第三章:化学热力学

合集下载

第三章化学热力学基础汇总

第三章化学热力学基础汇总

3-1 热力学第一定律 什么叫“热力学” • 热力学是研究热和其他形式的 能量互相转变所遵循的规律的一门科学。 什么叫“化学热力学” • 应用热力学原理,研究化学反 应过程及伴随这些过程的物理现象,就 形成了“化学热力学”。
4
化学热力学研究什么问题(研究对象) • 合成NH3 N2 (g) + 3H2(g) = 2 NH3 (g) • 例:298.15K,各气体分压101.325KPa下, • N2 (g) + 3H2(g) = 2 NH3 (g) △fGm ø/ kJ/mol 0 0 -16.5
QP = (U2 + pV2)-(U1 + pV1) H = U + pV H:新的状态函数-------焓 Qp = H2 –H1 = H(H称为焓变)
为什么定义焓的原因:
其变化量可以测定(等于等温等压工程不做其他功时的热效应);
具有实际应用价值(通常的化学反应都是在等压下进行的)。 试问焓是不是状态函数?注:等温、等压、无功。
摩尔质量M:
1mol物质的质量。单位Kg.mol-1或g.mol-1。
摩尔分数(物质的量分数):混合物中某组分的物质的量与
混合物中各物质的量的总和之比。
例: xB = nB/(nA + nB)
11
摩尔反应:
反应物按方程式的计量系数完全转化为生成
物的反应。必须注意,摩尔反应是与特定的化学方程式一一
对应的。(注:计量系数v为纯数,反应物取正值,生成物取负值)
第3章 化学热力学基础
Chapter 3 Primary Conception of Chemical Thermodynamics
1
本章要求
1、了解热力学的概况——反应是否发生;描述大量原子、

3 化学热力学基础

3 化学热力学基础

●在恒压过程中 U Q p p ex V
U 2 U1 Q p p ex V2 V1
Q p ( U 2 p 2 V2 ) U1 p1 V1
U 2 U1 Q p p 2 V2 p1 V1
焓: H U pV 焓变: Qp H 2 H1 H
2 2 2 θ -1 2 2 2 θ -1
kPa 下进行 时,习惯上可不再予以注明。 (3)焓变值与一定的反应式相对应。 N2(g) + 3H2(g) = 2NH3(g) Hθ =-92.20 KJ.mol-1 (4)在相同条件下,正向反应和逆向反应的反应热绝 2NH3(g) = N2(g) + 3H2(g) Hθ =+92.20 KJ.mol-1 对值相等,符号相反。
Inorganic Chemistry
第三章 化学热力学基础
无机化学
H
θ
热力学 标准态
当反应物或生成物都是气体时各物
质分压为1×105 Pa;
当反应物及生成物都是溶液状态时,
各物质的浓度为1mol•L-1;
固体和液体的标准态则指处于标准
压力下的纯物质。
Inorganic Chemistry
Inorganic Chemistry
第三章 化学热力学基础
无机化学
过程与途径的关系
30℃,1atm 始态 途径Ⅰ 80℃, 2atm 终态
途径Ⅱ 恒温过程 30 ℃,2atm
恒压过程
Inorganic Chemistry
第三章 化学热力学基础
无机化学
实际上,热力学的实际过程都是十分复杂 的,因此,相应的计算也十分困难,但我们在 处理时,可以利用状态函数的性质,把复杂过 程分解成相应的简单过程去简化计算。如:

第三章 化学热力学基础

第三章 化学热力学基础



令H=U+pV——焓 (状态函数),则 化学反应的恒压热效应等于系统焓的变化。放热为负,吸热为正。
3. 热化学方程式
热化学方程式:表示化学反应及其热效应关系的化学方程式

标准摩尔焓变:在标准条件下反应或过程的摩尔焓变,△rHmθ,简写 △Hθ。 θ——标准状态, p θ=101.325kPa 气态的标准状态:温度为T,压力为p 体纯物质(假想)状态。
过程:系统状态发生变化时,变化的经过称之为过程。常
见如下

定温过程:过程中系统的温度保持不变,且始终与环境的 温度相等,即T1=T2=Te 定压过程:过程中系统的压力保持不变,切始终与环境的

压力相等,即p1=p2=pe

定容过程:过程中系统的体积始终保持不变 绝热过程:过程中系统与环境之间没有热交换,Q=0 循环过程:系统经一系列变化之后又恢复到起始状态的过 程。

晶体:粒子按一定规则排列,各向异性,有一定沸点 无定形体:内部粒子无规则排列,没有固定熔点,各向同 性

(微晶体):某些物质虽呈无定形,当发现由极微小的晶 粒组成(比晶体小千百倍)
3.2 化学反应热力学
化学反应基本规律

质量守恒定律
能量守恒定律
3.2.1 质量守恒定律

参加化学反应的各种物质的总质量一定等于反应后各种物质的总质 量。 化学方程式(化学反应计量方程式): 根据质量守恒定律,用规定的化学符号和化学式来表示化学反应的 式子。

△Hfθ (物质,相态,T)
指定单质的标准生成焓为零。 △Hfθ (参考态单质,相态,T)=0 例:

反应式中C的指定单质是石墨,指定单质一般都是在该条件下最稳

第三章 化学热力学基础及化学平衡

第三章 化学热力学基础及化学平衡
第三章 化学热力学基础及化学平衡
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
热力学:定量研究能量相互转化所遵循规律的学科,其 中心内容是热力学第一定律和第二定律
化学热力学:把热力学基本原理用于研究化学现象以及与化
学有关的物理现象,主要解决3个问题: ⑴ 反应过程中是否伴随能量的变化? ⑵ 在一定条件下,反应能否发生? ⑶ 如果反应能够发生,其程度如何? 能量关系问题; 过程方向性问题; 化学平衡问题。
第三章 化学热力学基础及化学平衡
无 机 3.3 化学反应的方向和限度 及 3.3.1 自发过程 分 凡是不需要外力而能自动发生的过程。 析 化 1、特点 学 ⑴ 自发过程有一定的方向性,它的逆过程是非自发的 湖 ⑵ 自发和非自发均有可能发生 南 农 ⑶ 自发过程具有对外做功的能力 业 ⑷ 自发过程有一定的限度 大 ⑸ 自发过程不受时间的约束,与速率无关 学 应 如: 水从高处流向低处; 用 热从高温物体传向低温物体; 化 铁在潮湿的空气中锈蚀; 学 系 锌置换硫酸铜溶液反应。
第三章 化学热力学基础及化学平衡
无 机 令:H = U + pV, H 称为焓。 及 由于U 、 p、V均为系统的状态函数,所以焓(H)也是 分 系统的状态函数。 析 化 所以有:Qp = △H 学 湖 南 农 业 大 学 应 用 化 学 系 对于在等温等压条件下进行的气体反应而言:
△U = Qp + W ,
W p V 0
第三章 化学热力学基础及化学平衡
无 机 及 分 析 化 学 湖 南 农 业 大 学 应 用 化 学 系
பைடு நூலகம்
3.2.2 化学反应热
反应热:当产物与反应物温度相同并且在化学反应时只做 膨胀功的条件下,化学反应过程中系统吸收或放出的热量。 1 定容反应热(Qv) 若系统在变化过程中保持体积恒定,此时的热称为定容热. W=-p △V=0 2 定压反应热(Qp ) △U = Qv + W Qv= △U

第三章化学热力学初步和化学平衡

第三章化学热力学初步和化学平衡

可逆途径
不同途径等温压缩环境对体系做的功
随着步骤的增加,W越来越小,直到沿着等温线往上,W最小
可逆过程(reversible process):一个体系能通 过原途往返而环境无功损失的过程
可逆过程的基本特点: (1)逆转不流痕迹
可逆过程
(2) 理想过程
(3) W可逆<W不可逆 可逆过程体系对 环境做功最大
*过程的关键是始、终态,而途径则着眼于具体方式。 **恒温过程, 恒压过程, 恒容过程, 绝热过程
四、内能(Internal Energy)又称为热力学能
1.体系内部所包含的各种能量之总和,绝对数值不可测。 2.广度状态函数。 3.内能的变化量有意义 4、理想气体的内能只是温度的函数, 即ΔUid = f ( T )
**温度一般为25 ℃(298K)
**大多数生成焓为负值,表明由单质生成化合 物时放出能量。
(2)意义: (i)计算化学反应的 rHm
反应ΔrH物mo = Δf HmoΔ(生rH成mo 物)- Δf H生mo成(反物应物)
(iiΔ)f H讨mo (反论应化物合) 物的稳Δf定Hmo性(生.成物)
1、恒容化学反应热(Q v)
弹式量热计示意图 1)体系体积在反应前后无 变化的反应称为恒容反应。
2)恒容条件下,Q v = ΔU
3)恒容反应热一般用 弹式量热计测定。
2、恒压化学反应热(Q p)
1)在恒压过程中完成的化 学反应,称为恒压反应。 2)恒压反应热一般用 保温杯式量热计测定。
保温杯式量热计示意图
l
I
注意:这里P外为环境压强
自由膨胀没有体积功
例题:恒温下,压力为106Pa的2m3理想气体在恒外压 5×105Pa膨胀直到平衡,此过程环境对体系作功多少?

第3章-化学热力学基础-习题及全解答

第3章-化学热力学基础-习题及全解答

第3章化学热力学基础1.状态函数的含义及其基本特征是什么?T、p、V、△U、△H、△G、S、G、Q p、Q u、Q、W、W e最大中哪些是状态函数?哪些属于广度性质?哪些属于强度性质?答:状态函数的含义就是描述状态的宏观性质,如T、p、V、n、m、ρ等宏观物理量,因为体系的宏观性质与体系的状态之间存在对应的函数关系。

状态函数的基本特点如下:(1)在条件一定时,状态一定,状态函数就有一定值,而且是唯一值。

(2)条件变化时,状态也将变化,但状态函数的变化值只取决于始态和终态,与状态变化的途径无关。

(3)状态函数的集合(和、差、积、商)也是状态函数。

其中T、p、V、S、G是状态函数,V、S、G、H、U属于广度性质(具有加和性),T、p属于强度性质。

2.下列叙述是否正确?试解释之。

(1)Q p=△H,H是状态函数,所以Q p也是状态函数;(2)化学计量数与化学反应计量方程式中各反应物和产物前面的配平系数相等;(3)标准状况与标准态是同一个概念;(4)所有生成反应和燃烧反应都是氧化还原反应;(5)标准摩尔生成热是生成反应的标准摩尔反应热;(6)H2O(l)的标准摩尔生成热等于H2(g)的标准摩尔燃烧热;(7)石墨和金刚石的燃烧热相等;(8)单质的标准生成热都为零;(9)稳定单质的△f HΘm、SΘm、△f GΘm均为零;(10)当温度接近绝对零度时,所有放热反应均能自发进行。

(11)若△r H m和△r S m都为正值,则当温度升高时反应自发进行的可能性增加;(12)冬天公路上撒盐以使冰融化,此时△r G m值的符号为负,△r S m值的符号为正。

答:(1)错。

虽然H是状态函数,△H并不是状态函数,所以Qp当然不是状态函数;。

(2)错。

因为反应物的化学计量数为负,与反应计量方程式中反应物前面为正的系数不相等;(3)错。

如气体的标准状况是指0℃和101.325KPa条件,而标准态对温度没有限定;(4)错。

如由石墨生成金刚石的生成反应就不是氧化还原反应;(5)对。

第3章 化学热力学基础

第3章  化学热力学基础
上一内容 下一内容 回主目录
缸内气体承 受的外压p外
大砖头和两块 小砖头的重量 所致的压力
一块大砖头 的重量所致 的压力
始态
大砖头和一块 小砖头的重量 所致的压力
终态
中间态
图3-1 理想气体恒温膨胀示意图
上一内容 下一内容 回主目录
始态经不同途径恒温膨胀到终态: 一次膨胀过程 p1=405.2kPa 始态 V1=1.00L T1=273K (I) 二次膨胀过程 p1=202.6kPa V1=2.00L T1=273K
途径Ⅰ 始态上一内容 下一内容回主目录终态途径Ⅱ
恒压过程 在状态变化过程中,压力始终恒定 等压变化 p始态=p终态=p环境,而不考虑过程中的压力
恒温过程 在状态变化过程中,温度始终恒定 等温变化 T始态=T终态=T环境,而不考虑过程中的温度
恒容过程 在状态变化过程中,体积始终恒定
绝热过程 体系与环境之间无热交换
dU = δQ + δW
上一内容 下一内容 回主目录
例1. 设有1mol理想气体,由487.8K、20L的始态,反抗恒外压 101.325kPa迅速膨胀至101.325kPa、414.6K的状态。因膨胀迅 速,体系与环境来不及进行热交换。试计算W、Q及体系的热 力学能变△U。
解:按题意此过程可认为是绝热膨胀,故Q=0。 W =―p外△V = ―p外(V2 ― V1) V2 =nRT2 /p2 =(1 × 8.314 × 414.6)/101.325=34( L) W = ―101.325×(34 – 20)= ―1420.48( J)
上一内容
下一内容
回主目录
热力学方法是一种宏观的研究方法。
它只研究大量微观粒子(宏观体系)的平均
行为(宏观性质),而不讨论其微观结构。 本章主要讨论平衡态的热力学,重点掌握化学 反应的热效应计算和自发进行方向的判断。

第三章 化学热力学基础

第三章 化学热力学基础

第三章化学热力学基础§3-1热力学基本概念教学目的及要求:掌握热力学中的基本概念。

教学重点:体系与环境、状态与状态函数、过程与途径的概念。

引言热力学是在研究提高热机效率的实践中发展起来的,十九世纪建立起来的热力学第一、第二定律奠定了热力学的基础,是热力学成为研究热能和机械能以及其他形式能量之间的转化规律的一门科学。

二十世纪建立的热力学第三定律使得热力学理论更加完善。

用热力学的理论和方法研究化学,则产生了化学热力学。

化学热力学可以解决化学反应的方向和限度等问题,着眼于性质的宏观变化,不涉及到物质的微观结构,只需知道研究对象的起始状态和最终状态,无需知道其变化过程的机理。

一、体系与环境体系——研究的对象环境——体系以外与体系密切相关的部分举例:按照体系与环境之间能量和物质的交换关系,通常将体系分为三类:敞开体系:同时存在能量和物质的交换;封闭体系:只存在能量交换;孤立体系:既无能量交换,又无物质交换。

举例:在热力学中,我们主要研究封闭体系。

二、状态和状态函数状态——有一系列表征体系性质的物理量所确定下来的体系的存在形式。

状态函数: 用来说明、确定体系所处状态的宏观物理量。

如:温度、压力、体积等。

举例:始态——体系发生变化前的状态;终态——体系发生变化后的状态。

状态函数的变化量用希腊字母Δ表示,例如始态温度是T1,终态温度是T2,则状态函数T的改变量是ΔT = T2 - T1。

状态函数具有以下特点:1、状态一定,状态函数的值一定;2、殊途同归(即状态函数变化量只取决于体系的始态和终态);3、周而复始变化为零(无论经过什么变化,只要回到始态,状态函数变化量为零)。

状态函数的变化与过程的途径无关。

体系的量度性质或广延性质——体系的强度性质——三、过程与途径体系的状态发生变化,从始态变到终态,我们说体系经历了一个热力学过程,简称过.程.。

上述变化过程可以采取许多种不同的方式,我们把这每一种具体的方式成为一种途径..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 Cal = 1000 cal = 1 kcal
1. 基本概念
Systems and Surroundings 体系和环境
我们要研究的部分称为 体系; 其他所有部分称为 环境. Systems may be open, closed, or isolated. (敞开体系,封闭体系,孤立体系)
在热化学中,我们通常研究的是封闭体系closed systems— 体系与环境只有能量的交换,没有物质的交换.
Energy diagram for the for the reaction 2H2(g) + O2(g) 2H2O(l)
1. 基本概念——热和功
Relating ΔE to Heat 热 and Work 功
1. 基本概念——热和功
Sign conventions for heat and work.
答案:1)-100kJ 2) +100kJ 3) -20kJ 4) +20kJ
1. 基本概念——吸热和放热
Endothermic 吸热 and Exothermic 放热 Processes
在一个过程中体系吸收热量,此过程称为吸热 endothermic (endo- means “into”).
Heat is the energy transferred from a hotter object to a colder one.
1. 基本概念——热力学第一定律
The First Law Of Thermodynamics
能量不会消失也不会多出,体系能量减少必然伴随环境 能量增加,反之亦然。这一“能量守恒”的现象称为热 力学第一定律first law of thermodynamics.
κ is simply a constant of proportionality, 8.99 × 109 J-m/C2
1. 基本概念——能量
Potential energy and kinetic energy. The potential energy initially stored in the motionless bicycle at the top of the hill is converted to kinetic energy as the bicycle moves down the hill and loses potential energy.
1. 基本概念——热和功
Example: Relating Heat and Work to Changes of Internal Energy
气体 A(g) and B(g) 混合于一个带活塞的圆柱筒内,反应生 成固体产物C(s): A(g) + B(g) C(s). 反应中, 体系向环境放 热 1150 J. 反应生成固体活塞下移,恒压条件下,气体体积 减小,环境对体系做功 480 J. 请问体系内能变化是多少?
1. 基本概念——吸热和放热
A process in which the system loses heat is called exothermic (exo- means “out of”)放热. System: reactants反应物 Surroundings: air around reactants
1. 基本概念——能量
1. 基本概念——能量
Units of Energy 能量的 SI 单位是 joule (pronounced “jool”), J, in honor of James Joule (1818–1889), a British scientist
A calorie (cal) 指 使 1g 水的温度从14.5 °C 升到 15.5 °所需 的能量.
Heat flows (violently) from system into surroundings (exothermic reaction), temperature of surroundings increases
1. 基本概念——状态函数
State Functions 状态函数
——表征和确定体系状态的宏观物理量 决定体系热力学状态的一系列宏观物理量 如 V,m,P,T,ρ,… E (热力学能),H (焓),S (熵), G (自由能) The value of a state function depends only on the present state of the system, not on the path the system took to reach that state. 与路径无关
第三章 化学热力学初步 和化学平衡(I)
内容提要:
1、基本概念 2、热化学 3、化学反应的方向 4、化学反应进行的程度和化学平衡
1. 基本概念
研究能量及其传递转化的科学称为热力学; 在化学反应中,涉及的热力学称为热化学。
能量 Energy: Energy 能量 通常表现为功和热的形式. Work 功 使物体在一作用力下移动所需的能量. Heat 热 使物体温度升高的能量
1. 基本概念——体系和环境
An open system
A closed system
1. 基本概念——体系和ferring Energy: Work and Heat 能量的传递:功和热
work
Energy changes heat Work, w, is the energy transferred when a force moves an object.
2. 热化学——焓
体系做功的大小可表示为:
ΔV = A × Δh
If P-V work is the only work that can be done
2. 热化学——焓
如果一个反应在恒容的容器内进行 (ΔV = 0), 反应释放的 热量等于内能变化:
恒压焓变可表示为: ΔH = qP 总之,恒容条件下,内能变化等于热量的吸收或释放; 焓变就等于恒压条件下的热量的变化.
2. 热化学——焓
2. 热化学——焓
气体体积变化做的功叫做 pressure- volume work 体积功 (or P-V work). When pressure is constant in a process, the pressure-volume work are given by
2. 热化学——焓
Example: Determining the Sign of ΔH 说出以下变化过程焓变 ΔH的正负号 , 并指出是吸热还是 放热过程: (a) 冰块的融化; (b) 1 g of 丁烷 (C4H10) 充分燃 烧生成 CO2 and H2O. Solve (a) 冰块是体系. 从环境吸收热量而融化, so ΔH >0,过程为 吸热. (b) 体系是 1 g 丁烷和参与燃烧反应的氧气. 反应放出热量, so ΔH < 0, 放热过程.
例: 已知一理想气体体系初始体积2.0dm3,压强 100kPa,向环境释放200J 的热量后,压强保持 不变,而体积逐渐缩小到1.0dm3,请计算此过程 中体系的热力学能变化量。
解:根据热力学第一定律: ΔE = E 2 - E 1 = Q + W 则:ΔE = Q - p外ΔV
= -200 - 100 ×103 ×(1. 0- 2.0) × 10-3
2. 热化学——焓
恒压条件下, 一反应过程的焓变, ΔH, 有如下表示:
ΔE = q + w
w = –P ΔV
(The subscript P on q indicates that the process occurs at constant pressure.)
ΔH > 0 (that is, qP is positive), endothermic ΔH < 0 (that is, qP is negative), exothermic
Solve
热从体系释放到环境,环境对体系做功, 因此: q = - 1150 J and w = 480 kJ Thus, ΔE = q + w = (-1150 J) + (480 J) = -670 J ΔE 的“-”号说明 670 J 的能量由体系释放到环境中.
1. 基本概念——热和功
例:判断下列各过程中,哪个的∆E最大: 1)体系放出60 kJ 热,对环境做40 kJ 功。 2)体系吸收60 kJ 热,环境对体系做40 kJ 功。 3)体系吸收40 kJ 热,对环境做60 kJ 功。 4)体系放出40 kJ 热,环境对体系做 60 kJ 功。
System: reactants反应物 + products产物 Surroundings: solvent溶剂, initially at room temperature Heat flows from surroundings into system (endothermic reaction), temperature of surroundings drops, thermometer reads temperature well below room temperature
ΔE > 0, when Efinal > Einitial, 说明体系从环境获得能量.
ΔE < 0, when Efinal < Einitial, 说明体系损失能量到环境中.
1. 基本概念——热力学第一定律
1. 基本概念——热力学第一定律
The internal energy for Mg(s) and Cl2(g) is greater than that of MgCl2(s). Sketch an energy diagram that represents the reaction MgCl2(s) Mg(s)+Cl2(g).
相关文档
最新文档