高中数学-学生-平面及其基本性质
高中数学人教A版必修课件:平面

②判断点在直线上.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
随堂练习
1.如图,用符号表示下列图形中点、直线、平面之 间的位置关系.
a
B A
l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B.
平面公理 文字语言
存在性
基本性质2 过不在一条直线上的三点,有且只有一个平
面. 作用?
图形语言
确定平面的主要依据.
B
唯一性
A C
符号语言
不再一条直线上的三个点A、B、C所确定的平面, 可以记成“平面ABC”.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
D A
C B
为了增强立体感,常常把被遮挡部分用虚线 画出来.
D
FC
A
E
B
被遮挡部分 用虚线表示
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
平面的表示
常把希腊字母α、β、γ等写在代表平面的平行四边 形的一个角上,如平面α、平面β等;也可以用代表平 面的四边形的四个顶点,或者相对的两个顶点的大写 英文字母作为这个平面的名称.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
文字语言
平面公理
基本性质1 如果一条直线上的两点在一个平面内, 那么这条直线在此平面内.
作用?
判定直线是否在平面内.
图形语言
符号语言
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学知识点-立体几何

11.球
⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.
⑵球的体积公式和表面积公式.
二、常用结论、方法和公式
1.从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.
(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.
立体几何知识要点
一、知识提纲
(一)空间的直线与平面
⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.
⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.
⑴公理四(平行线的传递性).等角定理.
⑵异面直线的判定:判定定理、反证法.
⑶异面直线所成的角:定义(求法)、范围.
⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.
⒋直线和平面垂直
⑴直线和平面垂直:定义、判定定理.
⑵三垂线定理及逆定理.
5.平面和平面平行
两个平面的位置关系、两个平面平行的判定与性质.
6.平面和平面垂直
互相垂直的平面及其判定定理、性质定理.
高中数学知识点-立体几何
考试内容
平面及其基本性质.平面图形直观图的画法.
1、平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.
2、直线和平面平行的判定平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.
高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。
1. 集合。
- 集合的定义:一些元素组成的总体。
- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。
- 真子集:A⊆ B且A≠ B,则A⊂neqq B。
- 集合相等:A = B当且仅当A⊆ B且B⊆ A。
- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。
- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。
【优化方案】2012高中数学 第1章1.2.1平面的基本性质课件 苏教版必修2

1.2.1 平 面 的 基 本 性 质
课前自主学案
课堂互动讲练
知能优化训练
课前自主学案
温故夯基 1.空间物体的三视图:_______、_______、 .空间物体的三视图: 正视图 、 左视图 、 俯视图 _______. _______. 2.斜二测画法: .斜二测画法: 45°或135°; ° ° (1)斜:∠x′O′y′= ____________; 斜 ′ ′ ′ (2)二测:横_____,纵_____. 二测: 不变 , 折半 . 二测
3.平面的基本性质 平面的基本性质 (1)公理 : 公理1: 公理 文字语言: ①文字语言:如果一条直线上的两点在一个 平面内,那么这条直线上_________都在这 平面内,那么这条直线上 所有的点 都在这 个平面内. 个平面内. ⊂ 符号语言: ②符号语言:若A∈α,B∈α,则______. ∈ , ∈ , AB⊂α (2)公理 : 公理2: 公理 文字语言:如果两个平面有一个公共点, ①文字语言:如果两个平面有一个公共点, 那么它们还有其他公共点,这些公共点的集 那么它们还有其他公共点, 合是_________________________. 合是 经过这个公共点的一条直线 .
思考感悟 2.“线段AB在平面 内,直线 不全在平面 . 线段 在平面 在平面α内 直线AB不全在平面 α内”这一说法是否正确,为什么? 内 这一说法是否正确,为什么? 提示:不正确. 提示:不正确. 在平面α内 ∵线段AB在平面α内, 线段AB在平面 上的所有点都在平面α内 ∴线段AB上的所有点都在平面 内, 线段 上的所有点都在平面 上的A、 两点一定在平面 两点一定在平面α内 ∴线段AB上的 、B两点一定在平面 内, 线段 上的 在平面α内 公理 公理1) ∴直线AB在平面 内.(公理 直线 在平面
《平面的基本性质》第1课时示范课教学设计【高中数学教案】

《平面的基本性质》教学设计第1课时◆教学目标了解平面的基本事实与推论,能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实的地位与作用;会用平面的基本事实正面点共线、线共点、点线共面三个典型问题,熟悉符号语言、文字语言、图形语言之间的转换.◆教学重难点◆教学重点:掌握平面的基本事实及推论.教学难点:能用图形、文字、符号三种语言描述平面的基本事实,并能解决空间线面的位置关系问题.◆课前准备PPT课件.◆教学过程一、问题导入前面我们通过几何体的学习,已经直观地认识了点、线、面之间的位置关系,从本节开始,我们将在直观认识的基础上来论证它们之间的关系,以期进一步培养大家的空间想象能力和逻辑能力.问题1:观察如图11-2-2,的凳子,把凳子看成一个平面,思考(1)如果把一个平面固定在空间中,至少需要固定几个点?(2)有多少个平面能通过空间中指定的一点?有多少平面能通过空间中指定制定的两点?引语:要解决这个问题,就需要进一步学习平面的基本事实与推论.(板书:平面的基本事实与推论)【新知探究】问题2:确定平面的依据是什么?师生活动:学生分析解题思路,给出答案.追问:基本事实1的作用是什么?预设的答案:基本事实1: 文字表示:经过不在一条直线上的3个点,有且只有一个平面.符号表示:A ,B ,C 三点不共线⇒存在唯一的平面α使A ,B ,C ∈α图形表示:注:(1)可以简单地说成“不共线的3点确定一个平面”(2)过不共线的3点A ,B ,C 的平面,通常记作平面ABC ,用图象直观地表示平面时,为了增加立体感,习惯上讲平面用平行四边形表示.(3)如图的平面α可以看成由不共线的3点A ,B ,C 确定的,此时显然有:,,A B C ααα∈∈∈(4)如果给定的3个点同在一直线上,那么有无数个平面通过这3个点,也就是说,此时这三个点不能“确定”一个平面,例如,如果给定的3个点都在长方体的一条棱上,那么过这三个点就会有无数个平面.作用:①确定平面的依据;②判定点、线共面设计意图:通过对生活简单事实出发,通过观察分析归纳出平面基本事实.发展学生数学抽象和直观想象的核心素养.问题3:尝试与发现:这就是说,如果A B αα∈∈, ,那么直线AB α∈,如图11-2-4所示.师生活动:学生分析解题思路,给出答案追问:基本事实2的作用是什么?预设的答案:基本事实2:文字表示:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 符号表示:A ∈α,B ∈α⇒AB ⊂α图形表示:作用:①判定直线是否在平面内;②判断一个面是否是平面注:基本事实2可以作为判断一个面是否是平面的依据:如果一个面内的任意两点所确定的直线都在这个平面内,那么这个面就是平面.例如,球面不是一个平面,因为球面上任意两点所确定的直线中,只有两个点在球面上.设计意图:培养学生分析和归纳的能力.问题4:如图11-2-6所示,当用裁纸刀裁纸时,可以认为刀锋是在一个平面内运动的.(1)裁纸刀裁出的是什么样的痕迹?(2)两个平面相交时,公共点具有什么特点?师生活动:学生分析解题思路,给出答案追问:基本事实3的作用是什么?预设的答案:基本事实3:文字表示:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号表示:P∈α,且P∈β⇒α∩β=l,且P∈l图形表示:注:(1)基本事实3说明,两个不重合的平面,只要有一个公共点,就一定有无数个公共点,而且这无数个公共点能构成一条直线,这条直线通常也称为两个平面的交线,如图所示,有,A a a αβ∈=;(2)在画两个平面相交时,其中一个平面被另一个平面遮住的部分应该画出虚线或不画,如图所示;(3)根据基本事实3可知,棱柱中,有公共棱的两个面所在的平面一定是相交的,而且公共棱是交线的一部分.作用:①判定两个平面相交的依据;②判定点在直线上设计意图:培养学生分析和归纳的能力. 【巩固练习】例1. 用符号语言表示下列语句,并画出图形:(1)三个平面α、β、γ相交于一点P ,且平面α与平面β交于P A ,平面α与平面γ交于PB ,平面β与平面γ交于PC ;(2)平面ABD 与平面BCD 相交于BD ,平面ABC 与平面ADC 交于AC .师生活动:学生分析解题思路,给出答案.预设的答案: (1)符号语言表示:α∩β∩γ=P ,α∩β=P A ,α∩γ=PB ,β∩γ=PC .用图形表示如图①.(2)符号语言表示:平面ABD ∩平面BDC =BD .平面ABC ∩平面ADC =AC .图形表示如图②.设计意图:用符号语言表示语句. 例2. 证明:两两相交且不过同一个点的3条直线必在同一个平面内.师生活动:学生分析解题思路,给出答案.预设的答案:证明:设直线,,AB BC AC 两两相交,交点分别是,,A B C显然,,,A B C 3点不共线,因此它们能确定一个平面α.因为,,A B αα∈∈ 那么直线AB α⊂同理,AC BC αα⊂⊂即直线,,AB BC AC 都在平面α内.设计意图:基本事实1的运用.例3. 如图所示的正方体1111ABCD A B C D -中,E 是棱1CC 上的一点,试说明1,,D A E 3点确定的平面与平面ABCD 相交,并画出这两个平面的交线.师生活动:学生分析解题思路,给出答案.预设的答案:因为A ∈面1D AE ,A ∈面ABCD所以面1D AE ABCD ≠∅,即面1D AE 与面ABCD 相交.延长1D E 与DC ,设它们相交于F ,如图所示,则:F ∈直线1D E ,直线1D E ⊂面1D AE .F ∈直线DC ,直线DC ⊂面ABCD .则F ∈面1D AE 面ABCD ,从而AF 为面1D AE 与面ABCD 的交线,如图所示.设计意图:基本事实3的运用.【课堂小结】问题:(1)三个基本事实的作用有哪些?(2)证明几点共线的方法有哪些?(3)证明证明多线共点的方法有哪些?师生活动:学生尝试总结,老师适当补充.预设的答案:1.三个基本事实的作用基本事实1——判定点共面、线共面的依据;基本事实2——判定直线在平面内的依据;基本事实3——判定点共线、线共点的依据.2.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.3.证明多线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.设计意图:通过梳理本节课的内容,能让学生更加明确平面的基本事实的有关知识.布置作业:【目标检测】1. 下列说法正确的是()A.三点可以确定一个平面B.若直线上有一个点在一个平面内,则这条直线在这个平面内C.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面相交于一点D.如果两个平面有三个不共线的点,那么这两个平面重合设计意图:基本事实的运用.2. 若A ∈平面α,B ∈平面α,C ∈直线AB ,则( )A .C ∈αB .C ∉α C .AB ⊄αD .AB ∩α=C设计意图:用符号语言表示语句.3. 经过空间任意三点作平面( )A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个设计意图:基本事实的运用.4. 如图所示,在正方体1111ABCD A B C D 中.画出平面1AC 与平面1BC D 及平面1ACD 与平面1BDC 的交线.设计意图:基本事实的运用.5. 如图,已知E ,F ,G ,H 分别是四面体A -BCD 的棱AB ,BC ,CD ,DA 的中点.求证:E ,F ,G ,H 四点共面.设计意图:基本事实的运用.参考答案: 1. D A 错误,不共线的三点可以确定一个平面;B 错误,直线上的两个点在一个平面内,则这条直线在这个平面内;C 错误,三角板所在平面与桌面所在平面相交于一条直线;D 正确,过不共线的三个点有且只有一个平面.2. A 因为A ∈平面α,B ∈平面α,所以AB ⊂α.又因为C ∈直线AB ,所以C ∈α.3. D 当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个.4. 如图,∵AC BD O ⋂=,1C DC E ⋂=.∴O ∈平面1AC ,O ∈平面1BC D .又1C ∈平面1AC ,1C ∈平面1BC D .∴平面 1AC ⋂平面11BC D OC =.同理平面1ACD ⋂平面1BDC OE =.A A 15. 在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD .同理FG ∥BD ,则EH ∥FG .故E ,F ,G ,H 四点共面.。
高中数学知识点总结及公式大全(7篇)

高中数学知识点总结及公式大全(7篇)高中数学知识点总结及公式大全1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
面外直线的判定定理:用平面内一点与平面外一点之间的直线,平面内不经过该点的直线为面外直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面的夹角:平面的对角线与其在该平面上的投影所形成的锐角。
高中数学知识点总结及公式大全2(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为f(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
高中数学必修2点、直线、平面之间的位置关系(1)

1.空间中的平行关系1.集合的语言:点A 在直线l 上,记作: A ∈l ;点A 在平面α内,记作: A ∈α;直线在平面α内(即直线上每一个点都在平面α内),记作l ⊂α ; 注意:点A 是元素,直线是集合,平面也是集合。
2.平面的三个公理:(1)公理一:如果一条直线上的两点在同一个平面内那么这条直线上所有的点都在这个平而内.符号语言表述:A ∈l ,B ∈l , A ∈α, B ∈α⇒l ⊂α ; (2)公理二:经过不在同一条直线上的三点,有且只有一个平面,即不共线的三点确定一个平面.符号语言表述: A,B,C 三点不共线⇒有且只有一个平面α,使A ∈a, B ∈a, C ∈(3)公理三:如果不重合的两个平面有一个公共点,那么它们 有且只有一条过这个点的公共直线,符号语言表述: A ∈α∩β⇒α∩β= a, A ∈a.3. 平面基本性质的推论推论1:经过一条直线和直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
【例1.【解析】(1)D;直线上有两点在一个平面内,则这条直线一定在平面内,公理1保证了A 正确;公理2保证了C 正确;如果两个平面有两个公共点,则它们的交线是过这两点的直线,公理3保证了B 正确;直线不在平面内,可以与平面有一个交点,故D 错误.(2)①错误,如果这三条直线交于一点,比如过正方体同一顶点的三条棱就无法确定一个平面;②正确,两条相交直线确定一个平面;③错误,必须是不共线的三点,如果是共线三点,则有无数个平面;④正确,两条相交的对角线确定一个平面,四个顶点都在这个平面内,故是平面图形;⑤错误,两个平面若相交,公共点必是一条直线;⑥错误;若四点共线,则可以有无穷多个平面过这四点,若是对不共线的四点,该命题正确.【备选】 已知点A ,直线l ,平面α,① αα∉⇒⊄∈A l l A , ② αα∈⇒∈∈A l l ,A ③ αα∉⇒⊂∉A l l A , ④ αα⊄⇒∉∈l A l A , 以上说法表达正确的有______________【解析】④直线不在平面内,可以与平面有一个交点,故①错误; 直线是点集,故只能用l ⊂α,②错误;直线是平面的真子集,故不在直线上的点可以在平面内,③错误; 一条直线在一个平面内,则直线上任一点都在平面内,故④正确。
新教材高中数学第11章立体几何初步11-2平面的基本事实与推论课件新人教B版必修第四册

方法归纳
(1)用文字语言、符号语言表示一个图形时,首先仔细观察 图形有几个平面、几条直线且相互之间的位置关系如何,试着用 文字语言表示,再用符号语言表示.
(2)要注意符号语言的意义.如点与直线的位置关系只能用 “∈”或“∉”表示,直线与平面的位置关 系只能用“⊂”或“⊄”表示.
(3) 由 符 号 语 言 或 文 字 语 言 画 相 应 的 图形时,要注意实线和虚线的区别.
跟踪训练 2 一条直线与三条平行直线都相交,求证:这四条直 线共面.
解:已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C. 求证:直线 a,b,c,l 共面. 证明:证法一:∵a∥b,∴a,b 确定一个平面 α, ∵l∩a=A,l∩b=B,∴A∈α,B∈α,故 l⊂α. 又∵a∥c,∴a,c 确定一个平面 β. 同理可证 l⊂β,∴α∩β=a 且 α∩β=l. ∵过两条相交直线 a、l 有且只有一个平面, 故 α 与 β 重合,即直线 a,b,c,l 共面. 证法二:由证法一得 a、b、l 共面 α,也就是说 b 在 a、l 确定的平面 α 内. 同理可证 c 在 a、l 确定的平面 α 内. ∵过 a 和 l 只能确定一个平面,∴a,b,c,l 共面.
答案:A
2.能确定一个平面的条件是( )
A.空间三个点
B.一个点和一条直线
C.无数个点
D.两条相交直线
解析:不在同一条直线上的三个点可确定一个平面,A,B, C 条件不能保证有不在同一条直线上的三个点,故不正确.
答案:D
3 . 根 据 图 , 填 入 相 应 的 符 号 : A___∈_____ 平 面 ABC ,
(2)若 a,b,c,d 无三线共点,如图所示,
∵a∩b=A, ∴经过 a,b 有且仅有一个平面 α, ∴B,C∈α.由公理 1 知 c⊂α. 同理,d⊂α,从而有 a,b,c,d 共面. 综上所述,四条直线两两相交,且不共点,这四条直线在同 一平面内.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容
知识精要
1.平面的概念:
平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 2.平面的画法及其表示方法:
①常用平行四边形表示平面通常把平行四边形的锐角画成45o
,横边画成邻边的两倍
画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画
②一般用一个小写的希腊字母α、β、γ……或一个大写英文字母来表示,如平面α,平面β或平面M,平面N,还可用平面上的三个(或三个以上)点的字母表示如平面ABCD 等
3.空间图形是由点、线、面组成的
点、线、面的基本位置关系如下表所示:
图形
符号语言
文字语言(读法) A
a
A a ∈
点A 在直线a 上
A
a
A a ∉ 点A 不在直线a 上
A
α
A α∈
点A 在平面α内
A
α
A α∉ 点A 不在平面α内
b a A
a b A =I 直线a 、b 交于A 点
a
α
a αØ
直线a 在平面α内
a
α
a α=∅I 或
a α∥
直线a 与平面α无公共点
a
A
α
a A α=I 直线a 与平面α交于点A
l αβ=I
平面α、β相交于直线l
αβφ=∩或
αβ∥
平面α与平面β平行
4平面的基本性质
公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内
推理模式:
A A
B B ααα∈⎫
⇒⎬∈⎭
Ø. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.
公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线
推理模式:A l A ααββ∈⎫
⇒=⎬∈⎭
I 且A l ∈且l 唯一如图示:
应用:①确定两相交平面的交线位置;②判定点在直线上
公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.
公理3 经过不在同一条直线上的三点,有且只有一个平面
推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈
应用:①确定平面;②证明两个平面重合
“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.
推论1 经过一条直线和直线外的一点有且只有一个平面
推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l αØ
推论2 经过两条相交直线有且只有一个平面
推理模式:P b a =I ⇒存在唯一的平面α,使得,a b αØ
推论3 经过两条平行直线有且只有一个平面
推理模式://a b ⇒存在唯一的平面α,使得,a b αØ
B
A α。