数值分析-插值
数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析第五章插值法

数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。
插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。
在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。
拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。
对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。
对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。
拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。
而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。
除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。
分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。
数值分析插值知识点总结

数值分析插值知识点总结一、插值的基本概念插值是指在已知数据点的基础上,通过某种数学方法求得两个已知数据点之间的未知数值。
插值方法的基本思想是在已知数据点之间找出一个合适的函数形式,使得该函数穿过已知数据点,并预测未知点的数值。
插值问题通常出现在实际工程、科学计算中,比如天气预报、经济数据的预测、地震勘探等领域。
插值可以帮助人们预测未知点的数值,从而更好地了解数据之间的关系。
二、插值的分类根据插值的基本原理,插值方法可以分为多种类型,常见的插值方法包括:拉格朗日插值、牛顿插值、分段插值、立方插值、样条插值等。
1. 拉格朗日插值拉格朗日插值是一种通过拉格朗日多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
2. 牛顿插值牛顿插值是利用牛顿插值多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
3. 分段插值分段插值是将插值区间分割成多个小区间,然后在每个小区间内采用简单的插值方法进行插值。
常见的分段插值方法包括线性插值和抛物线插值。
4. 立方插值立方插值是一种通过构造三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个三次多项式P(x),使得P(xi)=yi。
5. 样条插值样条插值是一种通过构造分段三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个分段三次多项式P(x),使得P(xi)=yi。
三、插值的应用插值方法在实际工程中有着广泛的应用,常见的应用包括图像处理、声音处理、地图绘制、气象预测、经济预测等领域。
1. 图像处理在图像处理中,插值方法主要用于图像的放大、缩小以及图像的重构等操作。
数值分析第2章插值法

0.32 0.34
0.34 0.32
0.330365.
截 断 误 差 为 :R1x
f
1
2!
2
x
M2 2
x
x0 x
x1 , 其 中 :
M2
max
x0 x x1
f x,f x sin x,f x
sin x,M2
sin x1
0.3335
R1 0.3367
sin0.3367
L1 0.3367
x a, b,插 值余 项Rn x
f x Ln x
f n1 n 1!
n1
x
,
其
中
a,
b,
与x有 关,n1x
n
x
k0
xk
.
n
性质: lk x 1. k0
5
例1、证明: ( xi x)2 li ( x) 0, 其中li ( x)是关于点x0 , x1 ,, x5的插值 i0
基 函 数.
2.2 拉格朗日插值
2.2.1、线性插值与抛物插值
1、 线 性 插 值 :
设 yk f xk , yk1 f xk1 , xk xk1 求 一 次 多 项 式 L1 x, 满 足 :L1 xk yk,L1 xk1 yk1
L1 x
yk
yk1 xk1
yk xk
x xk
求n次 插 值 多 项 式Ln x, 满 足 :Ln xi yi i 0,1,2,,n
Ln
x
n
lk
x
yk
k0
lk
xj
1,k j
kj 0,k j
j 0,1,2,,n
lk x
x
数值分析 插值法

1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1
0 i j n
2 xn n xn
( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式
数值分析中的(插值法)

插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项
数值分析中常用的插值方法

数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。
插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。
接下来,我们就来详细介绍一些常见的插值方法。
一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。
具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。
然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
最终得到的多项式函数就是插值函数。
优点:简单易懂,使用较为广泛。
缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。
二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。
具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。
牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。
三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。
分段插值法主要分为两种:线性分段插值和三次样条插值。
1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
(
x2 ) x2
f( x0
x0
)
(
x
x0ቤተ መጻሕፍቲ ባይዱ
)
过 (x1, I0,1(x) ) 和 (x2 , I0,2 (x) ) 两“点”作线性插值。
I0,1,2 (x)
I 0,1 ( x)
I0,2 (x) x2
I 0,1 ( x) x1
(x
x0 )
两个k-1次插值多项式,把它们看作两点 以此“两点”作线性插值,推出I(X)
∵ p(xi ) yi 可写成
a0 a1x0 an x0n y0 a0 a1x1 an x1n y1
a0 a1xn an xnn yn
由线性代数的知识知道
1 x0 x02 x0n
系数行列式 1 x1 x12 x1n
1 xn xn2 xnn
≠0 方程有唯一解
(1) 2
(x (45
30)(x 60) 30)(45 60)
(
2) 2
(x 30)(x 45) ( 3 ) (60 30)(60 45) 2
L2 (50) 0.7543
考虑误差:已知sin500=0.76604
| sin 50 L1(50) | 0.01010 ~
o x0x1
Xn-1xn
x
显然插值函数可以很多,其中最简单的是代数多项式,
这种插值函数叫做插值多项式。
于是问题变成:
已知
x x0 x1 xn y y0 y1 yn
求一个多项式 p(x) a0 a1x1 an xn
使 p(xi ) yi (i 0,1,2 n)
这样的插值函数存在唯一性
其中
li (x)
(x x0 ) (x (xi x0 ) (xi
xi1)( x xi1) (x xn ) xi1)( xi xi1) (xi xn )
例
例1:已知特殊角 30,45,60
的正弦函数值为
1 2
,
2, 2
3 2
用一次插值,
二次插值多项式近似sinx,并用此近似式求sin500的值。
对称式:
y
x x1 x0 x1
y0
x x0 x1 x0
y1
a0 a1x0 y0 a0 a1x1 y1
N1 ( x)
y0
y1 x1
y0 x0
(x
x0 )
L1(x)
x x1 x0 x1
y0
x x0 x1 x0
y1
令
l0 (x)
x x1 x0 x1
l1 ( x)
x x0 x1 x0
Ln (x) 是满足插值条件 Ln (x j ) y j , ( j 0,1, , n) 的插值多项式,则对任意
x (a,b) 插值余项
Rn (x)
f (x) Ln (x)
f (n1) ( )
(n 1)!
n1
(
x)
其中 n1(x) (x x0 )( x x1) (x xn ), (a,b) 且依赖于x的位置。
又由范德蒙行列式可知
1 x0 x02 x0n 1 x1 x12 x1n
1 xn xn2 xnn
(xi x j ) 0 0 jin
∴满足条件(1.1)的多项式是存在且唯一的。
拉格朗日插值多项式
1.
x x0 x1 y y0 y1
点斜式:
y
y0
y1 y0 x x0
(x
x0 )
3) 2
3. 30,60 为节点:
~~
x 60 1 x 30 3
L1(x)
( )
(
30 60 2 60 30
2
)
~ L1(50) 0.76008 ~~ L1(50) 0.7440226
二次插值 30,45,60 为节点:
L2
(x)
(x (30
45)(x 60) 45)(30 60)
p(x j ) y j ( j 0,1, n) (1.1) 成立,则称 p(x) 为 f (x) 的插值函数,点 x0 , x1, x2 xn 称为插值节点, 区间[a,b]称为插值区间,求 p(x) 的方法称为插值法,条件(1.1)称为
插值条件。 图1.1
y y=p(x) y=f(x)
结论: 1.n越大,误差越小。 2.节点之间的距离越小,误差越大。
逐步线性插值(埃特金插值)
引进专用符号 I0,1, ,k (x) 表示以 x0 , x1, xk 为节点的k次拉格朗日插值公式
如:
I0,1(x)
f (x0 )
f
(
x1 ) x1
f( x0
x0
)
(
x
x0
)
I0,2 (x)
f (x0 )
解:
x 30 45 60
已知
sin x 12 22 23
一次插值 1. 30,45 为节点:
L1 ( x)
x 45 30 45
(
1) 2
x 30 45 30
(
2) 2
L1(50) 0.776
2. 45,60 为节点:
~ L1 (
x)
x 60 ( 45 60
2 ) x 45 ( 2 60 45
第四章 插值法
一、问题的提出
在实践中常出现这样的问题,由实验或测量得到一组数据,即
x x0 x1 xn y y0 y1 yn 要求出其近似的函数表达式,也就是寻找一个简单函数 p(x) ,使 p(xi ) y(i i 0,1,2 n) ,这类问题称为插值法。
二、基本概念
设函数y=f(x)在区间[a,b]上有定义,且已知在点a x0 x1 xn b 上的值为 y0 , y1 yn ,若存在一个简单的函数 p(x)使
L1(x) l0 (x) y0 l1(x) y1
2. x x0 x1 x2 y y0 y1 y2
L2 (x) l0 (x) y0 l1(x) y1 l2 (x) y2
3. x x0 x1 xn y y0 y1 yn
Ln (x) l0 (x) y0 l1(x) y1 ln (x) yn
(xk1,I0,1, k (1 x)) (xk,I0,1, k 2,(k x))
I ( x)
I0,1, ,k 1( x)
I 0,1,
| sin 50 ~L1(50) | 0.00596 | sin 50 L1(50) | 0.02202
| sin 50 L2 (50) | 0.00061
由此可见:
1.高次插值比低次插值误差小。 2.内插比外推误差小。 3.节点之间距离越小,误差越小。
讨论误差:
设 f (n) (x)在[a,b]上连续,f (n1) (x)在(a,b)内存在,节点 a x0 xn b