数值分析中的(插值法)

合集下载

数值分析插值法

数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。

插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。

插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。

插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。

常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。

以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。

假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。

拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。

b.构造插值多项式L(x)。

c.计算L(x)在需要估计的插值点上的函数值f(x)。

2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。

差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。

最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。

牛顿插值法的步骤为:a.计算差商表的第一列。

b.计算差商表的其他列,直至最后一列。

c.根据差商表构造插值多项式N(x)。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析第五章插值法

数值分析第五章插值法

数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。

插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。

在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。

拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。

对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。

对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。

拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。

而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。

除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。

分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。

数值分析 插值法

数值分析 插值法

图形见图2-3. 称 lk ( x) 及 lk 1 ( x) 为线性插值基函数,
11
图2-3
12
பைடு நூலகம் 2.
n次插值多项式
根据插值的定义 Ln ( x) 应满足
Ln ( x j ) y j ( j 0,1, , n).
为构造 Ln ( x), 先定义 n 次插值基函数.
13
定义1 若 n 次多项式 L j ( x ) ( j 0,1, , n) 在 n 1 个节点
L1 ( xk 1 ) yk 1.
8
其几何意义就是通过两点( xk , yk ), ( xk 1 , yk 1 ) 的直线. 如图2-2.
图2-2
9
由 L1 ( x) 的几何意义可得到表达式
L1 ( x ) y k y k 1 y k ( x xk ) xk 1 xk
5
因为线性方程组的系数行列式
1 1 . . 1 xn ...
n xn
x0 x1
... ...
n x0 n x1
0
所以线性方程组 的解存在且唯一。
6
定理1
在次数不超过 n 的多项式集合 H n 中,满足条
件的
插值多项式 L ( x) H是存在唯一的. n n
7
2.3
1. 线性插值
拉格朗日插值
y
k 0
n
k
l k ( x ).
Ln ( x j ) yk lk ( x j ) y j
( j 0,1, , n).
称为拉格郎日(Lagrange)插值多项式 而线性插值与抛物线插值是 n=1 和 n=2 的特殊情形
若引入记号

数值分析与计算方法 第一章 插值法

数值分析与计算方法 第一章 插值法

同 理 : (t) 至 少 有n 个 互 异 零 点;
(t) 至 少 有n 1 个 零 点 ;
(n1) (t ) 至 少 有 一 个 零 点 ; 即 (a ,b),
(n1) (
)
R(n1) n
(
)
K ( x)n1(n1) (
)
R(n1) n
(
)
K ( x) (n
1)!
f (n1) ( ) K ( x) (n 1)! 0
x x0 x1 x2 xn , y f ( x)? y y0 y1 y2 yn
(1)有的函数没有表达式,只是一种表格函数,而我们需要的 函数值可能不在该表格中。
(2)如果函数表达式本身比较复杂,计算量会很大;
对于这两种情况,我们都需要寻找一个计算方便且表达简单
的函数 P x来近似代替 f ( x),求 P x 的方法称为插值法。
Ln1( x)
为此我们考虑对Lagrange插值多项式进行改写; ——由唯一性,仅是形式上的变化
期望:Ln ( x) 的计算只需要对Ln1( x)作一个简单的修正.
考虑 h( x) Ln ( x) Ln1( x) h( x) 是次数 n 的多项式,且有
h( x j ) Ln ( x j ) Ln1( x j ) 0 ,j 0 ,1,2 ,L ,n 1 ;
)
3
)
1 2
(x
(
4
6
6
)( x
)(
4
3
)
3
)
1
(
x
6
)(
x
4
)
2
(
3
6
)(
3
4
)
3 2

数值分析第2章插值法

数值分析第2章插值法

0.32 0.34
0.34 0.32
0.330365.
截 断 误 差 为 :R1x
f
1
2!
2
x
M2 2
x
x0 x
x1 , 其 中 :
M2
max
x0 x x1
f x,f x sin x,f x
sin x,M2
sin x1
0.3335
R1 0.3367
sin0.3367
L1 0.3367
x a, b,插 值余 项Rn x
f x Ln x
f n1 n 1!
n1
x
,


a,
b,
与x有 关,n1x
n
x
k0
xk
.
n
性质: lk x 1. k0
5
例1、证明: ( xi x)2 li ( x) 0, 其中li ( x)是关于点x0 , x1 ,, x5的插值 i0
基 函 数.
2.2 拉格朗日插值
2.2.1、线性插值与抛物插值
1、 线 性 插 值 :
设 yk f xk , yk1 f xk1 , xk xk1 求 一 次 多 项 式 L1 x, 满 足 :L1 xk yk,L1 xk1 yk1
L1 x
yk
yk1 xk1
yk xk
x xk
求n次 插 值 多 项 式Ln x, 满 足 :Ln xi yi i 0,1,2,,n
Ln
x
n
lk
x
yk
k0
lk
xj
1,k j
kj 0,k j
j 0,1,2,,n
lk x
x

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用

数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。

其中,插值算法是数值分析中重要的方法之一。

插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。

插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。

1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。

假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。

设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。

每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。

2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。

相比于拉格朗日插值法,牛顿插值法更注重于递推计算。

给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。

首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。

定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。

《数值分析》第二讲插值法PPT课件

《数值分析》第二讲插值法PPT课件

1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1

P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4 均差与Newton插值公式 §9 评 述
§5 差分与等距节点插值公式
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
第一节 引 言
理学院
2.‹#›
数值分析 第二章 插值法
李庆扬 王能超 易大义编
理学院
Anhui University of Science and Technology
DEPARTMENT OF MATHEMATICS PHYSICS
Y

f (x)
● ●
p(x)


2.‹#›
y0
y1 y2
y n 1
yn
x0 x1 x2
·x
xn1 xn
已知 y=f(x) 在点xi 的值 yi=f(xi) (i=0,1,...,n), 求一简
单函数P(x),满足 P(xi)=yi (i=0,1, ..., n) ( 2.1-1 )
即简单函数P(x)的曲线要经过 y f (x) 上已知
的n+1个点 x0 , y0 , x1, y1 ,L , xn, yn ,
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
第二节 拉格朗日插值
❖ 拉格朗日插值多项式 ❖ 截断误差 ❖ 数值实例 ❖ 拉格朗日插值多项式的优缺点
i0 i 1
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
2.三个节点(x0,y0),(x1,y1),(x3,y3)
令 L2 (x) l0 (x) y0 l1(x) y1 l2 (x) y2
若p(x)是次数不超过n的代数多项式,即
pn (x) a0 a1x a2 x2 ... an xn
(2.1-2)
则称p(x)为插值多项式,相应的插值法称为多项式
插值。若p(x)为分段多项式,就是分段插值。若p(x)
为三角多项式,就是三角插值,还有有理插值等。本
章主要讨论多项式插值与分段插值。 注:插值法还有其他许多用途,如函数的近似表
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
第二章 插 值 法
§1 引 言
§6 Hermite插值
§2 Lagrange插值
§7 分段低次插值
§3 逐次线性插值法(自学) §8 三次样条插值

y

x x1 x0 x1
y0

x x0 x1 x0
y1

l0 (x) y0 l1(x) y1
其中
l0 ( x)

x x1 x0 x1
,
l1( x)

x x0 x1 x0
.
且满足:
l0
(
xi
)

1 0
i0 i 1
数值分析 第二章 插值法
l1(
xi
)

0 1
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATБайду номын сангаасCS PHYSICS
一、拉格朗日插值多项式
理学院
2.‹#›
1.两个互异节点(x0,y0),(x1,y1)
L1 ( x)
一、一个实例
例:设在实际问题中,某些变量之间的函数 关系是存在的,但通常不能用式子表示,只能
由实验、观测得到 y f x 在一系列离散点
上的函数值,即已知函数表
x x0 y y0
x1 L y1 L
xn
yn
xi xj , i j
那么如何计算 f x x xi ,i 0,1,L ,n?
三、多项式插值问题中需要研究的问题
满足插值条件的多项式 Pn 是x否存在?唯一?
若满足条件的 Pn 存x在,又如何构造? 用 Pn 近x似代替 f的 x误 差估计?
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
二、插值问题的一般性提法
设 y= f(x) 是区间[a , b] 上的一个实函数, xi ( i=0, 1, ... ,n)是[a,b]上n+1个互异实数,称为节点。
其中:
x2 ) , 0 x2 ) x x1 ) . x2 x1 )
X
同时在其它点 x a上,b估 计误差为
R( x) f ( x) P( x)
数值分析 第二章 插值法
李庆扬 王能超 易大义编
理学院
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
2.‹#›
下面先研究第一个问题
理学院
2.‹#›
定理1 设节点xi (i=0,1, … ,n)互异, 则满足插值 条件Pn(xi)=yi 的次数不超过n的多项式存在且唯一。
定理1不仅解决了问题1,其证明过程也给出了 问题2——求插值多项式的一种方法。但一般不用 这种方法,因为范得蒙矩阵一般是病态的。即使求 解过程是精确的,多项式求值的误差也是 可观的。
示;曲线曲面拟合;导出其它数值方法的依据(导出
数值积分、数值微分、微分方程数值解)等。
数值分析 第二章 插值法
李庆扬 王能超 易大义编
Anhui University of Science and Technology DEPARTMENT OF MATHEMATICS PHYSICS
理学院
2.‹#›
相关文档
最新文档