复数代数形式的四则运算

合集下载

复数的代数形式的四则运算

复数的代数形式的四则运算

五、课堂小结: 1.复数加减法的运算法则: (1)运算法则:设复数z1=a+bi,z2=c+di, 那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i. (2)复数的加法满足交换律、结合律,即对 任何z1,z2,z3∈C,有:
z1+z2=z2+z1,
(z1+z2)+z3=z1+(z2+z3).
i
4n
4. i的指数变化规律:
1,
i
4 n 1
i ,
i
4n4n2Fra bibliotek1 ,
4n2
i
4 n 3
i
i i
4 n 1
i
i
4 n 3
0, (n N )
4.复数的除法法则
先把除式写成分式的形式,再把分子与分 母都乘以分母的共轭复数,化简后写成代数形 式(分母实数化).即
( 2 ) (2 i ) (2 3 i ) 4 i
(3 ) 5 (3 2 i )
(4) 4i (4i 4)
答案: (1) 2 + 2i
(2) 0
(3) 2 - 2i
(4) 4
练习: 1.计算 (2 3i )(2 3i )
13
2.已知 (3 i ) z 10 ,则 z _____. 3.已知 f ( x ) x 3 2 x 2 5 x 2 ,则 f (1 2i ) =_____.
z1(z2+z3)=z1z2+z1z3.
3. i的指数变化规律:
i i
4n
4 n 1

人教版高中数学选修1-2 复数代数形式的四则运算 课件1

人教版高中数学选修1-2 复数代数形式的四则运算 课件1
[解析] → → → → BC =AC -AB,故BC 对应的复数为(-2-3i)-
(-1+2i)=-1-5i.
二、填空题 → 4.在复平面内,向量OZ1对应的复数为-1-i,向量 OZ2 → → 对应的复数为 1-i,则OZ1+OZ2对应的复数为________.
[答案] -2i
[解析]
→ OZ1+OZ2 对应的复数为-1-i+1-i=-2i.
[解析] -3-2i.
→ → 则AO ①AO=-OA, → 对应的复数为-(3+2i), 即
→ → → → ②CA=OA-OC,所以CA对应的复数为(3+2i)-(-2+ 4i)=5-2i. → → → → → → ③OB=OA+AB=OA+OC,所以OB对应的复数为(3+ 2i)+(-2+4i)=1+6i, 即 B 点对应的复数为 1+6i.
[解析]
z=z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+
3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y) +(x+4y)i, 又因为 z=13-2i,且 x,y∈R,
5x-3y=13, 所以 x+4y=-2, x=2, 解得 y=-1.
3.2
复数代数形式的四则运算
1.知识与技能 掌握复数的代数形式的加法、减法、运算法则,并熟 练地进行化简、求值.
2.过程与方法
了解复数的代数形式的加法、减法运算的几何意义.
本节重点:
复数的加、减法运算. 本节难点: 复数运算的几何意义. 1.复数加法的几何意义
复数加法的几何意义就是向量加法的平行四边形法则
[点评]
本题给出了几何图形上一些点对应的复数,
因此,借助复数加、减法的几何意义求解即可,要学会利 用复数加减运算的几何意义去解题,主要包含两个方面: (1)利用几何意义可以把几何图形的变换转化成复数运算去 处理. (2)对于一些复数运算也可以给予几何解释,使复数作 为工具运用于几何之中.例如:已知复数z1 ,z2,z1 +z2 在 复平面内分别对应点A,B,C,O为原点,且|z1+z2|=|z1-

7.2复数的四则运算PPT课件(人教版)

7.2复数的四则运算PPT课件(人教版)

解:(1)A,B,C 三点分别对应复数 1,2+i,-1+2i. 所以O→A,O→B,O→C对应的复数分别为 1,2+i,-1+2i(O 为坐 标原点), 所以O→A=(1,0),O→B=(2,1),O→C=(-1,2). 所以A→B=O→B-O→A=(1,1), A→C=O→C-O→A=(-2,2), B→C=O→C-O→B =(-3,1). 即A→B对应的复数为 1+i,A→C对应的复数为-2+2i,B→C对应的 复数为-3+i.
A.-1-1+i z(1 + i) = 2i , 得
z

2i 1+i

2i(1-i) (1+i)(1-i)

2i(12-i)=i(1-i)=1+i.
复数 z=14+ -ii的虚部为________. 解析:z=41- +ii=( (41- +ii) )( (11- -ii) )=3-2 5i=32-52i. 答案:-52
z1z2=__z_2_z1__
结合律
(z1z2)z3=__z_1_(z_2_z_3_) ____
乘法对加法的分配律
z1(z2+z3)=__z_1_z2_+__z_1_z3___
■名师点拨 对复数乘法的两点说明
(1)复数的乘法运算与多项式乘法运算很类似,可仿多项式乘法进行 运算,但结果要将实部、虚部分开(i2 换成-1). (2)多项式乘法的运算律在复数乘法中仍然成立,乘法公式也适用.
复数的四则运算
第七章 复 数
7.2.1 复数的加、减运算及其几何意义
第七章 复 数
考点 复数加法、 减法的运算
复数加法 的几何意义
学习目标 掌握复数代数形式的加法、 减法运算法则 理解复数代数形式的加法、 减法运算的几何意义

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。

人教课标版高中数学选修1-2:《复数代数形式的四则运算》教案-新版

人教课标版高中数学选修1-2:《复数代数形式的四则运算》教案-新版

3.2 复数代数形式的四则运算一、教学目标 1.核心素养通过学习复数代数形式的四则运算,初步形成基本的数学抽象和数学运算能力. 2.学习目标(1)掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义.(2)理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算.理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.(3)培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 3.学习重点复数代数形式四则运算法则. 4.学习难点复数加减法运算的几何意义,对复数除法法则的运用. 二.教学设计 (一)课前设计 1.预习任务任务1 预习教材P 56---P 60,完成P 58和P 60相应练习题 任务2 掌握复数加、减、乘、除四则运算法则 任务3 利用复平面理解复数加减法的几何意义 2.预习自测1.设z 1=2+bi ,z 2=a +i ,当z 1+z 2=0时,复数a +bi 为( ) A.1+i B.2+i C.3 D.-2-i 答案:D解析:∵z 1+z 2=(2+bi )+(a +i )=(2+a )+(b +1)i =0, ∴⎩⎨⎧ 2+a =0b +1=0,∴⎩⎨⎧a =-2b =-1,∴a +bi =-2-i .2.已知z 1=2+i ,z 2=1-2i ,则复数z =z 2-z 1对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:C解析:z =z 2-z 1=(1-2i )-(2+i )=-1-3i .故z 对应的点为(-1,-3),在第三象限. 3.若复数z 满足z +(3-4i )=1,则z 的虚部是( ) A.-2 B.4 C.3 D.-4 答案:B解析:z =1-(3-4i )=-2+4i ,所以z 的虚部是4. (二)课堂设计 1.知识回顾1. 复数通常用小写字母z 表示,即z =a +b i(a,b ∈R ),这一表示形式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2. 两个复数相等,即实部和虚部分别相等即a +b i =c +di ⇔a =c 且b =d (a ,b ,c ,d ∈R )3. 复数z =a +bi (a,b ∈R )的模为22z a b =+2.问题探究问题探究一:复数的加减法●活动一 怎样计算复数的加法与减法?设12i,i(,,,)z a b z c d a b c d R =+=+∈,是任意两个复数,那么(1)复数1z 与2z 的和的定义:12(i)(i)()()i z z a b c d a c b d +=+++=+++ (2)复数1z 与2z 的差的定义:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-. ●活动二 从复数的加法和减法法则我们可以得到一个怎样的结论?事实上,两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减). ●活动三 复数的和与差还是一个复数吗? 显然,复数的和与差仍然是一个唯一确定的复数.●活动四 我们以前学过的运算律还能在复数中使用吗? 对任意123,,z z z C ∈.(1)交换律:1221z z z z +=+;(2)结合律:123123()()z z z z z z ++=++.●活动五 复数代数形式的加减运算的几何意义是什么?(1)复平面内的点(,)Z a b OZ ←−−−→uu u r 一一对应平面向量(2)复数i z a b OZ =+←−−−→uu u r一一对应平面向量 (3)复数的加减法的几何意义复数的加、减法的几何意义,即为向量的合成与分解:平行四边形法则,可简化成三角形法则,如图,OZ uu u r 表示复数12z z +所对应的向量,12Z Z uuuu r 表示复数12z z -所对应的向量,即OZuu u r表示复数()()i a c b d +++所对应的向量,12Z Z uuuu r表示复数()()i a c b d -+-所对应的向量注: 两个复数的差12z z -表示与连接两个终点12,z z 且指向被减数的向量对应. 问题探究二:复数的乘除法●活动一 复数的乘法怎么算?复数的乘法是否有似曾相识的感觉?设1z =a +b i ,2z =c +d i (a,b,c,d ∈R )是任意两个复数,则1z ·2z =(a +b i )(c +d i )=_________________.从上面可以看出,两个复数相乘,类似两个多项式相乘,在所得的结果中把实部与虚部分别合并.两个复数的积仍然是一个复数. ●活动二 复数的乘法是否也满足运算律呢? 对任意123,,z z z C ∈. (1)交换律:2121z z z z ⋅=⋅(2)结合律:123123()()z z z z z z ⋅⋅=⋅⋅ (3)分配律:1231213()z z z z z z z ⋅+=⋅+⋅1z●活动三 复数的除法又该如何计算呢?设1z =a +b i , 2z =c +d i (a,b,c,d ∈R ,且c +d i≠0),122222i i(i 0)i z a b ac bd bc ad c d z c d c d c d+++==++≠+++ 几个运算性质:①i 的幂的周期性:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). ②(1±i)2=±2i ,1i i 1i +=-,1i i 1i -=-+,1i i=-. ③设13i 22ω=-+,则ω2=ω,ω3=1,1+ω+ω2=0.●活动四 什么叫做共轭复数?一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. 通常记复数i(,)z a b a b R =+∈的共轭复数为i(,)z a b a b R =-∈.共轭复数有如下性质:①z R z z ∈⇔=;②22z z z z ⋅==;③2z z a +=,2i z z b -=;④1212z z z z +=+,1212z z z z -=-;⑤1212z z z z ⋅=⋅,1122z zz z ⎛⎫= ⎪⎝⎭(z 2≠0).例 1 计算下列各题: (1)3(2-3i)(2i)12+-++; (2)i 1i 1()()i 2332----+;(3)(5-6i)+(-2-2i)-(3+3i).(4)已知复数z 满足z +1+2i =10-3i ,求z . 【知识点:复数的四则运算】详解:33=(22)(3)i 11i 22-+-++=-(1)原式 111111=()(1)i i 322366-++--+=+(2)原式.(3)原式=(5-2-3)+[-6+(-2)-3]i =-11i. (4)z +1+2i =10-3i ,∴z =(10-3i)-(2i +1)=9-5i.点拔:复数的加减法运算就是把复数的实部与实部,虚部与虚部分别相加减.例2 设及分别与复数z 1=5+3i 及复数z 2=4+i 对应,试计算z 1+z 2,并在复平面内作出复数z 1+z 2所对应的向量.【知识点:复数的四则运算,复数加减法的几何意义】 【思路探究】利用加法法则求z 1+z 2详解:∵z 1=5+3i ,z 2=4+i ,∴z 1+z 2=(5+3i)+(4+i)=9+4i ∵15,3OZ =uuu r (),24,1OZ =uuu r (),由复数的几何意义可知,12OZ OZ +uuu r uuu r 与复数z 1+z 2对应, ∴12OZ OZ +uuu r uuu r =(5,3)+(4,1)=(9,4).作出向量12OZ OZ OZ +=uuu r uuu r uu u r如图所示.点拔:1.根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.2.利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.3.复数加减运算的几何意义为应用数形结合思想解决复数问题提供了可能.变式:在题设不变的情况下,计算z 1-z 2,并在复平面内作出复数z 1-z 2所对应的向量. 解:z 1-z 2=(5+3i)-(4+i)=(5-4)+(3-1)i =1+2i.复数z 1-z 2所对应的向量为21Z Z uuuu r.例3 (1)设z 1,z 2∈C ,已知|z 1|=|z 2|=1,|z 1+z 2|=2,求|z 1-z 2|. (2)已知|z +1-i|=1,求|z -3+4i|的最大值和最小值.【知识点:复数的模,复数的模的几何意义,复数加减法的几何意义;数学思想:数形结合】(1)设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ).由题意,知a 2+b 2=1,c 2+d 2=1.(a +c )2+(b +d )2=2,∴2ac +2bd =0. ∴|z 1-z 2|2=(a -c )2+(b -d )2=a 2+c 2+b 2+d 2-2ac -2bd =2.∴|z1-z2|=2.(2)【思路探究】利用复数加减法的几何意义,以及数形结合的思想解题.解法一:设w=z-3+4i,∴z=w+3-4i,∴z+1-i=w+4-5i.又|z+1-i|=1,∴|w+4-5i|=1.可知w对应的点的轨迹是以(-4,5)为圆心,1为半径的圆.如图(1)所示,∴|w|max=41+1,|w|min=41-1.(1)(2)解法二:由条件知复数z对应的点的轨迹是以(-1,1)为圆心,1为半径的圆,而|z-3+4i|=|z-(3-4i)|表示复数z对应的点到点(3,-4)的距离,在圆上与(3,-4)距离最大的点为A,距离最小的点为B,如图(2)所示,所以|z-3+4i|max=41+1,|z-3+4i|min=41-1.点拔:|z1-z2|表示复平面内z1,z2对应的两点间的距离.利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.例4 (1)计算61i23i 1i32i ++⎛⎫+⎪--⎝⎭.(2)计算:2013 23i21i123i⎛⎫-++ ⎪⎪-+⎝⎭;(3)若复数1i1iz+=-,求1+z+z2+…+z2 013的值.【知识点:复数的四则运算】(1)分析:先计算1i1i+-再乘方,且将23i32i+-的分母实数化后再合并.详解:626(1i)23i32i62i3i6 =i1i 255⎡⎤+++++-+=+=-+⎢⎥⎣⎦()()原式又解:626(1i)23i i23i i =i1i 232i i23i⎡⎤++++=+=-+⎢⎥-+⎣⎦()()原式().(2)【思路探究】将式子进行适当的化简、变形,使之出现i n 的形式,然后再根据i n 的值的特点计算求解.详解:10062i(123i)22(2)=1i 1i 123i ⎡⎤⎛⎫⎛⎫+⎢⎥+⋅ ⎪ ⎪ ⎪ ⎪--+⎢⎥⎝⎭⎝⎭⎣⎦原式 100622(1i)=i 2i 2+⎛⎫+⋅⎪-⎝⎭10062(1i)=i i 2++⋅222=i 22--+(3)201422013111z z z zz-++++=-L , 而21i (1i)2i =i 1i (1i)(1i)2z ++===--+,所以201422201311i 11i 11iz z z zz --++++===+--L 点拔:1.要熟记i n 的取值的周期性,要注意根据式子的特点创造条件使之与i n 联系起来以便计算求值.2.如果涉及数列求和问题,应先利用数列方法求和后再求解.例5 已知z ∈C ,z 为z 的共轭复数,若3i 13i z z z ⋅-⋅=+,求z .【知识点:复数的四则运算,共轭复数】详解:设z =a +b i(a ,b ∈R ),则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎨⎧ a 2+b 2-3b =1-3a =3,解得⎩⎨⎧ a =-1b =0或⎩⎨⎧a =-1b =3,所以z =-1或z =-1+3i.点拔:1.22z z z z ⋅==是共轭复数的常用性质.2.实数的共轭复数是它本身,即z ∈R ⇔ z =z ,利用此性质可以证明一个复数是实数.3.若z ≠0且z +z =0,则z 为纯虚数,利用此性质可证明一个复数是纯虚数. 3.课堂总结 【知识梳理】1.两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +b i)±(c +d i)=(a ±c )+(b ±d )i.2.复数加减法的几何意义3.复数代数形式的乘法类似于多项式乘以多项式,满足交换律、结合律以及乘法对加法的分配律.4.复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化. 【重难点突破】(1)复数的加减法,可模仿多项式的加减法法则计算,实质上是合并同类项,不必死记公式.(2)复数加法的几何意义:如果复数12z z ,分别对应于向量12OP OP uuu r uuu r、,那么,以12OP OP 、为两边作平行四边形,对角线OS 表示的向量OS uu r就是12z z +的和所对应的向量.复数减法的几何意义:两个复数的差12z z -与连接这两个向量终点并指向被减数的向量对应. (3)复数的乘法,也可按照多项式的乘法法法则计算,实质上也是合并同类项,同样不必死记公式.(4)两个复数相除较简便的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简 .(5)复数除法的核心是分母实数化,类似分母有理化. 4.随堂检测 1.21i=+( ) A.22 B.2 C.2 D.1 答案:C解析:【知识点:复数的四则运算,复数的模】 原式211i==+ 2.复数i(2-i)等于( ) A.1+2i B.1-2i C.-1+2i D.-1-2i答案:A解析:【知识点:复数的四则运算】 i(2-i)=2i -i 2=1+2i.3.已知(1-i)2z =1+i(i 为虚数单位),则复数z 等于( ) A.1+i B.1-i C.-1+i D.-1-i 答案:D解析:【知识点:复数的四则运算】由(1-i)2z =1+i ,知z =(1-i)21+i =-2i 1+i =-1-i ,故选D.(三)课后作业 ★基础型 自主突破 1.()212i1i +-等于( )A.11i 2--B.11i 2-+C.11i 2+D.11i 2-答案:B解析:【知识点:复数的四则运算】 原式12i i12i 2+==-+- 2. i 为虚数单位,i 607的共轭复数为( ) A.i B.-i C.1 D.-1 答案:A解析:【知识点:共轭复数相关概念,i 的周期性】 方法一:i 607=i 4×151+3=i 3=-i ,其共轭复数为i.故选A.方法二:i607=i 608i =i 4×152i =1i =-i ,其共轭复数为i.故选A.3.已知i 是虚数单位,则(2+i)(3+i)等于( ) A.5-5i B.7-5i C.5+5i D.7+5i 答案:C解析:【知识点:复数的四则运算】4.复数z=i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:B解析:【知识点:复数的四则运算,复数的几何意义】 5.复数z 满足(i)i 2i z -=+,则z =( ) A.1i -- B.1i - C.13i -+ D.12i - 答案:B解析:【知识点:复数的四则运算】2iz i i+-=,∴1z i =- 6.复数z =-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iC.-1-i答案:D解析:【知识点:复数的四则运算,共轭复数的定义】(3)(2)15i i z i -++==-+,1z i =-- 7.若复数z 满足z (2-i )=11+7i (i 为虚数单位),则z 为( )A.3+5iB.3-5iC.-3+5iD.-3-5i答案:A解析:【知识点:复数的四则运算】117(117)(2)3525i i i z i i +++===+- 8. (1+i 1-i )6+2+3i 3-2i=________. 答案:1i -+解析:【知识点:复数的四则运算】 原式6(23i)(32i)5i i 11i 325++=+=-+=-++ ★★能力型 师生共研1.已知复数z 满足z (1+i )=1+ai (其中i 是虚数单位,a ∈R ),则复数z 在复平面内对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B 解析:【知识点:复数的四则运算】由条件可知:z =1+a i 1+i =(1+a i)(1-i)(1+i)(1-i)=a +12+a -12i ;当a +12<0,且a -12>0时,a ∈∅,所以z 对应的点不可能在第二象限,故选B.2.若12+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A.2,3b c ==B.2,1b c ==-C.2,1b c =-=-D.2,3b c =-=答案:D解析:【知识点:复数的四则运算,复数的相等】 把12i +代入方程20x bx c ++=,利用复数的相等即可3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i +为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:【知识点:复数的四则运算,复数的概念】4.设z 是复数,则下列命题中的假命题是( )A.若2z ≥0,则z 是实数B.若2z <0,则z 是虚数C.若z 是虚数,则2z ≥0D.若z 是纯虚数,则2z <0答案:C解析:【知识点:复数的四则运算,复数的概念】5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数答案:C解析:【知识点:复数的四则运算,复数的概念】6.设复数1z =1-i ,2z =a +2i ,若12z z 的虚部是实部的2倍,则实数a 的值为______.答案:6解析:【知识点:复数的概念,复数的四则运算】∵a ∈R ,1z =1-i ,2z =a +2i , ∴12z z =a +2i 1-i =(a +2i)(1+i)(1-i)(1+i)=a -2+(a +2)i 2=a -22+a +22i ,依题意a +22=2×a -22,解得a =6.7.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 答案:5解析:【知识点:复数的模,复数的四则运算】∵a ,b ∈R ,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎨⎧ a =1-b ,0=1+b.∴⎩⎨⎧ a =2,b =-1.∴|a +bi |=|2-i |=222(1)+-= 5.8.计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i).答案:见解析解析:【知识点:复数的四则运算】解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.解法二:∵(1-2i)+(-2+3i)=-1+i ,(3-4i)+(-4+5i)=-1+i ,……(2001-2002i)+(-2002+2003)i=-1+i.相加得(共有1001个式子):原式=1001(-1+i)+(2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i★★★探究型 多维突破A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形答案:A解析:【知识点:复数的四则运算,复数的加减法的几何意义】2.已知1122,,,x y x y R ∈,定义运算“⊙”为1z ⊙2z =2121y y x x +,设非零复数21,ωω在复平面内对应的点分别为21,P P ,点O 为坐标原点,若1ω⊙2ω=0,则在21OP P ∆中,21OP P ∠的大小为________.答案:90o解析:【知识点:复数的四则运算】设 111a b i ω=+,222a b i ω=+ (12,0a a ≠)故得点),(111b a P ,),(222b a P ,且2121b b a a +=0,即12211-=⋅a b a b . 从而有1212121OP OP b b k k a a ==-g g ,故21OP OP ⊥. 3.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i (m ,λ,θ∈R ),且z 1=z 2,则λ的取值范围是_____________.答案:⎣⎢⎡⎦⎥⎤-916,7 解析:【知识点:复数的四则运算,三角函数的值域】由复数相等的充要条件可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916, 因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7. 4.已知复数z =x +yi ,且|z -2|=3,则 y x 的最大值为________. 答案: 3解析:【知识点:复数的加减法的几何意义,复数的模,直线的斜率的应用】∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 5.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.答案:见解析解析:【知识点:复数的四则运算,复数的加减法的几何意义】设D (x,y ),则OA OD AD -=对应的复数为(x +y i)-(1+2i)=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i)-(-2+i)=1-3i∵BC AD = ∴(x -1)+(y -2)i=1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i.6.已知复数z 满足: 13i ,z z =+-求22(1i)(34i)2z ++的值.答案:见解析解析:【知识点:复数的四则运算,复数的模,复数的概念】设i(,)z a b a b =+∈R ,而13i ,z z =+-即2213i i 0a b a b +--++=,则224,10,43i.3,30a a b a z b b ⎧=-⎧⎪++-=⇒=-+⎨⎨=-=⎩⎪⎩22(1i)(34i)2i(724i)247i34i22(43i)43i z ++-++===+-+-.(四)自助餐1.若12,z z ∈C ,1212z z z z --+是( )A.纯虚数B.实数D.不能确定答案:B解析:【知识点:复数的四则运算,共轭复数,复数的概念】121212i,i(,,,),(i)(i)(i)(i)--=+=+∈+=+-+-+z a b z c d a b c d z z z z a b c d a b c d R 22ac bd =+∈R .2.为正实数,i 为虚数单位,i 2i a +=,则a =( ) A.2 B.3 C.2D.1答案:B解析:【知识点:复数的四则运算,复数的模】2i |1i |12,i +=-=+=a a aa >0,故3a =. 3.36(13i)2i (1i)12i -+-++++的值是( ) A.0B.1C.iD .2i答案:D解析:【知识点:复数的四则运算】33336(13i)2i 13i (2i)(12i)-1+3i 15i ()()()+(1i)12i 2i 52i 5-+-+-+-+-+=+=++=i+i =2i .4 若复数z 满足3(1)i 1z z -+=,则2z z +的值等于( )A .1D .13i 22-+答案:C解析:【知识点:复数的四则运算】13i133i 3i 10,i ,2213i z z z ω+---===-+=-221z z ωω+=+=-.5.已知33i (23i)z -=⋅-,那么复数z 在复平面内对应的点位于() A .第一象限B .第二象限C.第三象限D .第四象限答案:A解析:【知识点:复数的四则运算,复数的几何意义】33132223iz i i -==+-6.已知复数z =1+i ,z -为z 的共轭复数,则z z --z -1=( )A.-2iB.-iC.iD.2i答案:B解析:【知识点:复数的四则运算,共轭复数】解:B 依题意得z z --z -1=(1+i)(1-i)-(1+i)-1=-i.7.设456121z i i i i =++++L ,456121z i i i i =⋅⋅⋅L 则12,z z 的关系是()A .12z z =B .12z z =-C .121z z =+D .无法确定答案:A解析:【知识点:复数的四则运算,等比数列的前n 项和,等比数列的前n 项和】491(1)1111i i i z i i--===--,456127221z i i ++++===L 故选A. 8.已知2()i i (i 1,n n f n n -=-=-∈N ),集合{}()f n 的元素个数是( ) A.2B.3C.4D.无数个答案:C解析:【知识点:复数的四则运算】00-12-23-31(0)i -i 0,(1)i-i =i-=2i,(2)i -i 0,(3)i -i =-2i.i f f f f ======9.在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i答案:C解析:【知识点:复数的加减法的几何意义】A 点坐标为(6,5),B 点坐标为(-2,3),则中点C 的坐标为(2,4),∴C 点对应的复数为2+4i.10.设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则z i +i ·z 等于( )A.-2B.-2iC.2D.2i解析:【知识点:复数的四则运算,共轭复数,复数的模】∵z =1+i ,∴z =1-i ,z i =1+i i =-i 2+i i =1-i ,∴ z i +i ·z =1-i +i (1-i )=(1-i )(1+i )=2.故选C.11.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A.-4B.-45C.4D.45答案:D解析:【知识点:复数的四则运算,共轭复数,复数的模】设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎨⎧ 3b -4a =0,3a +4b =5,解得b =45. 故选D12.若复数z 满足z1-i =i ,其中i 为虚数单位,则z 等于( )A.1-iB.1+iC.-1-iD.-1+i答案:A解析:【知识点:复数的四则运算,共轭复数】∵z 1-i =i ,∴z =i (1-i )=i -i 2=1+i ,∴z =1-i .故选A.13.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A.AB.BC.CD.D解析:【知识点:复数的概念,复平面,共轭复数】表示复数z 的点A 与表示z 的共轭复数的点关于x 轴对称,∴B 点表示z .选B.14.设z =(2-i )2(i 为虚数单位),则复数z 的模为 .答案:5解析:【知识点:复数的四则运算,共轭复数,复数的模】15. i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若1z =2-3i,则2z = . 答案:2z = -2+3i解析:【知识点:复数的几何意义】由于z 1对应的点的坐标为(2,-3),所以z 2对应的点的坐标为(-2,3), 2z = -2+3i .16.(1) i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.(2)已知复数z =(5+2i )2(i 为虚数单位),则z 的实部为________.答案:-2;21解析:【知识点:复数的四则运算,复数的概念】(1)(1-2i )(a +i )=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2(2)因为z =(5+2i )2=25+20i +(2i )2=25+20i -4=21+20i ,所以z 的实部为21. 17.⎝ ⎛⎭⎪⎫1+i 1-i 2 016=________. 答案:1解析:【知识点:复数的四则运算,共轭复数】⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 1-i 2 1 008=⎝ ⎛⎭⎪⎫1+2i +i 21-2i +i 2 1 008=1. 18.-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 016=________. 答案:1i +解析:【知识点:复数的四则运算,共轭复数】原式=i(1+23i)1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 008=i +⎝ ⎛⎭⎪⎫2-2i 1 008=i +i 1 008=i +i 4×252=1+i . 19.已知f (x )=⎩⎨⎧ 1+x ,x ∈R ,(1+i)x ,x ∉R ,则f [f (1-i )]=________. 答案:3∵f (1-i )=(1+i )(1-i )=2,∴f [f (1-i )]=f (2)=1+2=3.20.已知复数z 满足|z |=5,且(3+ 4i )z 是纯虚数,求z .答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,复数的模】设z =x +y i (x, y ∈R ),∵ |z |=5,∴ x 2+y 2=25.又(3+4i)z =(3+4i)(x +y i)=(3x -4y )+(4x +3y )i 是纯虚数,∴340,430,x y x y -=⎧⎨+≠⎩联立三个关系式解得4,3,x y =⎧⎨=⎩或4,3.=-⎧⎨=-⎩x y∴ z =4+3i 或z =-4-3i21.设1zz +是纯虚数,求复数z 对应的点的轨迹方程.答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,共轭复数,复数的模】 ∵1z z + 是纯虚数,∴011z z z z ⎛⎫+= ⎪++⎝⎭,即20(z 1)(z 1)zz z z ++=++, 设(x,y R)z x yi =+∈,则222()20x y x ++=∴ 2211(y 0)24x y ⎛⎫++=≠ ⎪⎝⎭.它为复数z 对应点的轨迹方程. 22.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO→、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数. 答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】①AO→=-OA →,∴AO →所表示的复数为-3-2i . ∵BC →=AO →,∴BC →所表示的复数为-3-2i . ②CA→=OA →-OC →,∴CA →所表示的复数为(3+2i )-(-2+4i )=5-2i . ③OB→=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .点评:因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.23.已知z 是复数,z +2i 、z 2-i均为实数(i 为虚数单位),且复数(z +ai )2在复平面内对应的点在第一象限,求实数a 的取值范围.答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】设z =x +yi (x 、y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2.∵z 2-i =x -2i 2-i=15(x -2i )(2+i )=15(2x +2)+15(x -4)i ,由题意得x =4.∴z =4-2i . ∵(z +ai )2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎨⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6, ∴实数a 的取值范围是(2,6).三、数学视野以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论.解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论.复变函数论产生于十八世纪.1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程.而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们.因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”.到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”.复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学.当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一. 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱.后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了.二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献.复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的.比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的.比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献.复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论.它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响.。

第五章 §2 复数的四则运算

第五章 §2 复数的四则运算

§2复数的四则运算学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.知识点一复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c+d i)=(a±c)+(b±d)i.梳理(1)运算法则设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,(a+b i)-(c+d i)=(a-c)+(b-d)i.(2)加法运算律对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).知识点二复数的乘法及其运算律思考怎样进行复数的乘法运算?答案两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成-1,并且把实部与虚部分别合并即可.梳理(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有知识点三共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫作互为共轭复数,z的共轭复数用z表示.即当z=a+b i时,z=a-b i.知识点四复数的除法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R,z2≠0),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).1.在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.(√) 2.复数加减乘除的混合运算法则是先乘除,再加减.(√)3.两个共轭复数的和与积是实数.(√)4.若z1,z2∈C,且z21+z22=0,则z1=z2=0.(×)类型一 复数的加法、减法运算例1 (1)若z 1=2+i ,z 2=3+a i(a ∈R ),复数z 1+z 2所对应的点在实轴上,则a =________.(2)已知复数z 满足|z |i +z =1+3i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)-1 (2)1+43i 解析 (1)z 1+z 2=(2+i)+(3+a i)=5+(a +1)i ,由题意得a +1=0,则a =-1.(2)设z =x +y i(x ,y ∈R ),则|z |=x 2+y 2, ∴|z |i +z =x 2+y 2i +x +y i =x +(x 2+y 2+y )i=1+3i , ∴⎩⎪⎨⎪⎧ x =1,x 2+y 2+y =3,解得⎩⎪⎨⎪⎧x =1,y =43,∴z =1+43i. 反思与感悟 (1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减.(2)当一个等式中同时含有|z |与z 时,一般用待定系数法,设z =x +y i(x ,y ∈R ). 跟踪训练1 (1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(3)已知复数z 满足|z |+z =1+i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)6-2i (2)-a +(4b -3)i (3)i解析 (1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i=(a -2a )+(b +3b -3)i =-a +(4b -3)i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2, ∴|z |+z =(x 2+y 2+x )+y i =1+i ,∴⎩⎪⎨⎪⎧ x 2+y 2+x =1,y =1,解得⎩⎪⎨⎪⎧ x =0,y =1, ∴z =i.类型二 复数代数形式的乘除运算例2 计算:(1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i); (2)(1+2i )2+3(1-i )2+i; (3)(1-4i )(1+i )+2+4i 3+4i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i) =⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i) =⎝⎛⎭⎫-32+12i (1+i) =⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (3)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i=7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i ) =21-28i +3i +425=25-25i 25=1-i. 反思与感悟 (1)按照复数的乘法法则,三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算和实数的运算顺序一致,在计算时,若符合乘法公式,则可直接运用公式计算.(2)根据复数的除法法则,通过分子、分母都乘以分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.跟踪训练2 计算:(1)(4-i)(6+2i)-(7-i)(4+3i);(2)3+2i 2-3i +3-2i 2+3i; (3)(i -2)(i -1)(1+i )(i -1)+i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)(4-i)(6+2i)-(7-i)(4+3i)=(24+8i -6i +2)-(28+21i -4i +3)=(26+2i)-(31+17i)=-5-15i.(2)3+2i 2-3i +3-2i 2+3i=i (2-3i )2-3i +-i (2+3i )2+3i=i -i =0.(3)(i -2)(i -1)(1+i )(i -1)+i =i 2-i -2i +2i -1+i 2-i +i=1-3i -2+i =(1-3i )(-2-i )(-2+i )(-2-i ) =-2-i +6i +3i 25=-5+5i 5=-1+i. 类型三 i 的运算性质例3 计算:(1)2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 016; (2)i +i 2+…+i 2 017.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质 解 (1)原式=2(1+i )-2i+⎝⎛⎭⎫22i 1 008=i(1+i)+(-i)1 008 =i +i 2+(-1)1 008·i 1 008=i -1+i 4×252=i -1+1=i.(2)方法一 原式=i (1-i 2 017)1-i =i -i 2 0181-i =i -(i 4)504·i 21-i=i +11-i =(1+i )(1+i )(1-i )(1+i )=2i 2=i. 方法二 因为i n +i n +1+i n +2+i n +3=i n (1+i +i 2+i 3)=0(n ∈N +),所以原式=(i +i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i 2 014+i 2 015+i 2 016)+i 2 017=i 2 017=(i 4)504·i =1504·i =i.反思与感悟 (1)等差、等比数列的求和公式在复数集C 中仍适用,i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N +).(2)记住以下结果,可提高运算速度.①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i 1-i=i.③1i=-i. 跟踪训练3 (1)⎝ ⎛⎭⎪⎫1+i 1-i 2 018=________. 考点 虚数单位i 及其性质题点 虚数单位i 的运算性质答案 -1解析 ⎝ ⎛⎭⎪⎫1+i 1-i 2 018=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i ) 2 018=⎝⎛⎭⎫2i 2 2 018 =i 2 018=(i 4)504·i 2=1504·i 2=-1.(2)化简i +2i 2+3i 3+…+100i 100.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质解 设S =i +2i 2+3i 3+…+100i 100,①所以i S =i 2+2i 3+…+99i 100+100i 101,②①-②得(1-i)S =i +i 2+i 3+…+i 100-100i 101=i (1-i 100)1-i -100i 101=0-100i =-100i.所以S =-100i 1-i =-100i (1+i )(1-i )(1+i )=-100(-1+i )2 =50-50i.所以i +2i 2+3i 3+…+100i 100=50-50i.类型四 共轭复数及其应用例4 把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎪⎨⎪⎧ a +2b =4,2a -b =3,得⎩⎪⎨⎪⎧ a =2,b =1, 所以z =2+i.引申探究若将本例条件改为z (z +2)=4+3i ,求z .解 设z =x +y i(x ,y ∈R ).则z =x -y i ,由题意知,(x -y i)(x +y i +2)=4+3i.得⎩⎪⎨⎪⎧x (2+x )+y 2=4,xy -y (x +2)=3, 解得⎩⎨⎧ x =-1-112,y =-32或⎩⎨⎧ x =-1+112,y =-32, 所以z =⎝⎛⎭⎫-1-112-32i 或z =⎝⎛⎭⎫-1+112-32i. 反思与感悟 当已知条件出现复数等式时,常设出复数的代数形式,利用复数相等的充要条件转化为实数问题求解.跟踪训练4 已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2=1,即a 2+b 2=1.①因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i 是纯虚数,所以3a -4b =0,且3b +4a ≠0.② 由①②联立,解得⎩⎨⎧ a =45,b =35或⎩⎨⎧ a =-45,b =-35.所以z =45-35i 或z =-45+35i.1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于() A .第一象限 B .第二象限C .第三象限D .第四象限 考点 复数的加减法运算法则题点 复数加减法与点的对应答案 D解析 ∵z 1-z 2=5-7i ,∴z 1-z 2在复平面内对应的点位于第四象限.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( )A .-iB .iC .-1D .1考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 z =1i =-i.3.若z =4+3i(i 为虚数单位),则z|z |等于( )A .1B .-1C.45+35iD.45-35i考点 复数的乘除法运算法则题点 乘除法的运算法则答案 D解析z=4+3i,|z|=5,z|z|=45-35i.4.设i 是虚数单位,z 是复数z 的共轭复数,若z =2i 31+i,则z =________. 考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1+i解析 z =2i 31+i =-2i (1-i )(1+i )(1-i )=-1-i , 所以z =-1+i.5.已知复数z 满足:z ·z +2z i =8+6i ,求复数z 的实部与虚部的和.考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题解 设z =a +b i(a ,b ∈R ),则z ·z =a 2+b 2,∴a 2+b 2+2i(a +b i)=8+6i ,即a 2+b 2-2b +2a i =8+6i ,∴⎩⎪⎨⎪⎧ a 2+b 2-2b =8,2a =6,解得⎩⎪⎨⎪⎧a =3,b =1, ∴a +b =4,∴复数z 的实部与虚部的和是4.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.3.复数问题实数化思想复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+b i(a,b∈R),利用复数相等的充要条件转化.一、选择题1.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4考点 复数的加减法运算法则题点 复数加减法的运算法则答案 B解析 ∵z +(3-4i)=1,∴z =-2+4i ,故z 的虚部是4.2.设复数z 满足关系式z +|z |=2+i ,那么z 等于( )A .-34+i B.34-i C .-34-i D.34+i 考点 复数的加减法运算法则题点 复数加减法的运算法则答案 D解析 设z =a +b i(a ,b ∈R ),则z +|z |=(a +a 2+b 2)+b i =2+i , 则⎩⎪⎨⎪⎧ a +a 2+b 2=2,b =1, 解得⎩⎪⎨⎪⎧a =34,b =1, ∴z =34+i.3.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+i考点复数的乘除法运算法则题点利用乘除法求复数答案 C解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.4.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 等于( )A .6B .-6C .0 D.16考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 A解析 ∵z 1z 2=3-b i1-2i =(3-b i )(1+2i )(1-2i )(1+2i )=3+2b +(6-b )i 5是实数,∴6-b =0,∴实数b 的值为6,故选A.5.已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i 的点是()A .MB .NC .PD .Q考点 复数的乘除法运算法则题点 运算结果与点的对应关系答案 D解析 由图可知z =3+i ,所以复数z 1+i =3+i 1+i =(3+i)(1-i )(1+i )(1-i )=4-2i 2=2-i 表示的点是Q (2,-1).故选D.6.设复数z 满足1+z1-z =i ,则|z |等于( )A .1 B. 2 C. 3 D .2考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 由1+z 1-z=i , 得z =-1+i 1+i=(-1+i )(1-i )2=2i 2=i , ∴|z |=|i|=1.7.若z +z =6,z ·z =10,则z 等于( )A .1±3iB .3±iC .3+iD .3-i考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题答案 B解析 设z =a +b i(a ,b ∈R ),则z =a -b i , 所以⎩⎪⎨⎪⎧ 2a =6,a 2+b 2=10,解得⎩⎪⎨⎪⎧ a =3,b =±1,则z =3±i. 8.计算(-1+3i )3(1+i )6+-2+i 1+2i的值是( ) A .0 B .1 C .2i D .i考点 复数四则运算的综合应用题点 复数的混合运算答案 C解析 原式=(-1+3i )3[(1+i )2]3+(-2+i )(1-2i )(1+2i )(1-2i )=(-1+3i )3(2i )3+-2+4i +i +25=⎝⎛⎭⎫-12+32i 3-i +i =1-i +i =i (-i )i+i =2i.二、填空题9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 2解析 因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R ,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2. 10.若复数z 满足(3-4i)z =4+3i(i 是虚数单位),|z |=________.考点 复数的乘除法运算法则题点 利用乘除法求复数答案 1解析 因为(3-4i)z =4+3i ,所以z =4+3i 3-4i =(4+3i )(3+4i )(3-4i )(3+4i )=25i 25=i. 则|z |=1.11.定义一种运算:⎣⎢⎡⎦⎥⎤a b c d =ad -bc .则复数⎣⎢⎡⎦⎥⎤1+i -12 3i 的共轭复数是________.考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1-3i解析 ⎣⎢⎡⎦⎥⎤1+i -12 3i =3i(1+i)+2=-1+3i , ∴其共轭复数为-1-3i.三、解答题12.已知z ,ω为复数,(1+3i)z 为纯虚数,ω=z 2+i,且|ω|=52,求ω. 考点 复数的乘除法运算法则题点 乘除法的综合应用解 设z =a +b i(a ,b ∈R ),则(1+3i)z =a -3b +(3a +b )i.由题意得a -3b =0,3a +b ≠0.因为|ω|=⎪⎪⎪⎪⎪⎪z 2+i =52, 所以|z |=a 2+b 2=510,将a =3b 代入,解得a =15,b =5或a =-15,b =-5,故ω=±15+5i 2+i=±(7-i). 13.已知复数z =1+i.(1)设ω=z 2+3z -4,求ω;(2)若z 2+az +b z 2-z +1=1-i ,求实数a ,b 的值. 考点 复数四则运算的综合应用题点 与混合运算有关的未知数求解解 (1)因为z =1+i ,所以ω=z 2+3z -4=(1+i)2+3(1-i)-4=-1-i.(2)因为z =1+i ,所以z 2+az +b z 2-z +1=(1+i )2+a (1+i )+b (1+i )2-(1+i )+1=1-i , 即(a +b )+(a +2)i i=1-i , 所以(a +b )+(a +2)i =(1-i)i =1+i ,所以⎩⎪⎨⎪⎧ a +2=1,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =2.四、探究与拓展14.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为________.考点 复数的乘除法运算法则题点 乘除法的综合应用答案 16解析 易知(m +n i)(n -m i)=mn -m 2i +n 2i +mn =2mn +(n 2-m 2)i. 若复数(m +n i)(n -m i)为实数,则m 2=n 2,即(m ,n )共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),6种情况,所以所求概率为636=16. 15.设z 是虚数,ω=z +1z是实数,且-1<ω<2. (1)求|z |的值及z 的实部的取值范围;(2)设μ=1-z 1+z,求证:μ为纯虚数. 考点 复数四则运算的综合应用题点 与四则运算有关的问题(1)解 因为z 是虚数,所以可设z =x +y i(x ,y ∈R ,且y ≠0),则ω=z +1z =(x +y i)+1x +y i =x +y i +x -y i x 2+y 2=⎝⎛⎭⎪⎫x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数,且y ≠0,所以y -y x 2+y 2=0,即x 2+y 2=1. 所以|z |=1,此时ω=2x .又-1<ω<2,所以-1<2x <2.所以-12<x <1, 即z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 μ=1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i 1+2x +x 2+y 2.又x2+y2=1,所以μ=-yi.1+x 因为y≠0,所以μ为纯虚数.。

电工技术:复数的表示形式及复数的四则运算

电工技术:复数的表示形式及复数的四则运算
复数的表示形式及四则运算
一、复数的四种表示形式
虚数单位 j =
1.代数形式: 在复平面上表示 •
1
j2 = -1
A a jb
+j b
复数的模 复数的辐角
A r
a r cos ψ
b r sin ψ
r a2 b2 b ψ arctan a

O
a +1
2. 三角函数形式
A r cos ψ jr sin ψ r (cos ψ jsin ψ)
A 32 42 5
求它们的和、差、积、商。
B 82 62 10
4 A arctan 53o 3
6 B arctan 37 o 8B 10370A Nhomakorabea 5530
A B 51053 37 5090
A 5 53 37 0.516 B 10
A1 A1 1
A2 A2 2
A1 A1 1 2 A2 A2
二、复数的四则运算
例题:已知两个复数
解:
A B 3 8 j 4 6 11 j10
A 3 j4
B 8 j6
A B 3 8 j 4 6 5 j 2
二、复数的四则运算
2.复数的乘法运算 • 都转换为极坐标表达式或指数式,两复数的模相乘作为积的模,幅角相加作为积的模角。
A1 A1 1
A2 A2 2
3.复数的除法运算
A1 A2 A1 A2 1 2
• 都转换成极坐标式或指数式,将两复数的模相除作为商的模,幅角相减作为商的模角。
这两种表示形式适用于复数的加减运算。 简化画法

2021高中人教A版数学必修第二册课件:第七章-7.2 复数的四则运算

2021高中人教A版数学必修第二册课件:第七章-7.2 复数的四则运算

训练题
三 解复数方程
例5[2020·江苏省海头高级中学高二检测]已知复数z=1+2i(i为虚数单位). (1)若z·z0=2z+z0,求复数z0的共轭复数; (2)若z是关于x的方程x2-mx+5=0的一个虚根,求实数m的值.
训练题
1.已知关于x的方程x2+(1-2i)x+(3m-i)=0有实数根,求实数m的值.
1.复数的减法法则 (a+bi)-(c+di)=(a-c)+(b-d)i. 2.两个复数相减,类似于两个多项式相减.
3.两个复数相加(减)就是把实部与实部、虚部与虚部 部分分别相加(减)
4.复数减法的几何意义
两个复数z1=a+bi,z2=c+di(a,b,c,d∈R)在复平 面内对应的向量分别是OZ1 ,OZ2 ,那么这两个复数的差z1-z2 对应的向量是OZ1 -OZ2 ,即向量 Z2Z1 .
训练题2[2019·福建厦门高三模拟]已知|z|=3,且z+3i是纯
虚数,则z=
.
2.答案: 3i 解析:设z=x+yi(x,y∈R),∵ x2+y2=
32,且z+3i=x+yi+3i=x+(y+3)i是纯虚数,∴
x 0,
y
3.
∴ z=3i.
【技巧点拨】 进行复数加、减运算时: (1)复数的实部与实部相加减,虚部与虚部相加减. (2)把i看作一个字母,类比多项式加、减运算中的合并同类项. (3)复数的加法可以推广到多个复数相加的情形. 【注意】 (1)复数z=a+bi(a,b∈R)对应的点为(a,b). (2)当已知|z|求解复数z时,一般用待定系数法求解,需设z=a+bi (a,b∈R).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数代数形式的四则运算(教学设计)(1)§3.2.1复数代数形式的加减运算及几何意义教学目标:知识与技能目标:掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义过程与方法目标:培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力。

情感、态度与价值观目标:培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。

教学重点:复数代数形式析加法、减法的运算法则。

教学难点:复数加减法运算的几何意义。

教学过程:一、复习回顾:1、复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法 2、. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3、 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)二、师生互动、新课讲解:1、复数代数形式的加减运算(1)复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .(2)复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .(3)复数的加法运算满足交换律: z 1+z 2=z 2+z 1.证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ).∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i .z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i .又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1.∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律.(4)复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3)证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ).∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i )=[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i=[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i .z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]=(a 1+b 1i )+[(a 2+a 3)+(b 2+b 3)i ]=[a 1+(a 2+a 3)]+[b 1+(b 2+b 3)]i=(a 1+a 2+a 3)+(b 1+b 2+b 3)i∵(a 1+a 2)+a 3=a 1+(a 2+a 3),(b 1+b 2)+b 3=b 1+(b 2+b 3).∴(z 1+z 2)+z 3=z 1+(z 2+z 3).即复数的加法运算满足结合律 讲解范例: 例1(课本P57例1)计算:(5-6i)+(-2-i)-(3+4i) 解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i例2计算:(1-2i )+(-2+3i )+(3-4i )+(-4+5i )+…+(-2002+2003i )+(2003-2004i )解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i .解法二:∵(1-2i )+(-2+3i )=-1+i ,(3-4i )+(-4+5i )=-1+i ,……(2001-2002i )+(-2002+2003)i =-1+i .相加得(共有1001个式子):原式=1001(-1+i )+(2003-2004i )=(2003-1001)+(1001-2004)i =1002-1003i2.复数代数形式的加减运算的几何意义复数的加(减)法 (a +bi )±(c +di )=(a ±c )+(b ±d )i .与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减). (1)复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ uuu r (2)复数z a bi =+←−−−→一一对应平面向量OZ uuu r (3)复数加法的几何意义:设复数z 1=a +bi ,z 2=c +di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b ),2OZ =(c ,d )以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,∴OZ = 1OZ +2OZ =(a ,b )+(c ,d )=(a +c ,b +d )=(a +c )+(b +d )i(4)复数减法的几何意义:复数减法是加法的逆运算,设z =(a -c )+(b -d )i ,所以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以OZ 为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c )+(b -d )i 对应由于21OZ Z Z =u u u u r u u u r ,所以,两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.例3已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:z =z 2-z 1=(1+2i )-(2+i )=-1+i ,∵z 的实部a =-1<0,虚部b =1>0,∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即AB 所表示的复数是z B -z A . ,而BA 所表示的复数是z A -z B ,故切不可把被减数与减数搞错尽管向量AB 的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量AB 所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关例4 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.分析一:利用BC AD =,求点D 的对应复数.解法一:设复数z 1、z 2、z 3所对应的点为A 、B 、C ,正方形的第四个顶点D 对应的复数为x +yi (x ,y ∈R ),是: OA OD AD -==(x +yi )-(1+2i )=(x -1)+(y -2)i ;OB OC BC -==(-1-2i )-(-2+i )=1-3i .∵BC AD =,即(x -1)+(y -2)i =1-3i ,∴⎩⎨⎧-=-=-,32,11y x 解得⎩⎨⎧-==.1,2y x 故点D 对应的复数为2-i .分析二:利用原点O 正好是正方形ABCD 的中心来解.解法二:因为点A 与点C 关于原点对称,所以原点O 为正方形的中心,于是(-2+i )+(x +yi )=0,∴x =2,y =-1.故点D 对应的复数为2-i .点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用 课堂练习:(课本P58练习:NO :1;2)三、课堂小结,巩固反思:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小复数的加法法则:(a +bi )+(c +di )=(a +c )+(b +d )i (a ,b ,c ,d ∈R ). 复数的加法,可模仿多项式的加法法则计算,不必死记公式。

复数加法的几何意义:如果复数z 1,z 2分别对应于向量1OP 、2OP ,那么,以OP 1、OP 2为两边作平行四边形OP 1SP 2,对角线OS 表示的向量OS 就是z 1+z 2的和所对应的向量 复数减法的几何意义:两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.四、布置作业:A 组:1、(课本P61习题3.2 A 组:NO :1)2、(课本P61习题3.2 A 组:NO :2)3、(课本P61习题3.2 A 组:NO :3)4、已知复数z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1在复平面内所表示的点位于(B )例2图A.第一象限B.第二象限C.第三象限D.第四象限5、在复平面上复数-3-2i ,-4+5i ,2+i 所对应的点分别是A 、B 、C ,则平行四边形ABCD 的对角线BD 所对应的复数是(C )A.5-9iB.-5-3iC.7-11iD.-7+11i6、已知复平面上△AOB 的顶点A 所对应的复数为1+2i ,其重心G 所对应的复数为1+i ,则以OA 、OB 为邻边的平行四边形的对角线长为(A ) A.32 B.22 C.2 D.57、复平面上三点A 、B 、C 分别对应复数1,2i ,5+2i ,则由A 、B 、C 所构成的三角形是(A )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形8、一个实数与一个虚数的差(C )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数B 组:1、计算(-])23()23[()23()32i i i ++---++=____.(答:-22i )2、计算:(2x +3yi )-(3x -2yi )+(y -2xi )-3xi =________(x 、y ∈R ).(答:.(y -x )+5(y -x )i )3、计算(1-2i )-(2-3i )+(3-4i )-…-(2002-2003i ).解:原式=(1-2+3-4+…+2001-2002)+(-2+3-4+…-2002+2003)i=-1001+1001i4、已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值. 解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a +5)i ]=(a -a 2+2)+(a 2+a -6)i∵z 2-z 1是纯虚数∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a =-1. 5、已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数. 解:设D (x ,y ),则OA OD AD -=对应的复数为(x +yi )-(1+2i )=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i )-(-2+i )=1-3i ∵= ∴(x -1)+(y -2)i =1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i 。

相关文档
最新文档