聚酯型聚氨酯弹性体的合成及性能研究
合成工艺:tpu的制备

合成工艺:tpu的制备合成工艺:TPU的制备总结:TPU(热塑性聚氨酯)是一种具有优异性能和广泛应用的热塑性弹性体材料。
在制备TPU时,使用聚醚、聚酯以及二异氰酸酯作为原料,并在特定工艺条件下进行聚合反应。
TPU的制备可分为两个主要步骤:预聚体制备和最终聚合反应。
在预聚体制备过程中,聚醚或聚酯与二异氰酸酯发生反应,形成交联结构。
最终聚合反应通过加入链延长剂和延伸剂,来调节TPU材料的硬度、弹性和加工性能。
观点和理解:TPU作为一种独特的热塑性材料,具有非常广泛的应用领域。
其制备工艺的关键在于控制原料比例、反应条件和添加剂的选择。
在预聚体制备过程中,通过聚醚或聚酯与二异氰酸酯的反应,形成交联结构的链段。
这些链段会在后续的最终聚合反应中被延伸、交联,从而形成TPU材料的终极结构。
在最终聚合反应中,链延长剂和延伸剂的选择对TPU材料的性能具有重要影响。
链延长剂用于增加聚醚或聚酯链段的长度,从而调节硬度和强度。
延伸剂则用于扩大聚合物结构,并引入新的硬段或软段,从而改变材料的弹性和加工性能。
为了获得高质量的TPU材料,制备过程中需要严格控制反应温度、反应时间和反应条件。
合适的反应温度可以促进反应速率,而适当的反应时间可以保证TPU材料的分子结构完整性和稳定性。
需要注意的是,在TPU制备过程中可能产生一些有害物质和废物。
为了减少对环境的影响,制备工艺应考虑废物处理和治理措施。
合成过程中可能需要添加一些稳定剂和助剂,以提高TPU材料的抗氧化性和耐候性。
TPU的制备是一个复杂的过程,涉及到反应物选择、反应条件控制以及添加剂的使用。
通过优化制备工艺,可以获得具有理想性能的高质量TPU材料,满足不同领域的需求。
TPU(热塑性聚氨酯)是一种具有优异性能的高性能聚合物材料。
下面将介绍TPU的制备及其相关注意事项。
1. 反应物选择:在TPU的制备中,需要选择适当的聚醚或聚酯作为醋酸酯基团,丁二酸酯作为硬段,以及二异氰酸酯作为交联剂。
热塑性聚氨酯(PU)弹性体TPU的合成、加工以及性能解析

热塑性聚氨酯(PU)弹性体TPU的合成、加工以及性能解什么是聚氨酯TPU?.热塑性聚氨酯TPU,是一类加热可以塑化、溶剂可以溶解的聚氨酯。
热塑性聚氨酯与混炼型和浇注型聚氨酯比较,化学结构上没有或很少有化学交联,其分子基本上是线性的,然而却存在一定量的物理交换。
所谓物理交换的概念,在1958年由SchollenbergeC.S.首先提出,是指在线性聚氨酯分子链之间,存在着遇热或溶剂呈可逆性的“连接点”,它实际上不是化学交联,但起化学交联的作用。
由于这种物理交联的作用,聚氨酯形成了多相形态结构理论,聚氨酯的氢键对其形态起了强化作用,并使其耐受更高的湿度。
聚氨酯TPU有哪些分类?既然知道了热塑性聚氨酯TPU是什么,那它有哪些分类呢?按划分标准的不同,TPU可以有很多不同的分类。
比如,按软段结构可分为聚酯型、聚酸型和丁二烯型,它们分别含有酯基、酸基或丁烯基。
按硬段结构分为氨酯型和氨酯麻型,它们分别由二醇扩链剂或二胺扩链剂获得。
普遍常见的划分是分为聚酯型和聚酸型。
按有无交联可分为纯热塑性和半热塑性。
前者是纯线性结构,无交联键;后者是含有少量H尿基甲酸酯等交联键。
按制成品用途可分为异型件(各种机械零件)、管材(护套、棒型材)和薄膜(薄片、薄板)以及胶粘剂、涂料和纤维等。
聚氨酯TPU是怎样合成的?热塑性聚氨酯TPU虽然有很多分类,但从分子结构上来说,都是属于聚氨酯。
那么,它是怎么聚合而成的呢?按照合成工艺的不同,主要分为本体聚合和溶液聚合。
在本体聚合中,又可按有无预反应分为预聚法和一步法:预聚法是将二异鼠酸酯与大分子二醇先行反应一定时间,再加入扩链生产TPU;一步法是将大分子二醇、二异酸酯和扩链剂同时混合反应成TPUo溶液聚合是将二异氟酸酯先溶于溶剂中,再加入大分子二醇令其反应一定时间,最后加入扩链剂生成TPUoTPU的软段种类、分子量、硬段或软段含量以及TPU聚集态会影响TPU的密度,密度大约在1.10-1. 25之间,与其他橡胶和塑料无显著差异。
聚氨酯弹性体生产工艺配方技术

聚氨酯弹性体工艺流程一、聚氨酯弹性体的概述二、聚氨酯弹性体的主要原料三、聚氨酯弹性体主要生产设备四、模具的加工五、聚氨酯弹性体生产工艺流程六、生产过程中注意事项一、聚氨酯弹性体的概述所谓弹性体是指玻璃化温度低于室温,扯断伸长率>50%,外力撤出后复原性比较好的高分子材料,而玻璃化温度高于室温的高分子材料称为塑料。
在弹性体中,其扯断伸长率较大(>200%)、100%定伸应力较小(如<30Mpa)、弹性较好的可称为橡胶。
所以弹性体是比橡胶更为广泛的一类高分子材料。
聚氨酯弹性体,又称聚氨酯橡胶是弹性体中比较特殊的一大类,其原材料品种繁多,配方各种各样,可调范围很大。
聚氨酯弹性体硬度范围很宽,低至绍尔A10以下的低模量橡胶,高至绍尔D85的高抗冲击橡胶弹性材料。
所以聚氨酯弹性体的性能范围很宽,是介于从橡胶到塑料的一类高分子材料。
二、聚氨酯弹性体主要原材料聚氨酯弹性体用的原料主要是三大类,即低聚物多元醇、多异氰酸酯和扩链剂(交联剂)。
除此之外,有时为了提高反应速度,改善加工性能及制品性能,还需加入某些配合剂。
下面只对生产的聚氨酯鞍座所用原材料进行具体描述。
反应过程:多元醇与二异氰酸酯反应,制成低分子量的预聚体;经扩链反应,生成高分子量聚合物;然后添加适当的交联剂,生成聚氨酯弹性体。
其工艺流程如下:扩链剂多元醇预聚体浇注硫化二异氰酸酯2.1 低聚物多元醇聚氨酯用的低聚物多元醇平均官能度较低,通常为2或2~3.相对分子质量为400~6000,但常用的为1000~2000.主要品类有聚酯多元醇、聚醚多元醇、聚ε-己内酯二醇、聚丁二烯多元醇、聚碳酸酯多元醇和聚合物多元醇等。
它们在合成聚氨酯树脂中起着非常重要的作用。
一般可通过改变多元醇化合物的种类、分子量、官能度与分子结构等调节聚氨酯的物理化学性能。
2.1.1聚酯多元醇聚酯多元醇简称聚酯,是聚氨酯弹性体最重要的原料之一。
它是由二元羧酸和多元醇缩聚而成,最常用的二元羧酸是己二酸,最常用的多元醇有乙二醇、丙二醇、丁二醇、二乙二醇。
浅谈PTMG聚氨酯弹性体的生产工艺和设备

浅谈PTMG聚氨酯弹性体的生产工艺和设备聚四氢呋喃又称聚四亚甲基醚二醇(PTMG),化学结构式HO[(CH2)4O]n H,是由四氢呋喃开环聚合得到的端伯羟基直链均聚醚。
该聚合物分子排列紧密,密度高,由于它具有醚键,因而具有良好的柔顺性和耐水解性;它不含不饱和键,因而具有耐老化性能。
常用PTMG相对分子量为600-5000,随相对分子量增加,室温下其状态由粘稠状液体变化为蜡状固体。
聚氨酯弹性体常用相对分子量为650,1000的PTMG。
(相对分子量1800,2000的PTMG常用于生产氨纶)由于PTMG制成的聚氨酯弹性体具有较高模量和强度,优异的耐水解性、耐磨性、耐霉菌性、耐油性、动态性能、电绝缘性能和低温柔性等,特别适合用于汽车配件、电缆、薄膜、医疗器材、高性能胶辊、耐油密封体以及用于水下、地下、矿井及低温场合的制品。
1工艺和原料1.1工.艺1.1.1软段相对分子量(Mn)对弹性体物性的影响聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。
软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度和耐热性能。
PTMG(Mn=1000)的CPU 硬度、拉伸强度、300%的定伸应力和撕裂强度均大于PTMG(Mn=1500和Mn =2000)的CPU。
其主要原因是当预聚体中的NCO基质量分数相同时,PTMG1000-CPU加入TDI的数量相对比PTMG2000-CPU多,即CPU中硬段含量增加,使弹性体中苯环、脲基、脲基甲酯基和氨基甲酯基增加,导致1000-CPU的硬度、拉伸强度和撕裂强度提高。
(2000-CPU的冲击弹性优于1000-CPU)。
(见表1)在PTMG结构中,醚键之间是4个碳原子的直链烃基,偶数碳原子的烃基互相排列紧密,分子间的引力太,故PTMG类CPU不仅具有良好的低温弹性和耐水解性能且机械强度也很高。
由PTMG制得的预聚体在加工温度下粘度较低,釜中寿命较长,有较佳的加工成型性能,是一种高档的CPU。
聚酯和聚醚TPU的性能比较

在原料化学配比一定的情况下,改变柔性链段的长度,对于不同软段类型弹性体性能的影响是不一样的。软段分子量增加也即降低了硬链段的比例。由于醚键内聚能较低,键的旋转位垒较小,随着聚醚相对分子质量的增加,链更柔顺,软段比例增加,故强度下降,弹性增加,永久变形增加。而对于聚酯二醇来说,软段长度对强度的影响并不很明显。这是因为分子中存在极性酯基,聚酯软段的分子量增加,酯基也增加,抵消了软段增加、硬段减少对强度的负面影响。另外,聚酯型聚氨酯的耐水解性能随聚酯链段长度的增加而降低,这是由于酯基增多的缘故;聚醚型聚氨酯的耐水解性能随聚醚链段长度的增加而提高。五、价格比较ﻫ聚醚类聚氨酯弹性体照比聚酯类聚氨酯弹性体在价格方面要高出很多,其主要原因为①聚醚类聚氨酯弹性体具备良好的耐水解性能、耐低温性能、耐弯曲性能。②构成TPU软段的聚醚类多元醇与聚酯类多元醇相较之下,其生产原料价格较高。③聚醚类多元醇生产工艺照比聚酯类多元醇要复杂很多。④聚醚类多元醇在反应过程中各工艺条件较难控制。⑤在生产聚醚类多元醇时,对生产设备的要求较高,同时,生产过程中还要注意采取一定的防护措施。ﻫ六、结论
聚酯和聚醚TPU的性能比较
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
聚醚型TPU与聚酯型TPU之间所存在的差异ﻫTPU的软质段可使用多种的聚醇,大致上可分为聚醚系及聚酯系两种。ﻫ聚醚型(Ether):高强度、耐水解和高回弹性,低温性能好。
软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段若为聚酯,则聚氨酯的强度随作聚酯二醇分子量的增加而提高;若软段为聚醚,则聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是因为聚酯型软段本身极性就较强,分子量大则结构规整性高,对改善强度有利,而聚醚软段则极性较弱,若分子量增大,则聚氨酯中硬段的相对含量就减小,强度下降。ﻫﻫ3、力学性能比较:
pu材料是什么

pu材料是什么PU材料是一种常见的合成材料,也叫聚氨酯材料,全称为聚氨酯弹性体。
它由聚醚或聚酯型多元醇与二异氰酸酯(或磷酸酯)类固化剂反应制成。
以下将分别从材料的性质、应用领域以及制备方法三个方面介绍PU材料。
PU材料的性质方面,首先是物理性能。
PU材料具有较好的拉伸强度、冲击强度和耐磨性,具备一定的弹性和柔软性。
其次是化学性能,PU材料具有抗溶剂性以及耐氧化性能,能够在一定温度下长时间工作。
此外,PU材料还具有较好的电绝缘性能和阻燃性能。
另外,PU材料还具有优异的隔热性能和吸音性能,能够有效地隔绝热量和噪音。
PU材料的应用领域广泛。
首先,在建筑领域,PU材料可以用于制作保温隔热材料、密封胶、涂料等。
其次,在交通领域,PU材料可以用于制作汽车内饰、汽车座椅、汽车缓冲材料等。
再者,在家具领域,PU材料可以用于制作沙发、床垫、软包装等。
此外,PU材料还可以用于制作运动鞋底、皮革面料、胶粘剂等。
可以说,PU材料在许多领域都有广泛的应用。
PU材料的制备方法主要有两个步骤,即先制备出聚醚或聚酯型多元醇,再与二异氰酸酯(或磷酸酯)类固化剂反应。
首先,聚醚或聚酯型多元醇可以通过醇与酸的反应得到。
然后,在反应釜中加入聚醚或聚酯型多元醇,再加入二异氰酸酯(或磷酸酯)类固化剂,通过反应制得聚氨酯。
这一制备方法可以通过控制反应条件和配比来获得不同性质的PU材料。
综上所述,PU材料是一种具有优异物理性能和化学性能的合成材料,广泛应用于建筑、交通、家具等领域。
通过控制反应条件和配比,可以制备出不同性质的PU材料,满足各种应用需求。
聚酯型热塑性聚氨酯弹性体耐湿热性能的研究
2.1 添加 PCD对 聚 酯酸值 的 影响 采用 为 1000的 PBA,加 入 聚 酯二 醇 总 质量
分数 的 1%的抗水解 剂 PCD,分 别 在 80℃ 和 120℃ 的 温度下 搅 拌 ,每 隔 1 h取 样 测试 酸值 。加 入 PCD 后 ,温度对 聚 酯酸值 的影 响见 图 1。
酸值 :聚 酯 二 醇 加 入 抗 水 解 剂 PCD,在 特 定 温 度下 搅 拌 均 匀 ,每 隔 1 h取 样 ,按 照 HG/T 2708— 1995的方 法测 试 。
拉伸 强度 :采 用 GB/T 528-2009的方 法测试 。 耐湿 热 性 能 :TPU样 块 置 于相 对 湿 度 为 90%、 温度 为 8O℃ 的恒 温恒湿 箱 中 ,在不 同时间周 期测 试
吾
誊
画
链
(2.青 岛科技 大学化 工 学院 山东青 岛 266042)
摘 要 :以聚 酯二 醇 、二 苯基 甲烷 二异 氰 酸 酯和 1,4一丁 二 醇 为原 料 合成 了热 塑 性 聚氨 酯 (TPU)弹 性体 ,研 究 了抗 水解助 剂 聚碳化 二 亚胺 (PCD)对 TPU耐 湿热 性 能 的 影响 。 结果 表 明 ,PCD 的加入 可 以 降低 聚 酯 多元 醇的初 始 酸值 ,从 而抑制 酸加 剧 水 解 的作 用 。随 着 PCD 用量 的增 加 ,TPU的 耐 湿热 性 能增 强 。PCD使 得 低硬 度 的 TPU 以及 高分子 量 聚酯二 醇制备 的 聚 酯型 TPU耐 湿 热性 能 有 更显 著 的改善 ,当添加 质 量分数 为 1.2%的 PCD 时 ,TPU可获 得 最佳 的综合 性 能。 关键 词 :热 塑性 聚氨 酯 ;耐 湿热性 能 ;抗 水 解剂 ;聚碳 化二 亚胺 中 图分类 号 :TQ 323.8 文献 标识 码 :A 文章 编 号 :1005—1902(2018)01—0005—03
脂肪族透明聚氨酯弹性体的结构与性能研究
脂肪族透明聚氨酯弹性体的结构与性能研究摘要本文采用六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、4,4一二环己基甲烷二异氰酸酯(HMDI)与聚四氢呋哺二醇(PTMEG)分别进行预聚反应,经多元醇(三羟甲基丙烷TMP、1,4一丁二醇BDO)扩链。
高温固化后得到脂肪族系列用于飞机层合风挡的透明聚氨酯弹性体。
通过改变异氰酸酯种类、硬段含量、催化剂含量及扩链剂配比,对几种脂肪族透明聚氨酯(PU)弹性体的力学性能、耐热性、透明性、工艺性以及与基材的粘接性的影响进行了讨论。
通过FTIR、DSC、TGA、DMA等多种手段分析了IPDI型PU和HMDI型PU的结构及微相分离,并首次对HMDI型PU弹性体热老化机理进行了探讨,得到以下结论:随着体系硬段含量的增加,脂肪族PU弹性体的硬度、拉伸强度和撕裂强度都逐渐增加,PU的断裂伸长率下降,在材料使用温度范围内的耐热性有所提高.高温热稳定性下降,透光率、雾度变化不大,而与AC、PC基材的粘接强度有所提高;随硬段含量增加,在DSC、DMA曲线上,PU的主转变峰逐渐移向高温,体系发生了较为彻底的微相分离;IPDI型PU与HMDI型PU透明弹性体性能的变化趋势~致。
增加扩链剂(CITE)中TMP含量,除拉伸强度和撕裂强度提高外,PU的硬度迅速提高,断裂伸长率下降。
耐热性的研究表明,在使用温度范围内,含双环结构的HMDI型PU的耐热性要高于单环结构的IPDI型PU,两者的耐热性又高于HDI型Pu,但高温的热稳定性结果则相反。
HMDI型PU(H132)经150℃长时间热老化后,醚键的氧化和断裂是其在FTIR、13CNMR、DSC等曲线上以及材料表面状态发生变化的主要原因,醚键氧化主要生成酯基以及其它一些羰基衍生物。
实验确定PTMEG:HMDI:cHE摩尔比为1:3:2,扩链剂l,4--BDO与TMP摩尔比为3:1催化剂相对含量为2%时的配方为较佳配方。
关键词:脂肪族,透弱聚氨酯,微相分离,热老化,中间层,层合风挡TheStructureandPerformanceofAliphaticTransparentPolyurethaneElastomersAbstractTheprepolymersofpolyurethane(PU)weresynthesizedbasedonpolytetrahydrofuranglycol(PTMEG)anddiisocyanate一【1,6-Hexylmethylenediisocyanate(HDI),Isophoronediisocyanate(IPDI),4,4’一dicyclohexylmethanediisocyanate(HMDI)extendedwithmixtureoftrimethylolpropane(TMP)andl,4-butanediol(1,4-BDO).AseriesofaliphatictransparentPUelastomersusedforlaminatedwindshieldwouldbepreparedaftertheprepolymerswerecuredathightemperatureforalongtime.Therelationshipbetweenmechanicalproperties,heatresistance,transparencyandprocessingpropertywiththevariousofdiisocyanate,themolarratiobetweendiisoeyanateandPTMEGthemolarratiobetweenTMPand1,4-BDOandthecontentofcatalysthadbeendiscussed.Thestructureandmicro-phaseseparationofPUbasedonHMDIandIPDlwereanalyzedbyFT-IR,DSC,TGA,”CNMR,DMAandetc.ThechangesofstrucmresandpropertiesofheatagedPUbasedellHMDIhadbecastudiedforthefirsttime.Itwasconcludedthatwiththeincreaseofcontentofhardsegments,thehardness,tensilestrength,tearingstrengthofPUelastomerincreased,andtheheatresistanceincreasedsimultaneouslywithinservicetemperature,buttheelongationatbreakandthethermalstabilitydecreased.ThetransparencyandhazeofPUweren’tvariedonthewhole,andtheadhesionstrengthbetweenAC/PCandPUwasimproved.ThemaintransitionDeakOfthePUbased0nHMDIandIPDIshowedintheDSCandDMAcurvesshiftedtohightemperaturewiththeincreaseofcontentofhardsegments.Completemicro-phBseseparationoccurredinthePUsystem.ThetendencyofthevariationsofpropertieswassalneinthePUHMDIand1PDI.systembasedonWiththeincreaseofTMPcontentinextender,thehardnessofPUincreasesquickly,tensilestrengthandtearingstrengthincreasedtoo,elongationatbreakdecreased.ThecomparativetestsofheatresistanceindicatedthatthedicyclohexylmethaneringstroctureofHMDIhadsuperiorheatresistancetothesinglecyclicringofIPDIandthelinearHDlwithinservicetemperature,butthethermalstabilitywasonthecontrary砒decompositiontemperature.H132wasagedat150℃foralongtime.ThebreakandoxidationofetherbondswerethemaincausesofthechangeofFT-IR,DSC,“CNMRCurvesandsurfacepropertiesofthePU.Theoxidationandmanyotherearbonylderivatives.productswereesterbondsPTMEG:HMDI:CHE=l:3:2,TMP"1,4-BDO=1:3,andwith2%Cat.wasabetterformulationforP【』Keywords:aliphatie,transparentpolyurethane,micro-phaseseparation,thermalaging,interlayer,laminatedwindshield736969北京化工大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
高硬度透明聚氨酯弹性体的合成与性能研究
高硬度透明聚氨酯弹性体的合成与性能研究甄建军;李英建;翟文;王小伟;何金迎;陈青香【摘要】The high hardness and transparent polyurethane elastomers were synthesized with poly-1,4-butylene adipate glycol that the molecular weight is 600,and the 4,4-dicyclohexyl methane diiso-cyanate,and trimethylolpropane,and low colours 4,4′-methylene bis (2-chloroaniline).The results showed that the tensilestrength,elongation,transmittance,shock resistance of the high hardness and transparent polyurethane elastomers are excellent.%采用相分子质量为600的聚己二酸-1,4-丁二醇酯二元醇(PBA)、4,4-二环己基甲烷二异氰酸酯(H12 MDI)、三羟甲基丙烷(TMP)和脱色3,3′-二氯-4,4′-二氨基二苯甲烷合成了高硬度透明聚氨酯弹性体.结果表明,本研究合成的高硬度透明聚氨酯弹性体拉伸强度高、伸长率大、透光率高、抗冲击性能好.【期刊名称】《弹性体》【年(卷),期】2017(027)003【总页数】4页(P29-32)【关键词】高硬度;聚氨酯弹性体;光学性能;冲击性能【作者】甄建军;李英建;翟文;王小伟;何金迎;陈青香【作者单位】中国兵器工业集团第五三研究所,山东济南 250031;中国兵器工业集团第五三研究所,山东济南 250031;中国兵器工业集团第五三研究所,山东济南250031;中国兵器工业集团第五三研究所,山东济南 250031;中国兵器工业集团第五三研究所,山东济南 250031;中国兵器工业集团第五三研究所,山东济南250031【正文语种】中文【中图分类】TQ334.1光学透明高分子是一种应用非常广泛的材料,最常见的有聚苯乙烯、聚甲基丙烯酸甲酯和聚碳酸酯,它们被称为三大透明塑料,但各有不足,聚甲基丙烯酸甲酯是光学性能最好的高分子材料,但其力学性能一般,抗冲击性能差[1-2],吸湿性高;聚苯乙烯抗冲击性能差,低温脆性明显,耐候性差;聚碳酸酯光学性能好,但其硬度低,耐磨性、耐老化性能差。
对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究
对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究文件类型:PDF/Adobe Acrobat 文件大小:字节更多搜索:氰酸聚氨酯弹性体合成及性能研究对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究黎艳飞庞坤玮区志敏(广州华工百川自控科技有限公司 510640)摘要:以对苯二异氰酸酯(PPDI),低聚物多元醇和小分子二元醇等为原料合成了PPDI浇注型聚氨酯弹性体,考察了不同低聚物多元醇对弹性体的物理机械性能,动态力学性能及热氧老化性能的影响,并与MDI和TDI型聚氨酯弹性体进行了比较.结果表明,PPDI型聚氨酯弹性体较MDI, TDI型弹性体具有更低的内生热,更高的回弹性,可用于轮胎胎面材料的制备.关键词:PPDI;聚氨酯弹性体;动态力学性能;内生热聚氨酯弹性体(PUE)具有高强度,高模量,高伸长率,高弹性,硬度可调以及很好的耐油,耐低温,耐撕裂,耐化学腐蚀,耐辐射等特点,已成功地应用于国防,矿山,机电,冶金,制鞋,纺织,汽车工业等领域中.然而,通常的PUE长期使用温度不超过80℃,短期使用温度不超过120℃,因此应用范围受到限制[1].胎面材料作为轮胎与地面接触的部件,直接承担着路面对轮胎的冲击与磨损,向路面传递汽车的牵引和制动力,保护胎体帘线免受机械损伤,因此对胎面材料物理机械性能要求极高,既要有高的耐磨性,高弹性,又要内生热小,有很好的动态力学性能.本研究根据对苯二异氰酸酯(PPDI)分子结构对称,规整,扩链后的PUE硬段分子致密性高及良好的相分离等特点,分别研究了不同低聚物多元醇PPDI体系弹性体性能,并与TDI,MDI型弹性体动态性能比较,制备了动态条件下仍然具有较好综合力学性能的PPDI型聚氨酯弹性体,该类弹性体可适用于胎面材料.1 实验部分1.1 实验原料聚己二酸乙二醇酯(JW224),Mn=2000,工业级,无锡市新鑫聚氨酯有限公司;聚己二酸乙二醇丙二醇酯(CM22183),Mn=2000,工业级,常州武进市三河口聚氨酯厂;聚己内酯二醇(PCL),Mn分别为1000,2000,工业级,日本大赛璐化学工业株式会社;聚四氢呋喃醚二醇(PTMG),Mn分别为1000,2000,工业级,日本三菱化学株式会社;甲苯二异氰酸酯(TDI280),工业级,德国Bayer公司;二苯基甲烷24, 4′2二异氰酸酯(MDI2100),工业级,烟台万华聚氨酯股份有限公司;对苯二异氰酸酯(PPDI),工业级,江苏新沂农药有限公司;3,3′2二氯24,4′2二氨基二苯甲烷(MOCA),氢醌2双(β2羟乙基)醚(HQEE),工业级,苏州湘园特种精细化工有限公司;1,42丁二醇(BDO),工业级,山西三维集团股份有限公司.1.2 弹性体的制备1.2.1 预聚物的合成将低聚物多元醇在100~130℃下真空脱水2~3h,冷却至70~80℃,将计量的二异氰酸酯在快速搅拌下加入,自然升温30min左右并在80~90℃下保温反应2~3h,取样分析NCO的含量,分析值与设计值基本相符后,再真空脱泡20~30min.充氮气密封保存待用.1.2.2 弹性体的制备称取一定量的预聚体,边搅拌边加热升至一定温度,真空脱泡1~2min,控制NCO/OH摩尔比为0.95~1.05,在快速搅拌下加入计量的扩链剂,并迅速搅拌,真空脱泡约1min,脱泡后浇注到预热的模具中,待达到凝胶点时,加压硫化30~50min脱模, 并在100~110℃的烘箱中后硫化16~24h,即得所需弹性体试片.试片于室温下放置24h后测其物理机械性能及动态性能.1.2.3 性能测试力学性能测试:拉伸强度,伸长率及定伸应力按GB/T528—1998标准进行测定;撕裂强度按GB/ 122007年第22卷第2期2007.Vol.22No.2聚氨酯工业POLYURETHANEINDUSTRYT529—1999标准进行测定;邵A硬度按GB/T531—1999标准进行测定;回弹性按GB/1681—1991标准进行测定;屈挠(万次)按GB/T1688—1986标准进行测定.动态力学性能测试:采用日本UBM公司的RheogelE4000型动态力学仪(DMA)对PUE样品进行动态力学分析,频率为11Hz,升温速度为3℃/min,升温范围为25~220℃.2 结果与讨论2.1 不同低聚物多元醇的比较2.1.1 不同低聚物多元醇对弹性体性能影响本实验确定硬段组成为PPDI/BDO,软段组成分别为PTMG,JW224及PCL,改变软段结构研究了不同低聚物多元醇对弹性体力学性能的影响,结果见表1.表1 不同低聚物多元醇对弹性体性能的影响弹性体组成1#2#3#邵A硬度918590300%定伸应力/MPa10.911.211.5拉伸强度/MPa48.651.753.7伸长率/%787761706撕裂强度/kN m-1107110114回弹性/%664962屈挠/万次>36>10>28注:1#为PPDI(BDO)2PTMG,2#为PPDI(BDO)2(JW224),3#为PPDI(BDO)2PCL.由表1可以看出,在硬段组成相同的情况下,除JW224的硬度偏低外,拉伸强度,撕裂强度均是PCL>JW224>PTMG,而伸长率则相反PTMG>JW224>PCL,回弹性PTMG>PCL>JW224.综合物理性能来看,由这3种聚醚组成软段制成的材料各有优点,可适用于制备不同规格及用途的轮胎.2.1.2 不同低聚物多元醇对动态性能的影响动态力学热分析作为力学试验方法之一,可获得材料的动态贮能模量,损耗模量和损耗正切角;前者反映材料的刚度,后两者反映材料的阻尼特性[2].不同种类低聚物多元醇(Mn均为2000)对弹性体动态性能的影响见图1和图2.其中图1第1条曲线为MDI(HQEE)/PTMG弹性体贮能模量(LOGE′)随温度的变化曲线,第2条至第5条曲线分别为PPDI(HQEE)/JW224,PPDI(HQEE)/CM22183,PPDI(HQEE)/PTMG和PPDI(HQEE)/PCL的贮能模量(LOGE′)随温度的变化曲线.图2是损耗正切角tanδ随温度变化的曲线.图2中,第1条曲线是MDI2HQEE为硬段,PTMG为软段的弹性体tanδ随温度变化的曲线,第2至第5条曲线指硬段为PPDI2HQEE,低聚物多元醇分别为JW224,CM2 2183,PTMG和PCL弹性体tanδ随温度变化曲线. 1—MDI(HQEE)/PTMG;2—PPDI(HQEE)/JW224;3—PPDI(HQEE)/CM22183;4—PPDI(HQEE)/PTMG; 5—PPDI(HQEE)/PCL图1 LOG(E')与温度的关系1—MDI(HQEE)/PTMG;2—PPDI(HQEE)/CM22183; 3—PPDI(HQEE)/JW224;4—PPDI(HQEE)/PCL; 5—PPDI(HQEE)/PTMG图2 tanδ与温度的关系由图1可看出,在扩链剂相同的情况下,曲线2,3,4的平坦区较为平坦,即在25~160℃区间内贮能模量基本保持恒定;而曲线5则对温度稍敏感;曲线1的贮能模量最低.由图1还可以看出,从室温至160℃左右是橡胶态的平坦区,超过160℃后,弹性体的贮能模量急剧下降,材料失去使用价值.在160℃附近出现一个拐点,这拐点温度在一定程度上代表PUE的耐热性能.PPDI2PTMG的拐点温度是163.3℃,而MDI2PTMG则是143.2℃,说明PPDI的动态性能和耐热性能较MDI体系好.由图2可看出,在扩链剂相同的情况下,MDI2PUE在整个测量温度区间内的tanδ较PPDI2PUE的tanδ高,说明PPDI2PUE较MDI2PUE有更低的内生热和更小的热损耗.22 聚氨酯工业第22卷2.1.3 不同低聚多元醇对热氧老化性的影响确定硬段组成为PPDI/HQEE,软段组成分别选相对分子质量均为2000的JW224,CMA22183及PCL低聚多元醇,控制NCO/OH摩尔比为1.05,预聚物NCO质量分数为4.5,研究了由JW224,CM2 2183及PCL制备的弹性体在150℃,热空气老化72 h后的力学性能及性能保持率.其不同低聚多元醇对热氧老化性能的影响结果见表2.表2 不同低聚多元醇对热氧老化性能的影响弹性体组成1#2#3#室温下测试邵A硬度948894100%定伸应力/MPa10.56.612.0300%定伸应力/MPa16.013.614.5拉伸强度/MPa34.649.332.6伸长率/%550768475150℃×72h(80~100℃)测邵A硬度908492100%定伸应力/MPa5.94.09.7拉伸强度/MPa8.320.517.6伸长率/%280630560性能保持率/%24.041.654.0注:1#为PPDI(HQEE)2CM2183弹性体组成;2#为PPDI (HQEE)2JW224弹性体组成;3#为PPDI(HQEE)2PCL弹性体组成. 性能保持率以拉伸强度计.从表2可以看出,PCL体系的弹性体耐热氧老化性能优于JW224和CM22183体系.这与由聚己内酯制成的聚氨酯弹性体耐温性比己二酸系聚酯多元醇好[3]的结论一致.2.2 PPDI与MDI和TDI型PU弹性体性能比较PPDI的特点是分子结构对称,相对分子质量比现有常用的MDI,TDI均小很多.用二醇或二胺扩链的PUE硬段分子致密,呈现极高的分子内吸引力,故有良好的相分离.由此合成的PUE物理机械性能,回弹性优良,升高温度下压缩永久变形低,耐磨性,抗屈挠疲劳性,耐湿热性及耐溶剂性等均比MDI2BDO和TDI2MOCA体系的弹性体优良;动态力学性(屈挠寿命)和耐热性比NDI型PUE更佳[4].以Mn为1000的PTMG分别与PPDI,MDI,TDI反应制备的弹性体力学性能及与A厂斜交胎面胶和B厂子午胎面胶的力学性能比较,结果见表3.表3 不同的二异氰酸酯结构对弹性体性能的影响PPDI(BDO)2PTMGMDI(BDO)2PTMGTDI(MOCA)2PTMGA厂斜交胎面胶B厂子午胎面胶NCO质量分数/%3.58.04.3//邵A硬度9090906365100%定伸/MPa8.48.66.11.72.3300%定伸/MPa12.016.212.18.912.2拉伸强度/MPa54.643.046.820.724.9伸长率/%746650500608560撕裂强度/kN m-11131058810289回弹性/%6644423539由表3可以看出,在PTMG相对分子质量和扩链剂相同的情况下,MDI体系预聚物需要较高的NCO%含量.而在硬度相同的情况下,撕裂强度:PPDI>MDI>TDI;拉伸强度:PPDI>TDI>MDI;回弹性:PPDI>MDI>TDI.显然这是因为PPDI的结构高度对称,硬段相分子的致密性极好所致.2.3 不同二异氰酸酯结构PUE的动态力学性能不同二异氰酸酯结构制备的PU弹性体对动态力学性能的影响见表4.表4 60℃样品的贮能模量和损耗角正切试片PPDI2BDOMDI2BDOTDI2MOCAA厂斜交胎面胶B厂子午胎面胶E′/MPa35.215.49.65.49tanδ0.01460.04810.080.190.09注:软段为相对分子质量为1000的PTMG.由表4可以看到,60℃下损耗正切角tanδ依次排列为PPDI<MDI<TDI<子午胎面<斜交胎面,表明在同样物理性能条件下PPDI具有较低的滚动阻力.3 结论(1)二异氰酸酯的结构不同,弹性体的动态性能,热氧老化性能也不同.MDI,TDI的tanδ值均高于PPDI,说明PPDI基弹性体的力学损耗(tanδ)小, 32 第2期黎艳飞等对苯二异氰酸酯型聚氨酯弹性体的合成及性能研究故使用时产生的内生热小,动态性能优良.(2)在硬段组成及硬度相同的情况下,软段材料的柔顺性对弹性体力学性能,动态内生热及耐热性亦有影响.总之,具有滚动阻力低和内生热小的PPDI体系聚氨酯弹性体,无疑会在新型的PU胎面材料品种中增添新的亮点,并将会显示出独特的优势.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Material Sciences 材料科学, 2016, 6(2), 103-109Published Online March 2016 in Hans. /journal/ms/10.12677/ms.2016.62013Synthesis and Performance Research ofPolyester Polyurethane ElastomersFeng Yuan, Weicheng Jiao, Yi Hong, Wenbo Liu, Rongguo WangCenter for Composite Materials and Structures, Harbin Institute of Technology, Harbin HeilongjiangReceived: Mar. 2nd, 2016; accepted: Mar. 23rd, 2016; published: Mar. 29th, 2016Copyright © 2016 by authors and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/Abstract4,4'-Phenyl methane diisocyanate (MDI), poly(1,4-butanediol hexandioic acid) ester (PBA) and 1,4- butanediol (BDO) were used as raw materials, and the pre-polymer method was adopted to syn-thesize MDI-based polyester polyurethane (TPU). The influences of the hard segment content on the relevant performances of TPU were investigated. The results showed that: with the increase of hard segment, the tensile strength of TPU and T g of soft phase showed a rising trend. But the elon-gation at break and initial thermal decomposition temperature dropped dramatically. Therefore, in order to obtain excellent comprehensive performance, the hard segment content should not be too high.KeywordsPolyurethane, Hard Segment Content, Performance聚酯型聚氨酯弹性体的合成及性能研究袁凤,矫维成,洪毅,刘文博,王荣国哈尔滨工业大学复合材料与结构研究所,黑龙江哈尔滨收稿日期:2016年3月2日;录用日期:2016年3月23日;发布日期:2016年3月29日袁凤等摘要以4,4'-二苯甲烷二异氰酸酯(MDI)、聚己二酸丁二醇酯二醇(PBA)、1,4-丁二醇(BDO)为原料,采用预聚法合成了MDI基聚酯型聚氨酯弹性体(TPU)。
研究了硬段含量对TPU相关性能的影响。
研究发现:随着硬段含量的提高,TPU的拉伸强度、软段相的玻璃化转变温度均呈现上升趋势,但TPU的断裂伸长率、初始热分解温度呈下降趋势。
因此,为了获得优异的综合性能,TPU中硬段含量不宜过高。
关键词聚氨酯弹性体,硬段含量,性能1. 引言热塑性聚氨酯弹性体(thermoplastic polyurethane elastomer, TPU)一般是由含有两个异氰酸酯基化合物与含两个活泼氢化合物(如含羟基、氨基等化合物)反应制得的聚合物[1]。
因此,TPU是由硬段和软段交替排列构成的,硬段即异氰酸酯和扩链交联剂,软段即低聚物多元醇。
在常温下,软段形态为高弹态,硬段形态为玻璃态或结晶态[2]。
由于特殊的结构,TPU具有强度高、韧性好、耐磨、耐油、耐撕裂、耐化学腐蚀、粘合性好、吸震能力强、硬度可在很大范围内调节等优异性能[3],在国民经济许多领域获得了广泛的应用[4] [5]。
合成TPU的原材料种类很多,配方的可调范围很大,加工工艺多种多样[6],因此聚氨酯弹性体的性能范围很宽,是介于橡胶和塑料之间的一类特殊高分子材料[7]。
通过改变原材料的种类、用量以及工艺,可以获得不同性能与形态的产品,所以聚氨酯的结构与性能具有很强的可设计性,其也被称为可缝合的材料[8]。
合成聚氨酯的原料不同,得到的产品的性能也不同[9]。
由于4,4′-二苯甲烷二异氰酸酯(MDI)分子结构中2个异氰酸酯基团和2个苯环的位置都是高度对称的,即MDI具有非常规整的分子结构,所以MDI型聚氨酯的硬段相会形成更加完美的结晶区[10],使硬段更易于聚集,提高了分子链间氢键化程度,从而提高了产品的机械性能,因此,MDI在TPU的合成中应用的较多。
由于酯键的内聚能(16.3 KJ∙mol−1)远高于醚键的内聚能(4.18 KJ∙mol−1),所以聚酯型TPU具有氢键化程度高、分子间作用力大等优势,这些优势赋予了聚酯型TPU许多聚醚型TPU无法比拟的机械性能。
本文以MDI、聚己二酸丁二醇酯二醇(PBA)、1,4-丁二醇(BDO)为原料,采用预聚法合成MDI基聚酯型聚氨酯弹性体。
在n(-NCO)/n(-OH) = 0.99和MDI用量恒定条件下,通过改变PBA与BDO的用量比,合成了四种硬段含量的TPU,其硬段含量分别为12.69%、13.92%、15.18%及16.36%。
硬段含量(H.S)是按MDI和BDO在整个体系中的质量百分比计算的。
2. 试验2.1. 实验材料PBA为工业纯,分子量为2000,由烟台华大化学工业有限公司。
MDI、BDO均为分析纯,由阿拉丁试剂有限公司购买。
2.2. TPU的合成本实验采用预聚法来合成TPU。
将四口烧瓶置于水浴锅中,通过铁架台与万能夹将其固定。
加入计袁凤等量已加热融化的PBA后,接好反应装置。
然后升温至100℃,在真空度0.1 MPa下脱水1~2 h。
脱水后将体系温度降至70℃~80℃,在快速搅拌情况下,缓慢加入计量MDI。
快速搅拌1 h后取样进行异氰酸根的含量的测定,待其含量达到预定值时,停止反应,得到TPU的预聚体。
将预聚体升温至70℃~80℃,在然后通过加液管由加料口缓慢加入计量的扩链剂BDO。
在真空度为0.1 MPa的条件下,快速搅拌,反应5 min后关闭真空泵,停止搅拌。
将反应液倒入已预热模具中,于120℃~130℃的烘箱中熟化24 h,室温放置一周后即可得TPU。
2.3. 测试与表征红外光谱(FTIR)分析采用薄膜法,由美国Nicolet仪器公司生产的AVATAR360型傅立叶变换红外光谱仪对合成的TPU进行结构表征。
TPU的拉伸强度、断裂伸长率均按GB/T528-1992标准进行测定。
用万能材料试验机于25℃下进行测试,拉伸速率50 mm/min。
热失重(TGA)分析在美国Perkin Elmer公司的Phris6型热失重分析仪上进行,测试环境为空气,升温速率为10℃/min,测试范围为25℃~500℃。
采用差示扫描量热仪(DSC)对TPU的耐热性能进行测试,试验样品约为15 mg,试验温度范围为−60℃~200℃,采用氮气保护。
3. 结果与讨论3.1. TPU的红外表征图1为MDI和硬段含量为15.18%的TPU的FTIR图谱。
由对比可以看出TPU在2260~2270 cm−1附近没有出现MDI的特征基团-NCO的特征吸收峰,而在1724.8 cm−1附近出现了-HNCOO-的特征吸收峰,这表明-NCO全部参加了反应,与-OH反应生成了-HNCOO-,而且TPU在958.0~911.4 cm−1附近出现了-OH基团的特征吸收峰,这与实验中多元醇略微过量的事实相符。
另外,经分析可知位于3346.5 cm−1处吸收峰是-N-H的伸缩振动峰;位于1530.5 cm−1处的吸收峰为-C-N伸缩振动峰和-N-H面内弯曲振动峰的重合;位于1162.2 cm−1处的吸收峰为酯基中C-O伸缩振动峰;而位于817.4 cm−1和734.9 cm−1的吸收峰均为苯环中-C-H面外弯曲振动峰。
这些特征峰的存在证明了所得到的产物就是聚氨酯弹性体,软段为聚酯型,异氰酸酯为芳香族异氰酸酯。
3.2. 硬段含量对TPU拉伸性能的影响3.2.1. 拉伸强度图2为硬段含量对TPU拉伸强度的影响。
可以看出TPU的拉伸强度随硬段含量的增加而增加,而增加的幅度先曾后减。
聚氨酯中极性较大的基团以及刚性基团几乎都存在于硬段中。
一方面,硬段含量的增加,提高了分子链的刚性,同时使分子间的作用力以及氢键作用加强[11],必然导致材料的拉伸强度升高。
另一方面,随着硬段含量的增加,形成的刚性的硬段微区的尺寸越来越大,这种硬段微区的尺寸越大,对材料的增强效果越显著。
因此,拉伸强度与硬段含量成正比。
然而,刚性微区在随着硬段含量增加而不断变大的同时,硬段会逐渐溶于软段中,从而影响刚性微区的增强效果,因此,随着硬段含量的增加,拉伸强度提高的幅度呈现出先增后减的趋势。
3.2.2. 断裂伸长率图3为硬段含量对TPU断裂伸长率的影响,可见断裂伸长率随着硬段含量的增加而急剧下降,硬段含量由12.69%增加到16.36%时,断裂伸长率由754%快速降低到376%。
袁凤等Figure 1. IR spectra of MDI and TPU图1. MDI和TPU的红外谱图Figure 2. The influence of the hard segment content on the tensile strength of TPU图2.硬段含量对TPU拉伸强度的影响硬段含量的升高提高了聚氨酯分子链的刚性同时提高了软、硬段间的相溶性,软段中会溶入越来越多的硬段,刚性的硬段导致软段柔韧性急剧下降。
另外,随着硬段含量的升高,起到物理交联点作用的硬段微区聚集得越来越紧密,从而导致分子链的可折叠性和柔顺性下降,所以随着硬段含量的升高,断裂伸长率呈急剧下降趋势。
袁凤等Figure 3. The influence of the hard segment content on the elongation atbreak of TPU图3. 硬段含量对TPU断裂伸长率的影响由硬段含量对聚氨酯弹性体力学性能的影响分析可知,硬段含量在13.92%~15.18%的样品,拉伸强度保持在30~35 MPa之间,拉伸强度较高,而且断裂伸长率均在500%以上,所以此硬段含量区间的聚氨酯弹性体具有较优异的力学性能。