi,且 z1+z2=5-6i,求z1-z2
我们知道, 两个向量的和满 足平行四边形法则, 复数可以表示 平面上的向量,那么复数的加法 与向量的加法是否具有一致性呢?
1.复数加法运算的几何意义?
符合向量加法 的平行四边形
法则.
z1+ z2=OZ1 +OZ2 = OZ
(3)|z-1|
点A到点(1,0)的距离 (4)|z+2i|
点A到点(0, -2)的距离
例2.已知复数 z 满足 | z 2 3i |1 试求出复数 z 对应点的轨迹方程.
y
x
练习:1、已知复数m=2-3i,若复 数z满足不等式|z-m|=1,则z所对 应的点的集合是什么图形?
以点(2, -3)为圆心,1为半径的圆上
3.2.1复数代数形式的加 减运算及其几何意义
知识回顾
虚数单位: i ,并规定:i 2 1
复数: 形如a+bi(a,b∈R)的数
全体复数所形成的集合叫 做复数集,一般用字母 C 表示 .
z a bi (a R,b R)
实部 虚部
复数的分类:
复数z
a
bi
实数
b 0
纯虚数
(a,b R)
虚数
注:⑴复数的减法是加法的逆运算;
⑵易知复数的加法满足交换律、结合律,
即对任何 z ,z ,z ∈C,有 123
z +z =z +z ,
1221
(z +z )+z =z +(z +z ). 12 31 23
⑶复数的加减法可类比多项式的加减法进行.
(a+bi )±(c+di) = (a±c) + (b±d)i

复数的有关运算

复数的有关运算
z1 z1 ③. = z z 2 2
⑤. z = z
⑥. z = z ⇔ z ∈ R
数或0 数或
( z 2 ≠ 0) ⑦. z + z = 0 ⇔ Z为纯虚 为纯虚
④ . z = ( z)
n
n
四.共轭复数与模的性质及其运算 共轭复数与模的性质及其运算
① . | z1 ⋅ z2 |=| z1 | ⋅ | z2 |
| z−z1 | +| z −z2 | =2a (|z1 -z2 |=2a) (5).双曲线: z − z1 | −| z − z2 | = ±2a 双曲线: 双曲线 | (|z1 - z2 |> 2a)
(6).射线:z−z1 | −| z −z2 | =±2a 射线: 射线 |
(7).圆环 圆环: r <| z − z0 |< R 圆环 复数方程与直角坐标方程的转化
1 3 1 3 二. ω = - + i(或ω=- - i) 的性质 2 2 2 2 2 ①. 1+ ω + ω = 0
② . ω = 1 (周 T = 3) 期
3
③. ω =
1
ω

2
④ . ω n + ω n +1 + ω n + 2 = 0
一、复数的四则运算问题
1、已知复数z = 1 + i (1)设ω = z 2 + 3 z − 4,求ω; z 2 + az + b = 1 − i,求实数a,b的值 (2)如果 2 z − z +1
a + b = 1 a = −1 ⇒ ∴ a + 2 = 1 b = 2
4 2、设z + ∈ R,z − 2 |= 2,求z | z 解:设z = x + yi( x、y ∈ R,且z ≠ 0)

复数代数形式的乘除运算

 复数代数形式的乘除运算
如:|z+(1+2i)|表示:_________________
点(-1,-2)的距离
_______________.
x
探究点1 复数乘法运算
我们规定,复数乘法法那么如下:
设z1=a+bi,z2=c+di 是任意两个复数,那么它们的乘积为:
(a+bi)(c+di)= ac+adi+bci+bdi2
5
2
1

i2
(
1

i
)
i2 2
2 2

2

( )
[
]
( )
i
1
1

i
(
1

i
)
(
1

i
)
2
1
1 (
3

2
i
)(

32
i
)4
i

3



3

2
i 3

2
i (
3

23
i
)
(
2
i
) 1
3
注:复数的四则混合运算类似于分式的运算进行通分、
化简等.
1.(2015 新课标高考)若 a 为实数且 (2 ai )(a 2i ) 4i ,
6.(2015 上海高考)若复数 z 满足 3 z z 1 i ,
其中 i 为虚数单位,则 z=

【解析】设 z a bi (a, b R ) ,则
1 1
3(a bi ) a bi 1 i 4a 1且2b 1 z i

(完整版)复数的代数形式及其运算

(完整版)复数的代数形式及其运算

复数的代数形式及其运算第85课时课题:复数的代数形式及其运算一.教学目标:掌握复数的基本题型,主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等。

二.教学重点:复数的几何表示,计算复数模,共轭复数,解复数方程等。

三.教学过程:(一)主要知识:1.共轭复数规律,;2.复数的代数运算规律(1)i=1,i=i,i=1,i=i;(3)i・i・i・i=1,i+i+i+i=0;;3.辐角的运算规律(1)Arg(z・z)=Argz+Argz(3)Arg=nAr gz(n∈N).。

.,n1.或z∈R。

要条件是|z|=|a|.(6)z・z≠0,则4.根的规律:复系数一元n次方程有且只有n个根,实系数一元n次方程的虚根成对共轭出现。

5.求最值时,除了代数、三角的常规方法外,还需注意几何法及不等式||z||z||≤|z±z|≤|z|+|z|的运用.即|z±z|≤|z|+|z|等号成立的条件是:z,z所对应的向量共线且同向。

|z±z|≥|z||z|等号成立的条件是:z,z所对立的向量共线且异向。

(二)范例分析Ⅰ.2004年高考数学题选1.(2004高考数学试题(浙江卷,6))已知复数z1=3+4i, z2=t+i,且是实数,则实数t=()A.B.C.?D.?2。

(2004年北京春季卷,2)当时,复数在复平面上对应的点位于()A.第一象限B.第二象限 C.第三象限D.第四象限3.(2004年北京卷,2)满足条件的复数在复平面上对应点的轨迹是( C ) A.一条直线B.两条直线C.圆D.椭圆Ⅱ.主要的思想方法和典型例题分析:1.化归思想复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。

反之亦然。

这种化归的思想方法应贯穿复数的始终。

【分析】这是解答题,由于出现了复数和,宜统一形式,正面求解。

复数代数形式的加、减运算及其几何意义课件-高一下学期数学人教A版(2019)必修第二册

复数代数形式的加、减运算及其几何意义课件-高一下学期数学人教A版(2019)必修第二册

跟踪训练3 设复数z=a+bi(a,b∈R),1≤|z|≤2,则|z+1|的取值范围 是___[_0_,3_]__.
解析 由复数的模及复数加减运算的几何意义可知, 1≤|z|≤2表示如图所示的圆环,而|z+1|表示 复数z的对应点A(a,b)与复数z1=-1的 对应点B(-1,0)之间的距离,即圆环内 的点到点B的距离d.由图易知当A与B重合时,dmin=0, 当点A与点C(2,0)重合时,dmax=3,∴0≤|z+1|≤3.
复数与向量的对应关系的两个关注点


复数z=a+bi(a,b∈R)是与以原 点为起点,Z(a,b)为终点的向量 一一对应的.
一个向量可以平移,其对应的复数 不变,但是其起点与终点所对应的 复数发生改变.
跟踪训练 2 (1)已知复平面内的向量O→A,A→B对应的复数分别是 -2+i,3+2i,则|O→B|=____1_0___.
1234
2.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于
A.第一象限
B.第二象限
√C.第三象限
D.第四象限
解析
解析 z=z2-z1=(1-2i)-(2+i)=-1-3i.
故z对应的点为(-1,-3),位于第三象限.
1234
3.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且 z1-z2为纯虚数,则a=__-__1____.
解析 ∵O→B=O→A+A→B, ∴O→B对应的复数为(-2+i)+(3+2i)=1+3i, ∴|O→B|= 12+32= 10.
(2) 若z1=1+2i,z2=2+ai,复数z2-z1所对应的点在第四象限 内,则实数a的取值范围是__(_-__∞__,__2_) __.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点 搜索
●复数的代数形式的四则运算,复数的 运算定律
●虚数单位 i的幂的周期性
高 考 1. 利用基本运算法则求复数式的值 . 猜 想 2. 在相关条件下求复数的值 .
1. 复数的加、减、乘、除运算按以下法
则进行.设z1=a+bi,z2=c+di (a,b,c,d∈R).
(1)加减法:(a+bi )±(c+di)=—(a—±—c—)+—(—b—±—d)—i . 故有|z1+z2|2+|z1-z2|2=———2—(—|z1—|2—+—|z—2|2—) ———.
2. 求复数式的值有待定系数法和方程 法两种.其中待定系数法就是通过复数的代 数形式,将复数问题转化为实数方程组求 解;方程法的基本观点是建立一个关于复 数z的方程,再解方程直接求出z的值.
zm·zn=—z—m—+n———,(zm)n= zm·n

(z1·z2)n= z1n ·z2n (m、n∈N*).
3. 设n∈N*,则i4n= 1 ,i4n+1= i ,
i4n+2= -1 ,i4n+3= -i .
若复数z1=1+i,z2=3-i,则z1·z2=( A )
A. 4+2i
B. 2+i
(2)乘法法则:(a+bi)(c+di)
= (ac-ห้องสมุดไป่ตู้d)+(ad+bc)i .
(3)除法:
a? c?
bi di
?
(a
? cb2i()? dc2-di)?
(ac+bd)+(bc-ad)i
c2 ? d 2
.
2. 复数加法、乘法满足 交——换—律———,结 合律及乘法对加减法的 分配律 ,实数的正
整数指数幂运算也能推广到复数集中,即
? ? 1. 计算:? 2 3 ? i ? 1 ? 2 3i
2 ? i15
?
? ??
1
?i 2
?22 ??
.
? ? i
解:原式=
2
3i ? 1
? ?2 ? i ?? [?1 ? i ?2 ]11
1 ? 2 3i
2
? i ? ?2 ? i ?? i11 ? 2 ? i.
点评: 解决有关复数混合运算问题,先 区别各运算的顺序,然后利用运算法则进行 具体的计算 .对除法运算有两种处理方式:一 是利用分子分母都乘以分母的共轭虚数;二 是通过约分,如本题第一个分式就是通过约 分得出来的.
C. 2+2i
D. 4+I
解:
z1·z2=(1+i)(3-i)=4+2i,故选A.
1? 7i
2. i是虚数单位,若 2 ? i =a+bi(a, b∈R),则乘积ab的值是( B )
A. -15
B. -3
C. 3
D. 15
解:
1? 7i 2?i
=
?1?
7i??2 ? 5
i?
=-1+3i,
所以a=-1,b=3,所以ab=-3,故选B.
计算下列各式的值:
设复数z=4m-1+(2m+1)i,m∈R, 若z对应的点在直线x-3y=0上,则z=15+5i . 解:由条件知点(4m-1,2m+1)在直线x-3y=0上, 即得(4m-1)-3(2m+1)=0, 解得m=2,所以z=15+5i.
1. 求复数式的值,主要利用复数的运 算法则进行求解,但要注意整体代换和局 部化简,简化运算过程.
3.复数
3 2
? ?
2i 3i
?
3? 2?
2i 3i
=(
D
)
A. 0
B. 2
C. -2i
D. 2i
解:3 ? 2i ? 3 ? 2i ? ?3 ? 2i??2 ? 3i ?
2 ? 3i 2 ? 3i
13
? ?3 ? 2i ?(2 ? 3i) ? 26i ? 2i,
13
13
故选D.
题型1 求复数式的值
相关文档
最新文档