数值计算方法-插值法
数值计算中的插值方法-教案

数值计算中的插值方法-教案一、引言1.1数值计算与插值方法的背景1.1.1数值计算在现代科学和工程中的重要性1.1.2插值方法在数值计算中的应用1.1.3插值方法的基本概念和分类1.1.4教学目标和意义1.2插值方法的历史发展1.2.1古典插值方法的发展历程1.2.2现代插值方法的发展趋势1.2.3插值方法在不同领域的应用案例1.2.4学生对插值方法历史了解的重要性1.3教学方法和组织形式1.3.1采用的教材和参考资料1.3.2教学方法和策略1.3.3教学活动的组织形式1.3.4学生参与和互动的重要性二、知识点讲解2.1插值函数的构造2.1.1拉格朗日插值多项式2.1.2牛顿插值多项式2.1.3埃尔米特插值多项式2.1.4各种插值方法的优缺点比较2.2插值误差分析2.2.1插值多项式的余项2.2.2插值误差的估计2.2.3插值误差与数据点分布的关系2.2.4提高插值精度的方法2.3插值方法的应用2.3.1数据拟合与逼近2.3.2数值微积分2.3.3工程问题中的插值应用2.3.4学生实际操作和案例分析的必要性三、教学内容3.1拉格朗日插值多项式3.1.1拉格朗日插值多项式的定义3.1.2拉格朗日插值多项式的构造方法3.1.3拉格朗日插值多项式的性质3.1.4拉格朗日插值多项式的应用实例3.2牛顿插值多项式3.2.1牛顿插值多项式的定义3.2.2牛顿插值多项式的构造方法3.2.3牛顿插值多项式的性质3.2.4牛顿插值多项式的应用实例3.3埃尔米特插值多项式3.3.1埃尔米特插值多项式的定义3.3.2埃尔米特插值多项式的构造方法3.3.3埃尔米特插值多项式的性质3.3.4埃尔米特插值多项式的应用实例四、教学目标4.1知识与技能目标4.1.1理解插值方法的基本概念和分类4.1.2掌握拉格朗日、牛顿和埃尔米特插值多项式的构造方法4.1.3学会分析插值误差,并了解提高插值精度的方法4.1.4能够运用插值方法解决实际问题4.2过程与方法目标4.2.1培养学生的数学建模能力4.2.2培养学生的数据分析能力4.2.3培养学生的逻辑思维能力和问题解决能力4.2.4培养学生的合作与交流能力4.3情感态度与价值观目标4.3.1培养学生对数学学习的兴趣和热情4.3.2培养学生的科学精神和创新意识4.3.3培养学生的团队协作意识和责任感4.3.4培养学生的国际视野和跨文化交流能力五、教学难点与重点5.1教学难点5.1.1插值多项式的构造方法5.1.2插值误差的分析与估计5.1.3插值方法在实际问题中的应用5.1.4学生对插值方法的理解和应用能力5.2教学重点5.2.1插值方法的基本概念和分类5.2.2拉格朗日、牛顿和埃尔米特插值多项式的性质5.2.3插值方法在数值计算中的应用5.2.4学生对插值方法的应用和实践能力六、教具与学具准备6.1教具准备6.1.1多媒体设备6.1.2白板和笔6.1.3教学软件和应用程序6.1.4教学视频和演示文稿6.2学具准备6.2.1笔记本和文具6.2.2计算器和数学软件6.2.3相关教材和参考资料6.2.4学生自主学习的资源七、教学过程7.1导入新课7.1.1引入数值计算和插值方法的背景7.1.2提出问题,激发学生的兴趣7.1.3引导学生回顾相关知识点7.1.4提出教学目标和要求7.2知识讲解与演示7.2.1讲解插值方法的基本概念和分类7.2.2演示拉格朗日、牛顿和埃尔米特插值多项式的构造方法7.2.3分析插值误差,并介绍提高插值精度的方法7.2.4通过实例讲解插值方法在实际问题中的应用7.3学生练习与讨论7.3.1布置练习题,让学生独立完成7.3.2组织学生进行小组讨论和合作7.3.3引导学生提出问题和解决问题的方法7.3.4检查学生的练习情况,并进行点评和指导7.4.2引导学生思考插值方法在其他领域的应用7.4.3提供相关资料和资源,鼓励学生进行深入学习7.4.4布置作业,巩固学生的学习成果八、板书设计8.1板书设计概述8.1.1板书设计的重要性8.1.2板书设计的原则和策略8.1.3板书设计的内容和方法8.1.4学生对板书的理解和记忆能力8.2板书设计的内容8.2.1插值方法的基本概念和分类8.2.2拉格朗日、牛顿和埃尔米特插值多项式的构造方法8.2.3插值误差的分析与估计8.2.4插值方法在实际问题中的应用8.3板书设计的策略8.3.1采用图表和示意图进行辅助说明8.3.2使用颜色和标记进行突出和区分8.3.3运用逻辑结构和层次进行组织8.3.4结合多媒体和教具进行补充和拓展九、作业设计9.1作业设计概述9.1.1作业设计的重要性9.1.2作业设计的原则和策略9.1.3作业设计的内容和方法9.1.4学生对作业的理解和完成能力9.2作业设计的内容9.2.1基本概念和分类的回顾题9.2.2插值多项式的构造和应用题9.2.3插值误差的分析和计算题9.2.4实际问题的建模和解决题9.3作业设计的策略9.3.1设计不同难度层次的作业题9.3.2提供相关资料和资源进行辅助9.3.3鼓励学生进行合作和讨论9.3.4安排作业的批改和反馈机制十、课后反思及拓展延伸10.1课后反思10.1.1教学目标的达成情况10.1.2教学难点和重点的处理情况10.1.3教学方法和策略的有效性10.1.4学生的学习情况和反馈意见10.2拓展延伸10.2.1插值方法在其他领域的应用10.2.2相关的数学建模和数据分析方法10.2.3国际视野下的数值计算方法10.2.4学生自主学习和研究的机会重点关注环节及其补充说明:1.教学难点与重点:在讲解插值多项式的构造方法和插值误差分析时,应结合实例和图表进行详细解释,并引导学生进行实际操作和练习,以提高他们的理解和应用能力。
数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
Matlab中的数值计算方法简介

Matlab中的数值计算方法简介引言:Matlab是一种强大的数值计算软件,广泛应用于工程、科学、金融等领域。
它拥有丰富的数值计算方法库,可以帮助研究者和工程师解决各种数值计算问题。
本文将简要介绍几种常见的数值计算方法,并说明它们在Matlab中的实现和应用。
一、插值法插值法是一种通过已知数据点之间的插值,估计未知数据点的数值的方法。
常见的插值方法包括线性插值、拉格朗日插值和样条插值。
在Matlab中,我们可以使用interp1函数进行插值计算。
该函数可以根据给定的数据点,计算出在指定位置的插值结果。
我们可以通过设置插值的方法和插值节点的数目来调整插值的精度与计算效率。
二、数值积分数值积分是一种通过近似求解定积分的方法。
在Matlab中,我们可以使用quad和quadl函数进行数值积分。
这些函数可以自动选择合适的数值积分方法,并提供了较高的精度和计算效率。
我们只需提供被积函数和积分区间,即可获得近似的积分结果。
对于一些特殊形式的积分,如复杂函数或无穷积分,Matlab还提供了相应的函数供我们使用。
三、线性方程组求解线性方程组的求解是数值计算中的一个重要问题。
在实际应用中,我们经常会遇到大规模线性方程组的求解问题。
在Matlab中,我们可以使用矩阵运算功能和线性方程组求解函数来解决这类问题。
Matlab提供了一系列的求解函数,包括直接法和迭代法。
其中,直接法适用于小规模线性方程组,迭代法则适用于大规模线性方程组。
我们可以根据具体情况选择合适的方法和函数来求解线性方程组。
四、微分方程求解微分方程是许多科学和工程问题的数学模型,求解微分方程是数值计算中的常见任务。
在Matlab中,我们可以使用ode45函数来求解常微分方程的初值问题。
该函数采用龙格-库塔方法,对微分方程进行数值积分,并给出近似的解析结果。
对于偏微分方程和其他更复杂的微分方程问题,Matlab还提供了更多的求解函数和工具箱供我们使用。
五、最优化问题求解最优化问题是指在特定约束条件下,求解给定目标函数的最大值或最小值的问题。
数值分析插值法

数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值计算方法-插值法

a≤x≤b
10
拉格朗日插值
插值多项式的存在性与惟一性
插值多项式的存在性与惟一性
定理 在 n + 1 个互异节点 xi 上满足插值条件
几何意义: 通过 n + 1 个点 (xi, yi)(i = 0, 1, 2, · · · , n) 做一条代数曲线 y = Pn(x),使其近似于 y = f (x)
代数插值问题
y
y = f (x) y = Pn(x)
x0 x1
xn
x
图 1: 代数插值
几何意义: 通过 n + 1 个点 (xi, yi)(i = 0, 1, 2, · · · , n) 做一条代数曲线 y = Pn(x),使其近似于 y = f (x)
数值计算方法
插值法
张晓平 2019 年 11 月 4 日
武汉大学数学与统计学院
Table of contents
1. 简介 2. 拉格朗日插值 3. 分段低次插值 4. 差商与牛顿插值多项式 5. 差分与等距节点插值
1
简介
简介
• 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部 给定的离散数据点。
定义 : 插值余项 称
Rn(x) = f (x) − Pn(x) 为插值多项式的余项,表示用 Pn(x) 去近似 f (x) 的截断误差。
10
代数插值问题
在 [a, b] 上用 Pn(x) 近似 f (x),除了在插值节点 xi 处 Pn(xi) = f (xi) 外, 在其余点处有误差
数值计算方法插值法资料

一次插值
当n 1时,求一次多项式P1(x),要求通过 x0, y0 , x1, y1
两点
y
y0 x0
y1 x1
P1(x) f(x)
二次插值
当n 2时,求二次多项式P2 (x),要求通过 x0, y0 , x1, y1 , x2, y2 三点
y
f(x)
y0 x0
y1 x1
y2 x2
P1(x)
知两点。
线性插值
插值函数和插值基函数
由直线的点斜式公式可知:
P1(x)
yk
yk 1 xk 1
yk xk
(x
xk ),把此式按照
yk和yk1写成两项:P1(x)
x xk1 xk xk 1
yk
x xk xk 1 xk
yk
,
1
记l k (x)
x xk1 xk xk 1
, lk1(x)
l
0 ( x)
x 20 10 20
1 10
(x
20),l1 ( x)
x 10 20 10
1 10
(x
10)
例子
于是,拉格朗日型一次插值多项式为:
P1 ( x)
y0l0 (x)
y1l1 ( x)
1 10
(x
20)
1.3010 10
(x
10)
故P1
(12)
1 10
(12
20)
1.3010 10
(12
决定
1
例子
例1:已知lg10 1 , lg 20 1.3010,利用插值一次 多项式求 lg12的近似值。 解:f (x) lg x,f (x) lg x,f (10) 1,f (20) 1.3010 设x0 10,x1 20,y0 1,y1 1.3010, 则插值基本多项式为:
数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关
数值计算方法第05章插值法

n( x0 ) a0 a1 x0 a2 x02 an x0n y0
n
(
x1
)
a0
a1 x1
a2 x12
an x1n
y1
n( xn ) a0 a1 xn a2 xn2 an xnn yn
17
1 x0 x02 x0n a0 f ( x0 )
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
表2.1.1 刹车距离实验数据
v 20 25 30 35 40 45 50
d 42 56 73.5 91.5 116 142.5 173
v 55 60 65 70 75 80
d 209.5 248 292.5 343 401 464
插值法是一种古老的数学方法。早在1000 多年前,我国历法上已经记载了应用一次插值 和二次插值的实例。
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。
生产实践中常常出现这样的问题:给出一批 离散样点,要求作出一条通过这些点的光滑 曲线,以便满足设计要求或进行加工。反映 在数学上,即已知函数在一些点上的值,寻 求它的分析表达式。因为由函数的表格形式 不能直接得出表中未列点处的函数值,也不 便于研究函数的性质。此外,有些函数虽有 表达式,但因式子复杂,不容易算其值和进 行理论分析,也需要构造一个简单函数来近 似它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x x0 )( x x1 )( x xn1 )
其中ak (k=0,1,2,…,n)为待定系数,这种形式的插值多项式称为Newton插值多项
式。我们把它记为Nn(x)即
N n ( x) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x x0 )( x x1 )( x xn1 )
如果f ( x)的函数值称为零阶差商 , 则计算如下表 : x f(x)
0
x x x x
1
2
3
y y y y
0
1
f x 0 , x 1 f x1 , x 2 f x 2 , x 3 f x n-1 , x n f x 0 , x1 , x 2 f x1 , x 2 , x 3 f x n- 2, x n-1 , x n f x 0, x1 x n
n
的问题就归结为求它的系数
n 1
a1 x a0
是函数 y 在区间[a, b]上的n+1个互异的节点 (i=0,1,2,…,n )上的插值 f (x) xi 多项式,则求插值多项式P(x)
(i=0,1,2,…,n )。
ai
由插值条件:
p( xi ) (i=0,1,2,…,n),可得 f ( xi )
引入记号
n 1 ( x ) ( x x0 )( x x1 )( x xn )
(2.10)
则得 n 1 ( xk ) ( xk x0 )( xk xk 1 )( xk xk 1 )( xk xn )
于是
n1 ( x ) Ln ( x ) yk ( x xk ) n 1 ( xk ) k 0
定理2 设f(x)在a, b有n+1阶导数, x0, x1,…, xn 为 a, b上n+1个互异的节点, p(x)为满足 p(xi) = f(xi) (i=1,2, …, n) 的n 次插值多项式,那么对于任何x a, b有
插值余项
f ( n 1) ( ) R( x) f ( x) p ( x) ( x) (n 1)!
a n x0 n a n 1 x0 n 1 a1 x0 a 0 f ( x0 ) n n 1 a n x1 a n 1 x1 a1 x1 a 0 f ( x1 ) a x n a x n 1 a x a f ( x ) n 1 n 1 n 0 n n n
为关于基点
的n次插值基函数(i=0,1,…,n)
xi
以n+1个n次基本插值多项式 为基础,就能直接写出满足插值条件 的n次代数插值多项式。
l k ( x)( k 0,1,, n)
P ( xi ) f ( xi )
(i 0,1,2,, n)
事实上,由于每个插值基函数 都是n次值多项式,所以他们的线性组合
a<<b 且依赖于x
其中 证明 ( 略 )
( x) ( x x0 )( x x1 )( x xn ) ( x xi ), a, b
i 0
n
若 max | f ( n 1) ( x) | M n1 , 则
a x b
M n1 |Rn ( x) | |n 1 (x)|, (n 1)!
的零点,故可设 l k (x )
x0 , x1 ,, xk 1 , xk 1 ,, xn
都是n次
l k ( x) Ak ( x x0 )( x x1 )( x xk 1 )( x xk 1 ) ( x xn )
其中 为待定常数。由条件 A
k
lk ( x ,可求得 k )
2 n xn xn
( xi x j )
i 1 j 0
n
i 1
称为Vandermonde(范德蒙)行列式,因xi≠xj
(当i≠j),故V≠0。根据解线性方程组的克莱姆
(Gramer)法则,方程组的解 存在惟一,从而P(x)被惟误差
其中 ( x k ) ( x k xi )
5
8 27
125
80 4 20
27 8 19 32 125 27 49 53 216 125 91 65
19 4 5 30
49 19 10 52
91 49 14 63
10 5 1 50
14 10 1 62
6
216
差商及其性质 在n+1个节点处各阶差商的计算方法
第二章
§ 1引言 问题的提出
插值法
– 函数解析式未知,通过实验观测得到的一组数据, 即 在某个区间[a, b]上给出一系列点的函数值 yi= f(xi) – 或者给出函数表
x y
x0 y0
x1 y1
x2 y2
…… xn …… yn
y=p(x)
y=f(x)
原理: P( x) an x n an1 x n1 a1 x a0
(3.12)
它满足
N n ( x) N n1 ( x) an ( x x0 )( 其中ak (k=0,1,2,…,n)为待定系数,形如(3.12)的x x1 ) ( x x n 1 ) 插值多项式称为牛顿(Newton)插值多项式。
可见,牛顿插值多项式Nn(x)是插值多项式p(x)的另一种表示形式, 与 Lagrange多项式相比它不仅克服了“增加一个节点时整个计算工作重新开始”的 缺点, 且可以节省乘除法运算次数, 同时在Newton插值多项式中用到差分与差商 等概念,又与数值计算的其他方面有密切的关系.
Ak
n
1
1 xj)
Ak
Ak ( xk x j ) 1
j 0 j k
n
于是
(x
j 0 j k
k
代入上式,得
(x x
l k ( x)
j 0 jk n
n
j
)
j 0 jk n
x xj xk x j
(x
j 0 jk
k
xj)
称
l k (x)
由线性代数知,任何一个不高于n次的多项式, 都可以表示成函数
1, x x0 , ( x x0 )( x x1 ), , ( x x0 )( x x1 ) ( x xn1 )
的线性组合, 也就是说, 可以把满足插值条件 p(xi)=yi (i=0,1,…,n)的n次插值多项式, 写成如下形式
拉格朗日插值多项式
两个插值点可求出一次插值多项式,而三 个插值点可求出二次插值多项式。插值点增加到n+1 个时,也就是通过n+1个不同的已知点 ,来构造一个次数为n的代数多项式P(x)。与推导抛物插值的基函数类似,先构造一 ( xi , y )(i 0,1,, n) 个特殊n次多项式 的插值问题,使其在各节点 上满足i
在插值区间a, b上用插值多项式p(x)近似代替f(x), 除了在插值节点xi上没有误差外, 在其它点上一般是存在误差的。
y=f(x)
y=p(x)
a x0 x1
b xixi+1 xn-1 xn
若记 R (x) = f(x) - p(x) 则 R(x) 就是用 p(x) 近似代替 f(x) 时的截断误差, 或称 插值余项我们可根据后面的定理来估计它的大小。
n
(2.11)
§3 均差与牛顿插值多项式
拉格朗日插值多项式结构对称,使用方
便。但由于是用基函数构成的插值,这样要
增加一个节点时,所有的基函数必须全部重
新计算,不具备承袭性,还造成计算量的浪
费。这就启发我们去构造一种具有承袭性的
插值多项式来克服这个缺点,也就是说,每
增加一个节点时,只需增加相应的一项即可。 这就是牛顿插值多项式。
f [ xi 1 , xi 2 ,..., xi n ] f [ xi , xi 1 ,..., xi n 1 ] f [ xi , xi 1 ,..., xi n ] xi n xi
差商表
xi x0 x1 f[xi] f(x0) f(x1) f[xi,xi+1] f[xi,xi+1,xi+2] f[xi,xi+1,xi+2]
f [ xi 1 , xi 2 ] f [ xi , xi 1 ] f [ xi , xi 1 , xi 2 ] xi 2 xi
m阶差商
f [ x1 , x 2 , x m ] f [ x0 , x1 , x m1 ] f [ x0 , x1 , x m ] x m x0
li (x)
xi
l k ( x0 ) 0,, l k ( xk 1 ) 0, l k ( xk ) 1, l k ( xk 1 ) 0,, l k ( xn ) 0
即
1 (i k ) l k ( xi ) ki 0 (i k )
由条件
l k ( xi )( 0 )知,i k
满足
P ( xi ) f ( xi )
(i 0,1,2,, n)
则称P(x)为f(x)的n次插值多项式。这种插值法通常称为代数插值法。其几何意 义如下图所示
y y=P(x) y=f(x)
y1 x0 x1
yn xn x
定理1 n次代数插值问题的解是存在且惟一的 证明: 设n次多项式
P( x) a n x a n1 x
f[x1,x2]- f[x0,x1]
f[x0,x1]