二次函数复习课件
合集下载
第26章小结二次函数的复习课件

2、抛物线 y = 3x 2 + 2 的开口向
坐标为
.
, 顶点
3、抛物线 y =2( x +1)2 - 4 的顶点坐标为
对称轴为
.
4、当a 为最高点.
时,抛物线 y =(a +2)x 2 的顶点
5、抛物线 y = ( x - 2) 2 + 3 的开口向 ,对称
轴为
,在对称轴左侧,y 随 x 的增大而
2
1
A
-8 -7 -6 -5 -4 -3 -2 -1
1
-1
D B
2 3 4 56 7
8x
1、本课主要复习了哪些内容? 2、通过复习,你有什么体会或收获呢?
二次函数 y x2 2x 3
1)用配方法求其顶点D的坐标; 2)求其与y轴的交点C的坐标、与x轴交点A、B (且点A在点B的左边)的坐标。
y x2 2x 1
y
9
8 y=x2-2x+3
7
6
y x2 4x 3
5
4
3
2
1
-8 -7 -6 -5 -4 -3 -2 -1
1 2 3 4 5 6 7 8x
-1
知识点回顾四:
二次函数一般式与顶点式的转化
一般式
y ax2 bx c
配方
顶点式
y ax m2 k
y ax2 bx c
(
大 a >0 致 图 象 a<0
函 数
a >0
变 化 a<0
在对称轴左侧,y 随 x 的增大而减小. 在对称轴右侧,y 随 x 的增大而增大. 在对称轴左侧,y 随 x 的增大而增大. 在对称轴右侧,y 随 x 的增大而减小.
由a、b、c
二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的
解
x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6
中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
二次函数(复习课)课件

详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
九年级数学《二次函数总复习》课件

与时间x(min)成正比例.药物燃烧后,y与x成反比例(如所
示),现测得药物8min燃毕,此时室内空气中每立方米的药
量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自
变量x 的取值范围是:_______,药物燃烧后y关于x的函
数关系式为_______.
四边形OEBF的面积为2,则k的值是____。
y
C
E
O
B
F x
A
x
•(-3,0)
A
•(1,0)
0
E
B
x
• ••
DF
⑩如图,在坐标系内有一点G,G关于X轴对称点G‘,
若四边形AGBG’是正方形,求过A、B、G三点的抛
物线。
•G‘ y
• • • (-3,0)
A
(1,0) H0 B x
• G
当堂检测
1、 二次函数的图象如图所示,则在下列各不等式 中成立的个数是____________
C o
B
A(1,m) x
(4)连接BC,求三角形 ⊿ COB的面积;
例2、已知反比例函数 y =
k x
的图象经过点A(1,4)
(1 )①求此反比例函数 的解析式;
②并判断点B(-4,-1)是否在此函数图像上。
(2)根据图像得, 若y ﹥ 1, 则x的取值范围-----------
y 4 A(1,4)
例5:已知二次函数y=ax2+bx+c如图,
(1)①判断a,b,c正负。 ② a+b+c 0, a-b+c 0,b-2a 0。
(2) 已知二次函数y=ax2+bx+c如图,且过C(0, 3)
第22章《二次函数》复习课PPT课件(人教版)

形?若存在,求点N的坐标;若不存在,请说明理由
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0
三、课堂练习
N M
N
重视知识归纳; 重视基本概念; 重视典型题型; 重视每日小练; 重视错题整理; 避免盲目大意。
九年级数学
第22章 《二次函数》 复习(2)
定形图 性 义式象 质
坦洲实验中学初三数学
一、知识回顾
归纳知识:
(1)开a口的向符上号:由抛物a线>0的开口y 方向确定
开口向下
(2)c的符号:
a<0
o
x
由抛物线与y轴的交点位置确定.
交点在y轴正半轴
c>0
y
交点在y轴负半轴
c<0
交点是坐标原点
c=0
ox
∴ OE=DE=1.5 即D(1.5,-1.5)
设直线OD为y=kx,代入D点坐标得y= -x
令x2-2x-3 = -x
二、典型例题
证明: b2-4ac=[-(2m-1)]2-4×1×(m2-m-2) =4m2-4m+1-4m2+4m+8 =9
即b2-4ac >0 ∴ 抛物线与x轴有两个不同的交点
三、课堂练习
C
一次函数y=ax+b经过的象限与a, b符号关系 A选项,经过一二四象限, a<0, b>0 B选项,经过一二三象限,a>0, b>0 C选项,经过一三四象限, a>0, b<0 D选项,经过一三四象限,a>0, b<0
三、课堂练习
·B
A2
6
三、课堂练习
-1·
·5
与x,y轴交点
-5·
二、典型例题
解:令x=0,解得y=m2-m-2 令y=0,得x2-(2m-1) x+m2-m-2=0 [x-(m-2)][x-(m+1)]=0
初中数学《二次函数》复习课名师教学PPT课件

3.某商场试销一种成本为每件60元的服装,规定试销期 间销售单价不低于成本单价,且获利不得高于45%,经 试销发现,销售量y(件)与销售单价x(元)符合一次 函数y=kx+b,且x=65时,y=55;x=75时,y=45;
(1)求一次函数的解析式;
(2)若该商场获得利润为W元,试写出利润W与销售单 价x之间的关系;销售单价定为多少时,商场可获得最 大利润,最大利润是多少元?
(3)若该商场所获得利润不低于500元,试确定销售单 价x的范围.
二次函数在几何问题中的应用
1.为了节省材料,某水产养殖户利用水库的岸堤(岸堤 足够长)为一边,用总长为80m的围网在水库中围成了 如图所示的①②③三块矩形区域,而且这三块矩形区 域的面积相等.设BC的长度为xm,矩形区域ABCD的 面积为ym2.
A.图象关于直线x=1对称 B.函数y=ax2+bx+c(a≠0)的 最小值是-4 C.抛物线y=ax2+bx+c(a≠0)与x轴 的两个交点的横坐标分别是-1,3 D.当x<1时,y随x的增大而增大
2.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的 取值范围是(B)
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
1 x
2.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值
范围是( C)
A.m≠0 B.m≠-1 C.m≠0,且m≠-1 D.m=-1
3.矩形的周长为24cm,其中一边为xcm(其中x>0), 面积为ycm2,则这样的矩形中y与x的关系可以写成 ( B)
A.y=x2 C. y=12-x2
B.y=(12-x)x D.y=2(12-x)
初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的图象和x轴交点
有两个交点
(b2-4ac)
b2-4ac > 0
有一个交点
没有交点
有两个相等的实数根
没有实数根
b2-4ac = 0
b2-4ac < 0
选择
(1) 抛物线y=x2-4x+3的对称轴是_____________. A 直线x=1 B直线x= -1 C 直线x=2 D直线x= -2 B (2)抛物线y=3x2-1的________________ A 开口向上,有最高点 B 开口向上,有最低点 C 开口向下,有最高点 D 开口向下,有最低点 (3)若y=ax2+bx+c(a 0)与轴交于点A(2,0), B(4,0), 则对称轴是_______ C A 直线x=2 B直线x=4 C 直线x=3 D直线x= -3 (4)若y=ax2+bx+c(a 0)与轴交于点A(2,m), B(4,m), 则对称轴是_______ A A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2
c
求抛物线解析式的三种方法
1、已知抛物线上的三点,通常设解析式为 y=ax2+bx+c(a≠0) ________________ 2、已知抛物线顶点坐标(h, k),通常设 2+k(a≠0) y=a(x-h) 抛物线解析式为_______________ 3、已知抛物线与x 轴的两个交点(x1,0)、 y=a(x-x1)(x-x2) (a≠0) (x2,0),通常设解析式为_____________ 练习 根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ; (3)、图象经过(-2,0), (3,0) ,且最高点 的纵坐标是3 。
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
顶点坐标
对称轴 位置 开口方向
由a,b和c的符号确定
由a,b和c的符号确定
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
(3)b的符号: 由对称轴的位置确定 对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴
(4)b2-4ac的符号: a、b同号 a、b异号 b=0
由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点 b2-4ac>0 b2-4ac=0 b2-4ac<0
17.根据下列表格中二次函数y=ax2+bx+c的自变量 与函数值的对应值,判断方程ax2+bx+c =0 (a≠0, a, b, c为常数)的一个解的范围是( )
逆向思考,由y=x2-6x+4 =(x-3)2-5知:先向左平移3个 单位,再向上平移5个单位.
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表: 抛物线
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
A x
例1、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x
(四) 形如y = a (x+h) 2 +k (a ≠0) 的二次函数
二次函数 开口方向
2+k
对称轴
顶点坐标
y = a(x+h)
a > 0 向上 直线X=-h (-h,k) a < 0 向下
练习巩固2: (1)抛物线 y = 2 (x –3 ) 2+1 的开口向 上, (3,1) 对称轴 X=3 , 顶点坐标是 (2)若抛物线y = a (x+m) 2+n开口向下,顶 〈 0, m〈 0, n〈 0。 点在第四象限,则a 1 2 2、已知二次函数y=- 2 x +bx-5的图象的 0 。 顶点在y轴上,则b=___
二次函数的特殊形式:
知识运用
下列函数中,哪些是二次函数?
(1)y=3x-1 (2)y=3x2
(3)y=3x3+2x2
(5)y=x -2 +x
(4)y=2x2-2x+1
(6)y=x2-x(1+x)
知识运用
当m取何值时,函数是y= (m+2)x
m2-2
分别 是一次函数? 反比例函数? 二次函数?
驶向胜 利的彼 岸
答案:y=-x2+6x-5
练习1、已知抛物线y=ax2+bx-1的对称轴是x=1 , 最高点在直线y=2x+4上。 (1) 求此抛物线的顶点坐标. (2)求抛物线解析式. (3)求抛物线与直线的交点坐标.
例2、已知抛物线y=ax2+bx+c与x轴正、负半轴分 别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1, ∠ACB=90°,求抛物线解析式。 解: ∵点A在正半轴,点B在负半轴 OA=4,∴点A(4,0) y OB=1, ∴点B(-1,0) ∵ ∠ACB=90°OC⊥ AB ∴ ∠ CAO=∠BCO B O ∠CAO+∠OCA=90,∠OCA+∠BCO=90 ∴∠BOC=∠COA, C ∴△BOC∽△COA ∴OB/OC=OC/OA ∴OC=2,点C(0,-2) 由题意可设y=a(x+1)(x-4)得: a(0+1)(0-4)=-2 ∴a=0.5 ∴ y=0.5(x+1)(x-4)
二次函数的定义:
形如y=ax2+bx+c (a,b,c是常数, a≠0) 的函数叫做二次函数
想一想:函数的自变量x是否可以取任何值 呢?
注意:当二次函数表示某个实际问题时,还必
须根据题意确定自变量的取值范围.
函数y=ax2+bx+c
其中a、b、c是常数 切记:a≠0 右边一个x的二次多项式(不能是分式或根式) 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
B
x y=ax2+bx+c
6.17 -0.03
6.18 -0.01
6.19 0.02
6.20 0.04
A.6.17< X <6.18 C.-0.01< X <0.02
B.6.18< X <6.19 D.6.19< X <6.20
3、已知二次函数 y a( x 1)2 c 的图象如图所示,则函数 y ax c
综合创新:
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式. 解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状 相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5
-2 -1
0 1
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点, 有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交 点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程 ax2+bx+c=0的根.
二次函数y=ax2+bx+c 一元二次方程 ax2+bx+c=0的根 有两个相异的实数根 一元二次方程 ax2+bx+c=0根的判别式
2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下 解:∵二次函数的对称轴是 x=1 平移4个单位,再向左平移 5个单位所到的新 ∴图象的顶点横坐标为1 抛物线的顶点是(-2,0),求原抛物线的解析式.
又∵图象的最高点在直线y=2x+4 分析: (1)由a+b+c=0 上 可知,原抛物线的图象经过(1,0) ∴当x=1时,y=6 (2) 新抛物线向右平移 5个单位, ∴顶点坐标为( 1 , 6) 再向上平移 4个单位即得原抛物线
(填“可能”或“不可能”)过点A(-2,3)。 1 (3)抛物线y = 2 x 2+3的开口向上 ,对称 Y 直线 X=0 (0,3) ,是由抛物线 轴是 , 顶点坐标是 1 y = 2 x 2向上 平移 3 个单位得到的; O B X A (2)已知(如图)抛物线y = ax 2+k的图象, 〈 0;若图象过A (0,-2) 和B (2,0) , 则a 〉0,k 则a = 0.5 ,k = -2 ;函数关系式是y = 0.5x 2-2 。
y = a(x - h) 2
二次函数
开口方向 a > 0 向上
a<0
对称轴
顶点坐标
直线X=h (h,0)
巩固练习1: 2 上 ,对称轴是 Y轴 (1)抛物线y =3x 2的开口向 , (0,0) 顶点坐标是 ,图象过第 一、二 象限 ; (2)已知y = - nx 2 (n>0) , 则图象 (不可能 )