Dynamic Ontology Mapping for Interacting Autonomous Systems
BrainVoyager 处理retinotopic mapping的过程

BrainVoyager 处理retinotopic mapping的过程
实验设计
ring 79个TR(前10后5个TR为灰屏,中间是八种大小的圆环依次出现)
流程(忘了删除掉前几个文件了)
1.生成实验设计
生成.prt文件
有八种大小的圆环,我就建了8个条件,加上灰屏的条件(感觉条件太多啦是不是只选择其中几个圆环就行)
2.建立功能像工程FMR
3.FMR预处理
预处理之后出现的参数图
4.建立结构像工程VMR
分辨率被转换为1mm×1mm×1mm,生成了*_ISO*文件,下面的分析都是用3D_struct_ISO.vmr文件
5.结构像与功能像匹配
6.结构像坐标转换到TAL空间
AC点(下面AC-PC这一步没有做好,AC和PC点都选的不准确)
AC-PC plane(这一步我不会做,我在下面绿色线的图上用鼠标点,XYZ的坐标没有任何变化,不知道怎么设置XYZ的值)
PC点
AP(指导手册上说,AP的线索是当COR图刚刚要出现时,这个刚刚出现的程度我不明白,下面这几个点找的感觉都不准确)
PP
SP
IP
RP
LP
Save.TAL
ACPC->TAL
7.分割
分割之后的图像好奇怪,上面这幅图中正确的应该是显示人脑的吧?感觉不应该是空的,导致下面出现的图中都是空的
8.将分割后的皮层进行展开。
人工智能领域中英文专有名词汇总

名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
RDF 模型及其推理机制

Web 的发展
• 历史: 1990年,Tim Berners-Lee发明了Web 第一代:手写的HTML的Web页 第二代:动态的Web页,还是HTML 第三代:Semantic Web
Semantic web
“语义web是当前web的扩展。扩展之后,web上的信息具备良好定义的含义,可以帮 助人类和计算机更好地协同工作。”
什么是语义?
Wittgenstein (1921) stated :
• Only the sentence has meaning; a name has meaning only in the context of a sentence. • A name means an object. The object is its meaning. 任何概念化体系应该具有一组原子的概念,这些概念的含 义只能引用真实世界对象才能弄清楚。
•
本体:the Science of being
有关“存在”的科学?有关“求是”的科学?
人工智能领域对本体的定义
概念模型(conceptualization)通过抽象出客观世 界中一些现象(Phenomenon)的相关概念而得到的模 型,其表示的含义独立于具体的环境状态 明确(explicit) 所使用的概念及使用这些概念的 约束都有明确的定义 形式化(formal) Ontology是计算机可读的。 共享(share) Ontology中体现的是共同认可的知 识,反映的是相关领域中公认的概念集,它所针对的是 团体而不是个体。
• Studer-ontology是共享概念模型明确的形式化规范说 明
Semantic Web 本体语言
RDF、RDFS、OWL/DAML
Legend Definition uses the datamodel of RDF Defined in terms of Is extension of OWL / DAML RDF Schema Instance Data
一种基于Ontology的异构数据库语义集成方法

映射词库 的方法又可 以解决采用顶级本体所带 来的对 应不 确定性 , 因而提 出 了采 用建 立顶级 本体与映 射词
维普资讯
2 0 年 第 3 期 08
计 算 机 系 统 应 用
一
种 基 于 Onoo y的异 构 数 据 库 语 义 集 成 方 法 t lg
An On ol g t o y—B s d Ap r a h t t r g n O s a e p o c o He e O e e u
就可 以进行交 流。综合 本体 以上 的特 点 , 用本体 来 采 进 行语义 的集成具有 以下的优 点 : ( )O tl y提 供丰 富的预 先 定义 的词 汇 , 1 n o o g 为数 据 源提供 概念视 图 , 而且独 立于数据源模式 。 ( )O tl y 2 n o 表示 的知识能支持所 有相关数据 源 o g
R∞a adD vl m n研 究开发 3 e n eep et o 1
维普资讯
计 算 机 系 统 应 用
2 0 年 第 3 期 08
叠、 不相关等 , 方法是 基于 查询策 略 , 当用户 对一 该 即
异构数据 库的集成 , 主要完成 以下两层映射。
的解决语义异构的问题。
2 一种基于语义的本体 集成方法
2 1 常 用的本体映射方法 .
对异构数据 库的集成 的最终 目标就是 为用户建立
语义web中的本体学习OntologyLearningfortheSemanticWeb

2.3 数据的导入和处理技术
文档的收集、导入和处理步骤 使用一个以本体为中心的文档爬虫来搜集网上 的相关文档。 使用自然语言处理技术来进行文档的处理。 使用一个文档包装器将半结构化文档(如领域 字典)转换成本体学习框架可以识别的格式 (如RDF格式)。 将处理过的文档转换为本体学习算法可以识别 的格式。
抽取词条
分类关系的抽取:(1)使用层次聚类技术(2)
使用模式匹配技术(字典)
非分类关系的抽取:使用基于关联规则的挖掘
算法
2.4 本体学习算法
本体维护算法
本体的修剪(发现和删除无关的概念)
(1)基线修剪(2)相对修剪
本体的精练(对本体的精细调整和增量扩展)
主要思想是先找出未知的词条,然后从本体中 找出与其相似的概念并提交给用户,最后由用 户决定该未知词条的意义。
FCA-Merge(第 三步):从概念格 生成新本体
2.3 数据的导入和处理技术
合并 本体1中的Hotel 本体2中的Hotel 本 体 2中 的 Accommodation
合并 生成新概念或关系
合并
2.3 数据的导入和处理技术
FCA-Merge算法小结
输入:两个本体和一个自然语言文档集 输出:一个合并过的本体。 对输入数据有如下要求: 文档集应该和每个源本体都相关。 文档集应该包含源本体中的所有概念。 文档集应该能够很好的分离概念。
3.本体的评价
精度 学习生成的本体
手工生成的本体
precisionOL =
| CompRef | | Comp|
召回率
recallOL =
| CompRef | | Ref|
Hale Waihona Puke 其中,Ref是参照本体中元素的集合, Comp是比较本体中元素的集合。
B类论文一览表

作者单位论文题目1.An, Xiaom i(安小米)信息资源管理学院Evaluation of research project onintegrated management andservices of urban developmentrecords, archives, and information2.Bao,YG;Tsuchiya,E;Ishii,N; Du, XY杜小勇信息学院Classification by instance-basedlearning algorithm3.Bruce,R;Zhang,YW(张余文);Qing,L;Huang,BH;Jiang,WX;Wang, ZY 公共管理学院New comparative economics andChina's'Dual track'approach toeconomic development intransition to the emerging globaleconomy4.Dai, Wenhai戴文海学生Chen,Hong陈红信息学院Dynamic data declustering methodin parallel data warehouse5.Gao, Jinwu高金伍Zhao, Jianhua;Ji, Xiaoyu 信息学院Fuzzy chance-constrainedprogramming for capitalbudgeting problem with fuzzydecisions6.Gao, Jinwu高金伍 Liu, Baoding 信息学院Fuzzy dependent-chance bilevelprogramming with application toresource allocation problem7.Gao, Jinwu高金伍Liu, Yanku 信息学院Stochastic Nash equilibrium witha numerical solution method8.He, Ying-Jie何盈杰(学生)Wang, Shan王珊;Du, Xiao-Yong 信息学院Efficient top-k query processing inpure peer-to-peer network9.Hu,DD胡东东(学生);Meng,XF孟小峰信息学院Automatic data extraction fromdata-rich web pages10.Hu,H胡鹤;Zhao,YY;Wang,Y;Li,M;Wang,DZ;Wu,WJ;He,J;Du, XY; Wang, S 信息学院Cooperative ontologydevelopment environment CODEand a demo Semantic Web onEconomics11.Hu, He胡鹤Du,Xiaoyong 信息学院Description logics based oninterval fuzzy theory12.Hu, He胡鹤Liu,Dayou; Zhan, Kai 信息学院Ontology middleware in the ESplatform13.Hu, He胡鹤Liu,Dayou; Hu,Zhiyong 信息学院Spatio-temporal ontologyconstruction based on logicmapping14.Hu, He胡鹤Liu,Dayou; Hu,Zhiyong 信息学院Web ontology server and its queryinterface15.Huang,YF(黄燕芬)公共管理学院Poverty and the minimum livingguarantee in China16.Huang, Zhiyong黄志勇Jiang,Yunping; Wang,Yuefei 信息学院On conformal measures forinfinitely renormalizablequadratic polynomials17.Li,C林灿学生;Qian,Z;Meng,XF孟小峰;Liu,WY 信息学院Postal address detection from webdocuments18.Li,M;李曼(学生) Du, XY杜小勇; Wang, S 信息学院A semi-automatic ontologyacquisition method for theSemantic Web19.Li,M李曼(学生);Wang,DZ;Du,XY杜小勇;Wang, S 信息学院Ontology construction forsemantic web:A role-basedcollaborative development method20.Li, Man李曼(学生)Wang, Da-Zhi; Du, Xiao-Yong杜小勇;Wang, Shan 信息学院Dynamic composition of webservices based on domainontology21.Li, Man李曼(学生)Du, Xiao-Yong杜小勇;Wang, Shan 信息学院Learning ontology from relationaldatabase22.Li,Man李曼(学生)Wang,Yan;Zhao,Yiyu;Du,Xiaoyong;Wang,Shan 信息学院Study on storage schema of largescale ontology based on relationaldatabase23.Li, Q李青公共管理学院Case study of institutionaleconomics-China's reform in thenatural monopoly of publicutilities24.Li, Sheng-En李盛恩(学生)Wang, Shan王珊信息学院Multidimensional data model ER([script H] )25. Liang, K Margarita as symbol of eternalfemininity: A religiousinterpretation of 'The Master andMargarita'26.Liu, Qing刘青Zhou, Peng 信息学院Data analysis of cosmicallymicroarray gene expression basedon neural networks with enhancedgeneralization27.Lu, Yanmin卢燕敏学生Chen,Hong陈红信息学院Markov model prediction basedcache management policy28.Luo, Dao-Feng罗道锋(学生)Meng, Xiao-Feng;孟小峰 Jiang, Yu 信息学院Updating of extended preordernumbering scheme on XML29.Ma,YW;Yan,F;Zhu, J; Kou, W Timing asteroid occultations by photometry30.Mao,JY毛基业;Vredenburg,K;Smith,PW;Carey, T 商学院The state of user-centered designpractice-UCD is gaining industryacceptance-but its currentpractice needs fine-tuning.31.Mao,W(毛薇);Zheng,FT(郑风田);Mao, J 农业与农村发展学院The researches on food safetysystem from the perspective ofpublic administration32.Song, YF宋雅范图书馆Continuing education in Chineseuniversity libraries:Issues andapproaches33.Tang, YJ A study on durability andpreservation of imaging discs34.Wang,CY汪昌云?财政金融学院Ownership and operatingperformance of Chinese IPOs35.Wang,HC;Yin,MQ Stock return and systematic risk: An empirical study on Shanghai stock market36.Wang, Jing王静(学生)Meng,Xiao-Feng; Wang,Yu; Wang, Shan 信息学院Target node aimed pathexpression processing for XMLdata37.Wang, Shan王珊Zhang, Kun-Long 信息学院Searching databases withkeywords38.Wei, Y(袁卫)统计学院The statistical profession in China39.Wen, Ji-Jun文继军(学生)Wang, Shan 信息学院SEEKER:Keyword-basedinformation retrieval overrelational databases40.Yang, Nan杨楠Gong, Danzhi; Li,Xian; Meng,Xiaofeng 信息学院Survey of Web communitiesidentification41.Ye,XM;Fan,SR;Liang, J Domestic e-shop comprehensive evaluation research42.Yong,L林勇;Kai, W 信息学院ARFIMA model and the nonlinearanalysis of the Chinese securitiesmarkets43.Yu, Li余力Liu,Lu; Li, Xuefeng 信息学院A hybrid collaborative filteringmethod for multiple-interests andmultiple-content recommendationin E-Commerce44.Yu, Li余力 Di,Yan; Wang, Jun;Cao, Shujuan 信息学院Exploration of budgeting for landconsolidation project45.Yu,SY(于澍燕);Li,SH;Huang,HP;Zhang,ZX;Jiao,Q;Shen,H;Hu,XX; Huang, H 化学系Molecular self-assembly withmodularization and directionality:Vector-manipulation at metalcenters46.Zha,DJ(查道炯)国际关系学院Comment: can China rise?47.Zhan, Jiang占江学生 Feng, Yueli;Wang, Shan王珊信息学院Research and implementation offull text index on Chinese inPostgreSQL48.Zhang,H(张晗);Xu,EM(徐二明);Xu,W 商学院The research of strategiccorporate governance based on thecorrelativity analysis49.Zhang,KL张坤龙(学生);Wang,S王珊信息学院LinkNet:A new approach forsearching in a large peer-to-peersystem50.Zhang,Y;Yang,B; Chen, PF Flowstep:A web-based distributed workflow management system51.Zhang, Zhanlu张占录Yang,Qingyuan 公共管理学院Driving force analysis of theconsolidation of countryresidential areas in Shunyi district52.Zhang, Zhengfeng张正峰 Chen,Baiming 公共管理学院Land consolidation sub-zoning:Acase study of Daxing district ofBeijing53.Xu, GQ许光清环境学院The system dynamics-an effectiveway to address sustainability54.Zhao,XJ(赵锡军);Chen,QQ;Wei, GY 财政金融学院Monetary and financialcooperation in Asia:Retrospectand future proposal55.Liyue Study on the financial function onindustrial technical progress:Theory and the practice of China56.Zhao,XJ(赵锡军); Chen, QQ 财政金融学院Research on Asian stock marketintegration57.Yang,QJ;Chen,C; Qi, ZQ Rough approximations in complete Boolean lattice58.Zhang,YS张越松; Li, GJ 公共管理学院Diagnosis and optimization ofDEA ineffectiveness of theconstruction projects59.Tao, CG Research on the growth of estateconstruction enterprises in China60.Xie,ZJ;Hong,C;Wang, L Subnets based distributed data-centric hierarchical ant routing for sensor networks61.Sun,CH;Shiu,SCK; Wang, XZ Organizing large case library by linear programming62.Yang,B;Fu,HJ;Zuo, MY 经济学院?杨斌The integration mechanism of IToutsourcing partnership63.Yu,MX(俞明轩);Yang,JY;Zhang, L 商学院Study on distribution ofconversion income of collectivebuilding land64.Yu,MX(俞明轩); Yang, QY 商学院A study on position evaluationsystem in real estate appraisalfirm发表刊物地址Reprint Address:Tsinghua Science and Technology,v10,n SUPPL., December, 2005, p 852-858School of Information Resources Management, Renmin University of ChinaINTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 3578: 133-140 2005Renmin Univ China,SchInformat,Beijing,PeoplesR Chinabaoyg@;eisuke@hm.aitai.ne.jp;ishii@in.aitech.ac.jp;duyong@PROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION 50-68, 2005Renmin Univ China,Sch Publ Adm,Beijing, 100000 Peoples R ChinaHuazhong Keji Daxue Xuebao(Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology(Natural Science Edition),v33,n SUPPL.,December,2005,p 239-242 Language: Chinese School of Information, Renmin University of ChinaLecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),v3613,n PART I,Fuzzy Systems and Knowledge Discovery:Second International Conference,FSKD2005. Proceedings, 2005, p 304-311School of Information, Renmin University of ChinaIEEE International Conference on Fuzzy Systems,Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005, 2005, p 541-545Uncertain Systems Laboratory,Department of Mathematics,Renmin University of ChinaLecture Notes in Computer Science,v3496, n I,Advances in Neural Networks-ISSN 2005:Second International Symposium on Neural Networks.Proceedings,2005,p811-816Uncertain Systems Laboratory,School of Information,Renmin University of ChinaRuan Jian Xue Bao/Journal of Software,v 16,n4,April,2005,p540-552Language: Chinese Info.Sch.,Renmin Univ. of ChinaDATABASE SYSTEMS FOR ADVANCED APPLICATIONS,PROCEEDINGS828-839, 2005Renmin Univ China,SchInformat,Beijing,PeoplesR ChinaHu,DD,Renmin UnivChina,Sch Informat,Beijing,Peoples RChina.WEB TECHNOLOGIES RESEARCH AND DEVELOPMENT-APWEB20051049-1052, 2005Renmin Univ China,SchInformat,Beijing,100872Peoples R ChinaHu,H,Renmin UnivChina,Sch Informat,Beijing,100872PeoplesR ChinaHuazhong Keji Daxue Xuebao(Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology(Natural Science Edition),v33,n SUPPL.,December,2005,p 275-277 Language: Chinese Information School, Renmin Univ. of ChinaJisuanji Gongcheng/Computer Engineering,v 31,n5,Mar5,2005,p51-52+108 Language: Chinese Coll.of Info.,Renmin Univ. of ChinaJisuanji Gongcheng/Computer Engineering,v 31,n10,May20,2005,p139-141 Language: Chinese Information College, Renmin University of ChinaJisuanji Gongcheng/Computer Engineering,v 31, n 9, May 5, 2005, p 43-45Information College, Renmin University of ChinaPROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION966-981, 2005Renmin Univ China,Sch Publ Adm,Beijing, Peoples R China.Science in China,Series A:Mathematics,v 48, n 10, October, 2005, p 1411-1420School of Information, Renmin University of ChinaINTERNATIONAL WORKSHOP ON CHALLENGES IN WEB INFORMATION RETRIEVAL AND INTEGRATION, PROCEEDINGS 40-45, 2005Renmin Univ,SchInformat,Beijing,100872Peoples R China.Li,C,Renmin Univ,SchInformat,Beijing,100872Peoples RChina.ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS 209-220, 2005Renmin Univ China,SchInformat,Beijing,100872Peoples R China.Li,M,Renmin UnivChina,Sch Informat,Beijing,100872PeoplesR ChinaWEB TECHNOLOGIES RESEARCH AND DEVELOPMENT-APWEB2005,3399: 609-619 2005Renmin Univ,SchInformat,Beijing100872,Peoples R China;ChineseAcad Sci,Chengdu InstComp Applicat,Chengdu610041, Peoples R ChinaLi,M,Renmin Univ,SchInformat,Beijing100872,Peoples RChina.Jisuanji Xuebao/Chinese Journal of Computers,v28,n4,April,2005,p643-650 Language: Chinese Sch.of Info.,Renmin Univ. of China2005International Conference on Machine Learning and Cybernetics,ICMLC2005, 2005International Conference on Machine Learning and Cybernetics,ICMLC2005, 2005, p 3410-3415School of Information, Renmin University of ChinaSchool of Information,Renmin University of China Language: Chinese Huazhong Keji Daxue Xuebao(Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology(Natural Science Edition),v33,n SUPPL., December, 2005, p217-220Language: ChinesePROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION 69-77, 2005Renmin Univ China,Sch Publ Adm,Beijing, 100872 Peoples R China.Jisuanji Xuebao/Chinese Journal of Computers,v28,n12,December,2005,p 2059-2067 Language: Chinese School of Information, Renmin University of ChinaFOREIGN LITERATURE STUDIES,(6): 118-+ DEC 2005Renmin Univ,CollLiberal Arts China,Beijing, Peoples R ChinaLiang,K,Renmin Univ,Coll Liberal Arts China,Beijing,Peoples RChina.Jisuanji Gongcheng/Computer Engineering,v 31,n3,Feb5,2005,p189-191Language: Chinese Sch.of Info.,Renmin Univ. of ChinaHuazhong Keji Daxue Xuebao(Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology(Natural Science Edition),v33,n SUPPL.,December,2005,p 261-264 Language: Chinese School of Information, Renmin University of ChinaRuan Jian Xue Bao/Journal of Software,v 16,n5,May,2005,p810-818Language: Chinese Information School, Renmin UniversityICARUS, 178 (1): 284-288 NOV 1 2005Renmin Univ China,HighSch,Beijing100080,Peoples R China;BeijingPlannetarium,Beijing100044,Peoples R ChinaReprint Address:Yan,F,Renmin Univ China,HighSch,37ZhongguancunRd,Beijing100080,Peoples R China.frankyanfeng@COMMUNICATIONS OF THE ACM,48 (3): 105-109 MAR 2005Renmin Univ China,Beijing,Peoples R China;Univ Waterloo,Waterloo,ON N2L3G1,Canada;IBM Corp User CtrDesign&User Engn,Toronto,ON,Canada;IBM Ctr Adv Studies,Toronto, ON, CanadaMao,JY,Renmin UnivChina,Beijing,PeoplesR China.E-mailAddress:jymao@;PROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION219-222, 2005Renmin Univ,Sch Agr Econ&Rural Dev, Beijing,100872Peoples R China.LIBRI, 55 (1): 21-30 MAR 2005Renmin Univ China,Lib,Beijing100872,PeoplesR China Song, YF, Renmin Univ China, Lib, 59 Zhongguancun St, Beijing 100872, Peoples R China. E-mail Address:songyafan1@2005BEIJING INTERNATIONAL CONFERENCE ON IMAGING: TECHNOLOGY AND APPLICATIONS FOR THE 21ST CENTURY 206-207, 2005Renmin Univ China,SchInformat ResourceManagement,Beijing,Peoples R China.Tang,YJ,Renmin UnivChina,Sch InformatResource Management,Beijing,Peoples RChina.JOURNAL OF BANKING&FINANCE,29 (7): 1835-1856 JUL 2005Renmin Univ China,SchFinance,Beijing100872,Peoples R China;NatlUniv Singapore,SchBusiness,Dept Finance&Accounting,Singapore119260, SingaporeWang,CY,RenminUniv China,SchFinance, Beijing 100872,Peoples R China.E-mailAddress:bizwcy@.sgPROCEEDINGS OF THE2005 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE& ENGINEERING(12TH),VOLS1-31727-1731, 2005Renmin Univ China,Sch Business,Beijing,100872 Peoples R ChinaRuan Jian Xue Bao/Journal of Software,v 16,n5,May,2005,p827-837Language: Chinese Information School, Renmin University of ChinaJournal of Computer Science and Technology,v20,n1,January,2005,p55-62School of Information, Renmin University of ChinaINTERNATIONAL STATISTICAL REVIEW 73 (2): 277-278 AUG 2005Renmin Univ China,Beijing, Peoples R ChinaWei,Y,Renmin UnivChina,Beijing,PeoplesR China.Ruan Jian Xue Bao/Journal of Software,v 16,n7,July,2005,p1270-1281Language: Chinese Information School, Renmin University of ChinaJisuanji Yanjiu yu Fazhan/Computer Research and Development,v42,n3,March, 2005, p 439-447 Language: Chinese Sch.of Information, Renmin Univ. of China2005INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT,VOLS1 AND2,PROCEEDINGS1446-1450,2004(请核对论文集是哪年发表?)RenMin Univ,Beijing,100872 Peoples R ChinaYe,XM,RenMin Univ,Beijing,100872PeoplesR ChinaWAVELET ANALYSIS AND ACTIVE MEDIA TECHNOLOGY VOLS1-31451-1456, 2005Renmin Univ China,Informat Sch,Beijing,100872 Peoples R China.Yong,L,Renmin UnivChina,Informat Sch,Beijing,100872PeoplesR ChinaExpert Systems with Applications,v28,n1, January, 2005, p 67-77School of Information, Renmin University of ChinaNongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,v21,n SUPPL.,February, 2005, p 119-122 Language: Chinese Department of Agricultural Economy, Renmin University of ChinaCURRENT ORGANIC CHEMISTRY,9 (6): 555-563 APR 2005Renmin Univ China,DeptChem,Beijing100872,Peoples R China;ChineseAcad Sci,State Key LabPolymer Phys&Chem,Inst Chem,Beijing100080,Peoples R China;Chinese Acad Sci,GradSch,Beijing100080,Peoples R China;ChineseAcad Sci,Fujian Inst ResStruct Matter,State KeyLab Struct Chem,Fuzhou350002,Peoples R China;Lanzhou Univ,State KeyLab Appl Organ Chem,Lanzhou100080,PeoplesR ChinaYu,SY,Renmin UnivChina,Dept Chem,Beijing100872,PeoplesR China.REVIEW OF INTERNATIONAL STUDIES, 31 (4): 775-785 OCT 2005Renmin Univ China,SchInt Studies,Beijing,Peoples R ChinaZha,DJ,Renmin UnivChina,Sch Int Studies,Beijing, Peoples R ChinaHuazhong Keji Daxue Xuebao(Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology(Natural Science Edition),v33,n SUPPL.,December,2005,p 213-216 Language: Chinese School of Information, Renmin University of ChinaPROCEEDINGS OF THE2005 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE& ENGINEERING(12TH),VOLS1-3949-953, 2005Renmin Univ China,Sch Business,Beijing,100872 Peoples R China.WEB TECHNOLOGIES RESEARCH AND DEVELOPMENT-APWEB2005,3399: 241-246 2005Renmin Univ China,SchInformat,Beijing100872,Peoples R ChinaZhang,KL,RenminUniv China,SchInformat,Beijing100872,Peoples RChinaFOURTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS:THE INTERNET ERA&THE GLOBAL ENTERPRISE,VOLS1AND2599-609, 2005Renmin Univ China, Informat Sch,Beijing, Peoples R China.Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,v21,n11,November,2005,p 49-53 Language: Chinese College of Public Administration,Renmin University of ChinaNongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,v21,n SUPPL.,February, 2005, p 123-126 Language: Chinese Land Management Department,Renmin University of ChinaPROCEEDINGS OF THE2005 CONFERENCE OF SYSTEM DYNAMICS AND MANAGEMENT SCIENCE,VOL1-SUSTAINABLE DEVELOPMENT OF ASIA PACIFIC 166-173, 2005Renmin Univ China,Sch Environm&Nat Resources,Beijing, Peoples R China.PROCEEDINGS OF THE2005 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING-PROCEEDINGS OF 2005INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING 899-904, 2005Renmin Univ China,Sch Finance,Beijing,100872 Peoples R ChinaPROCEEDINGS OF THE2005 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING-PROCEEDINGS OF 2005INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING 905-910, 2005Renmin Univ China, Finance&Secur Inst, Beijing,100872Peoples R ChinaINTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING-PROCEEDINGS OF 2005INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING 927-932, 2005Finance,Beijing,100872 Peoples R China.PROCEEDINGS OF THE2005IEEE INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING (IEEE NLP-KE'05) 791-795, 2005Renmin Univ China,SchInformat,Beijing,100872Peoples R China.Yang,QJ,Renmin UnivChina,Sch Informat,Beijing,100872PeoplesR China.PROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON CONSTRUCTION&REAL ESTATE MANAGEMENT,VOLS1AND2-CHALLENGE OF INNOVATION IN CONSTRUCTION AND REAL ESTATE 243-245, 2005Renmin Univ China, Beijing,100872Peoples R China.PROCEEDINGS OF2005 INTERNATIONAL CONFERENCE ON CONSTRUCTION&REAL ESTATE MANAGEMENT,VOLS1AND2-CHALLENGE OF INNOVATION IN CONSTRUCTION AND REAL ESTATE 1024-1027, 2005Renmin Univ China,Sch Finance,Beijing,Peoples R China2005INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING P ROCEEDINGS,VOLS1 AND 2 895-900, 2005RenMin Univ,SchInformat,Beijing,100872Peoples R China.Xie,ZJ,RenMin Univ,Sch Informat,Beijing,100872 Peoples R ChinaMICAI2005:ADVANCES IN ARTIFICIAL INTELLIGENCE 554-564, 2005Renmin Univ China,Informat Sch,Beijing,100872 Peoples R China.Sun,CH,Renmin UnivChina,Informat Sch,Beijing,100872PeoplesR China.SEVENTH INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE,VOLS1AND2, SELECTED PROCEEDINGS801-803, 2004(会议时间是05?)Renmin Univ China,Informat Sch,Beijing,100872 Peoples R China.Renmin Univ China,Informat Sch,Beijing,100872Peoples RChina.PROCEEDINGS OF CRIOCM2005 INTERNATIONAL RESEARCH SYMPOSIUM ON ADVANCEMENT OF CONSTRUCTION MANAGEMENT AND REAL ESTATE 325-329, 2005Renmin Univ China,Sch Business,Beijing,100872 Peoples R China.INTERNATIONAL RESEARCH SYMPOSIUM ON ADVANCEMENT OF CONSTRUCTION MANAGEMENT AND REAL ESTATE 448-454, 2005Business,Beijing,100872 Peoples R China.EISCI、ISTP ISSHPEIEI 、ISTP、SCI EI、ISTPEI、ISTP、SCI EIISTP、SCI ISTP、EI、SCIEIEIEIISSHPEIISTPISTP、SCI ISTP、SCI、EIEIEI、ISTPISSHP EIA&HCI EIEIEI SCIEI 、SCIISSHPSSCIISTPSSCIISTP 、ISSHP EIEI 、SCI ISTP 、SCIEIISTP、 ISSHP ISTPEIEISCISSCIISTP、ISSHP SCI、ISTP、EIISTP、ISSHPEIEIISTP、ISSHP ISTP、ISSHP ISTP、ISSHPISTP、ISSHP ISTPISTP、ISSHP ISTP、ISSHP ISTPISTP、SCI ISSHP ISSHP。
论Ontology在信息系统研究中的两重性

作 者 简 介 : 知 津 (9 7 ) 男 , 授 , 士 生 导 师 , 表 论 文 3 0余 篇 , 王 14 一 , 教 博 发 0 出版 著 作 2 9部 ; 鑫 (9 6 ) 男 ,0 9级 情 报 学 硕 士 研 金 1 8一 , 2 0
究 生 , 表论 文 4篇 ; 文 爽 (9 5 ) 男 ,0 9级情 报 学硕 士研 究 生 , 表 论 文 4篇 。 发 王 18 一 , 2 0 发
1 Onoo y的 概念 及特 征 tlg
共享 的重 要 组件 。
O t o y 词最 早 产 生 于 l no g 一 l 7世 纪 , 用 于 哲学 应 领域, 与形 而 上学 和 “ 第一 哲学 ” 同义 词 。 是 在哲 学范 畴 , no g 可 以翻 译 为 “ 体论 ” 该 理 论 是 对 客观 O toy l 本 , 存在 的一 个 系统 的解 释或 说 明 ,它关 心 的是 客 观现 实 的抽象 本质 , 一个 研 究 “ 在 ” 是 存 的理 论 。 它关 注于 事 物存在 的 原 因 , 不是 存在 的结 果 。 而 本体论 确 立 了 种追 寻 初 始 本 原 、 足 理 由、 终 同一 性 、 高价 充 最 最 值原 理 的哲学 探 索 的道路 Ⅱ。 】 作 为 一 个 曾 经 用 于 哲 学 上 的概 念 . no g O tl y最 o 早用 于哲 学 以外 的 领域 是 人工 智 能 。现在 广 泛应 用 于知识 工 程 、 知识 表 示 、 息检 索 、 息摘 要 、 信 信 知识 管 理等 领域 , 国外对 本 体论 的研 究非 常 活跃 . 至被 应 甚 用到企业 集 成 、 自然语 言翻译 、 药 、 医 电子 商务 、 理 地 信 息 系统 、 法律 信 息 系统 、 生物 信 息系统 等 [。 2 ] 其实 , nooy就 是 通 过 对 于概 念 、 O tl g 术语 及 其 相 互关 系 的规 范化描 述 ,勾 画 出某一 领 域 的基 本知识 体 系 和描 述 语 言 。O tlg nooy的 目标 是捕 获相 关 领域 的知识 , 供对 该 领 域知 识 的共 同理解 , 定该 领域 提 确 内共 同认 可 的词汇 ,并从 不 同层次 的形 式 化模 式上 给 出这些 术语 和 术语 问相互 关 系 的明确定 义 。 O t o y 有 以下 特 征 : no g 具 l () 1 使用 范 围十 分广 泛 。O tl y能够 在不 同的 noo g 建 模方 法 、 言 、 式 和 工 具 之 间进 行 转 换 和 映 射 . 语 范 在 不 同的系 统之 间具 有 可继 承性 和互 操作 性 。 ( ) 功能 上与 数 据库 具 有一 定 的相 似 性 , 在 2在 但 所 能表达 的知识 方 面 ,却 比数 据 库 丰富 很多 。一 方 面, 定义 O tlg nooy的语 言 , 词 法 和语 义 两个 层 面上 在 所 能 表达 的信 息 与数 据 库相 比 , 要 丰富 很 多 ; 一 都 另
流形学习之等距特征映射(Isomap)

流形学习之等距特征映射(Isomap) 感觉是有很久没有回到博客园,发现⾃⼰⾟苦写的博客都被别⼈不加转载的复制粘贴过去真的⼼塞,不过乐观如我,说明做了⼀点点东西,不⾄于太蠢,能帮⼈最好。
回校做毕设,专⼼研究多流形学习⽅法,⽣出了考研的决⼼。
话不多说,看带⼤家⾛⼊Joshua B. Tenenbaum的Isomap的世界! ⼤数据时代的⼈总是那么的浮躁不安,⾼维并不可怕,事实的本质总是简单⽽单调的,因此流形学习理念中直接假设⾼维的数据都存在低维的本征结构。
⾃“流形”这个概念被提出以来,许多⼈都在寻找⼀个⾼维数据中最现实的问题——降维(维数简约)。
为在⾼维观察值中寻找有意义的低维,Tenenbaum提出“⾮线性降维的全局⼏何框架”计算出了全局最优解,并保证近似收敛到原始⾼维数据的真实结构。
我这⾥不想翻译⼈家的东西,仅仅是将该算法接着前⾯说的研究⽣的数模题给出的数据来讲解,也是对作者本⼈的尊重(可以学习,但拒绝粘贴!)。
题⽬:3c.mat中的数据为两个⼈在不同光照下的⼈脸图像共20幅(X变量的每⼀列为拉成向量的⼀副⼈脸图像),请将这20幅头像分为两类。
思考1:不管如何,⾸先加载数据(load 3c.mat)看看这个3c.mat⽂件中到底是个神马数据 我们知道,这个数据的20个⼈脸(来源于两个⼈在不同光照下的照⽚),其中每⼀个⼈脸数据是经过拉长后的2016维的⼈脸头像数据,这样每⼀张图⽚就是⼀个2016维欧式空间的⼀个点。
按照流形的定义,可以认为这两个⼈脸头像经过不同光照内嵌在2016维的⾼维空间中。
因此需要降维到三维流形,三维流形中的三个变量分别是:⼈脸1、⼈脸2与不同的光照。
思考2:说道维数约简(降维技术哪家强),经典的降维技术就是主成分分析(PAC)和多维尺度分析(MDS)简单易⾏,并且能保证发现⾼维输⼊空间的位于线性⼦空间上的真实数据结构。
其中PCA以⽅差的⼤⼩来衡量信息量的多少,认为⽅差正⽐的反应提供的信息量,其基本思想是通过线性变换尽可能地保留⽅差⼤的数据量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dynamic Ontology Mapping for InteractingAutonomous SystemsSteven Heeps1,Joe Sventek1,Naranker Dulay2,Alberto Egon Schaeffer Filho2, Emil Lupu2,Morris Sloman2,Stephen Strowes11Department of Computing Science,University of Glasgowheeps,joe,sds@2Department of Computing,Imperial College Londonn.dulay,aschaeff,e.c.lupu,m.sloman@Abstract.With the emergence of mobile and ubiquitous computing en-vironments,there is a requirement to enable collaborative applicationsbetween these environments.As many of these applications have beendesigned to operate in isolation,making them work together is oftencomplicated by the semantic and ontological differences in the meta-datadescribing the data to be shared.Typical approaches to overcoming onto-logical differences require the presence of a third party administrator,anapproach incompatible with autonomous systems.This paper presentsan approach to automatic ontology mapping suitable for deployment inautonomous,interacting systems for a class of collaborative application.The approach facilitates the collaboration of application-level data col-lections by identifying areas of ontological conflict and using meta-datavalues associated with those collections to establish commonality.A mu-sic sharing application has been developed to facilitate the sharing ofmusic between peers.1IntroductionRecent advances in ubiquitous and mobile computing have dramatically changed the role of the computer in users’lives and made mobile computing the new personal computing and communication paradigm.The overriding motivation is that computing systems should seamlessly integrate into the life of the user and interoperate with other systems to offer mobile services as and when desired.We have previously proposed the concept of a Self-Managed Cell(SMC) as the fundamental management design pattern for autonomous systems[20]; an SMC is a policy-based architecture that provides autonomic management capabilities for ubiquitous computing environments[3,6,10,19].In ubiquitous environments,SMCs need to collaborate without having a pre-agreed schema, and it is also desirable that there is agreement and common semantics for appli-cations and devices.The SMC architecture currently supports integration at the system and management level where the basics for SMC interaction are handled in terms of policy,data and event exchanges[17].Successful SMC integrationat this level provides the mechanisms for services at the application level to collaborate.This paper explores the challenge of integration at the application level.Se-mantic differences between collaborating applications are usually managed by an administrator who maps the differences or documents a strict ontology to which systems developers and users adhere.It is likely that ontological and semantic differences between individual applications will prove a barrier to application collaboration due to the autonomous nature of the environment.To explore application level ontology conflict and develop suitable mapping mechanisms,we have investigated the use of SMCs in the domain of peer-to-peer music sharing.The ability to see and listen to the music of others became prominent when Apple Inc.released a version of iTunes that supported the sharing of music collections on the same sub-network through the DAAP protocol [1].This change,from music players as a single-user jukebox application to a tool for music sharing,brings with it the potential for further study,particularly with regards to the divergence of meta-data used to describe the tracks within each player.The following example highlights this problem:Bob and Alice have streaming access to each other’s music collection.Bob loves“Indie”music,and searches for this in Alice’s collection.Disappointingly,no matching tracks are found as Alice has not defined the genre“Indie”,despite having a number of tracks that Bob would commonly classify as”Indie”.There is a clear semantic difference in the way Bob and Alice define their music collections;whilst this is a standard feature of personal music collections,overcoming these differences automatically would undoubtedly enhance the users music sharing experience.The paper is organised as follows:Section2describes the automatic ontology mapping mechanism;Section3discusses a prototype implementation in a peer-to-peer wireless music sharing environment;Section4presents related work,with conclusions and directions for future work presented in Section5.2Automatic Ontology Mapping MechanismSeamless collaboration at the application level is difficult.It is unlikely that dis-covered services and applications will adhere to a common language or naming structure.It is likely that different devices and applications will originate from different vendors who use different semantic descriptions.Alternatively,seman-tics are user-defined and thus subject to great variation[18].Ontologies are used to solve the semantic difference problem between applica-tion and application content.Ontologies capture knowledge of a given domain in a generic yet formal way,so that it can be reused and shared across applications and users.Ontologies are generally created via a man-made,time-consuming pro-cess where humans attempt to define all aspects of a system in a very explicit fashion.Frequently,different ontologies define very similar knowledge.Mapping between ontologies associates terms defined in one ontology with terms in an-other.Currently,such mappings are identified manually[15].This is extremely resource intensive,not always possible and susceptible to ontology change.Au-tomatic ontology mapping covers a large number offields from machine learning and formal theory to database schema and linguistics.Applications also range significantly,from academic prototypes to large scale industrial applications[5]. Most systems are fairly complex,resource intensive creations and,as such,are not deployable in resource-limited,ubiquitous computing environments[11,13].To confirm the need for ontology mapping in the music player context,we analysed the music collections of17users comprising64,704songs.There were a total of6,040artists and462distinct music genres in the libraries studied.The existence of462distinct genres indicates immediately that there are going to be vast ontological differences between the music of only17peers.Apple’s iTunes, for example,only contains approximately30different default genres,indicating that user-defined genres are very popular.The analysis also highlighted that approximately one third of all artists had more than one genre associated with them across the libraries.Table1shows six popular Artists from the libraries studied and the number of unique genres with which they were associated.This was apparent for all track meta-data,such as Track Size,Length,Album,Format and Artist.Table1.Genres Associated with ArtistsArtist Number of GenresUnique GenresMiles Davis3Alternative and Punk,Jazz,No GenreMozart3Classical,Classicism,ConcertoMarvin Gaye4Dance,Electronica,RandB,No GenreBob Dylan6Folk,Pop,Rock,Soundtrack,Various,No GenreThe Beatles7Alternative Rock,Dance,Electronica,PopRock,Rock and Pop,Rock and Roll,No GenreOasis8Alternative,Alternative and Punk,Alternative RockBrit Pop,Pop,Punk,Rock,No Genre2.1The Basic MechanismWe restrict our considerations to applications that manipulate data that conform to a common schema-i.e.the application expects to access a data collection that can be modelled as a relational table;each row of the table corresponds to one object(e.g.a musical track),and each column corresponds to a metadata attribute for that type of object(e.g.Genre,Artist);finally,one,additional column containing the value of the object is included in each row(e.g.the actual encoding of a musical track).Using the music player example,the collection of tracks used by a particular player can be represented as shown in Table2.Each user is associated with a“home”collection of objects;in the music sharing example,it is the collection associated with the users music player; difficulty can ensue when the application has access to one or more“foreign”Table2.An Example Home CollectionTitle Artist Composer Genre Album Size(mb)...V alueSon Jethro Tull Ian Anderson Rock Benefit 2.77mt000001.mp3 Black Hole Sun SoundGarden Chris Cornell Grunge Superunknown 5.02mt000002.mp3 Exsultate,jubilate Kiri Te Kanawa Mozart Classical14.11mt000003.mp3 Rusty Cage Johnny Cash Chris Cornell Country Unchained 1.31mt000004.mp3 Hush Tool Metal Opiate 1.30mt000005.mp3Sleeping The Band Country Rock Stage Fright 3.11mt000006.mp3Hello Evanescence Gothic Rock Fallen 3.48mt000007.mp3...collections in addition to the“home”collection.The user is most familiar with navigation through the“home”collection;in order to effectively access objects in the“foreign”collections,it is important to map the metadata values that describe the“foreign”objects into values that have meaning to the user.In general,the metadata attributes exhibit correlated values within a collec-tion-i.e.many objects with attribute i=value i also have attribute j=value j. The degree of correlation between attribute i and attribute j will depend upon: the attributes chosen,the nature of the collection,and the degree of consistency in value assignment when objects are added to the collection.For example,most artists are strongly correlated with a particular genre(e.g.all tracks produced by Pearl Jam are associated with the Grunge genre),while release dates are only weakly correlated with a particular genre(e.g.Grunge is correlated with release dates1990and beyond,but not before).Such correlations can be asymmetric due to the fact that some attributes have broader scope than others;the correla-tion strength is a measure of the predictive power of one value over the value of the other(e.g.Pearl Jam strongly predicts Grunge,but Grunge predicts Pearl Jam,Soundgarden,Alice in Chains,etc.).Consider a collection of N objects,and each object has M metadata at-tributes associated with it.Let us focus upon two attributes,i and j.In a par-ticular collection,Attr i takes on values v i1...v in;similarly,Attr j takes on values v j1...v jn.We can then analyze all of the tracks in the collection to yield the following matrix(Table3):Table3.Pairwise Classification of Objects in a CollectionAttr i/Attr j V j1V j2...V jnV i1C11C12C1n...V im C m1C m2C mnwhere C k1is the number of objects in the collection that have Attr i=V ik and Attr j=V jl.It is informative to consider two limiting cases:1.Attr i is strongly correlated with Attr j:in this case,if there are N ik objectswith Attr i=V ik,then most of those objects will have Attr j=V jl for some l;note that by definition,N ik>0.2.Attr i is not correlated with Attr j:in this case,the N jk objects with Attr i=V i,k are distributed over many different values for Attr j.We can sum over the pairwise matrix in Table3to determine the predictive power of Attr i for Attr j as well as the predictive power of Attr j for Attr i.One such formulation is as follows:predictive power i,j=mk=1max l{c kl}nl=1c kl(1)Obviously,the predictive power j,i simply requires that we swap k for l and m for n in Equation(1).Performing this analysis for all pairs of attributes yields a correlation matrix of the form shown in Table4.The value in the i,j th cell indicates how strongly correlated values of Attr i are to values of Attr j;obviously, the diagonal elements have a value of1.Armed with this correlation information for the home collection,we now describe a protocol that uses this mechanism to dynamically map objects from a foreign collection into the home object ontology.Table4.Predictive PowerAttr1Attr2Attr3...Attr MAttr1 1.0000.3570.7710.467Attr20.953 1.0000.8490.121... 1.000Attr M0.1250.2940.186 1.0002.2The Mapping ProtocolThe general protocol is as follows:if one is interested in objects in the foreign collection with Attr i=V alue i,and none exist,then one searches the i th column of Table4from the home collection for the Attr j with the largest correlation value(excluding row i).One can then query for objects corresponding to known V alue j’s,and discover the V alue i’s that the foreign collection associates with those objects.One can then import objects with those particular V alue i’s,re-placing the actual V alue i with the value used by the home collection.Assume that two peers are sitting on a train,each with a personal music player in the form of a PDA hosting a music streaming service;the two players have discovered each other,and the policies in the two players permit streaming of tracks from one player to the other.Once the players have bound together, the music services on each player can enter into the ontology mapping protocol. Bob’s music service remotely performs a genre search on Alice’s system for each value of the genre meta-data attribute defined for Bob’s system;for example, suppose that one value of the genre attribute is“Grunge”.Unfortunately Alice does not have any music defined as“Grunge”,so the initial query returns anegative.The ontology mapping mechanism in Bob’s music player selects a meta-data attribute strongly correlated with Genre,namely Artist,and queries Alice’s player with a list of Artists associated with the genre“Grunge”.Alice’s music service then searches for those Artists in her collection,and returns the most-prevalent genre value,if any,associated with each artist in her collection.The protocol has established a Bob-specific mapping from his genre values to those used by Alice.Bob’s music service can now represent tracks in Alice’s system using Bob-specific genre values.Besides enabling comfortable navigation over the other individual’s collection and subsequent streaming,the mapping information can also be retained for future sharing with each other,or possibly to inform future negotiations with other peers.The current protocol maps Bob’s genre value to multiple genre values in Alice’s collection.Another approach would be to only solicit the Alice genre value for the artist in Bob’s collection with the largest number of tracks with that particular value,or the largest percentage of tracks with that particular value.The current approach maximises the number of tracks mapped to facilitate human navigation;more study is needed to determine if other approaches yield more usable results.Table5.Predictive Power of Music TracksGenre Artist Name Album Y ear BitRate KindGenre10.5790.250.570.4750.6460.885Artist0.81810.6230.8610.8550.8650.921Name0.9080.94610.9120.9050.9390.941Album0.8570.8930.27510.7930.8880.964Y ear0.2830.2590.1390.25610.3760.462BitRate0.2380.1880.1870.2340.18410.939Kind0.180.130.0390.0350.0640.2991The mapping factor(attribute strongly linked to“Genre”in the preceding example)is determined through analysis of music collections.The application of Equation(1)to the meta-data from17unique iTunes music libraries yielded Table5.The mapping factors for music collections indicate,for example,that there is a close relationship between Artist and Genre(0.818).In other words,if the Genre is not known then Artist is a good aspect of meta-data to map from, as is,Name and Album.Kind and Year,however,would not be suitable search attributes.Even though our discussion is dominated by music sharing examples,other types of data collections are accessed in this way;for example,the collection of books maintained by a library.Initial results from a study of the meta-data for multiple book libraries also shows similar disparities across Subject Headings. 3Experimental ValidationThe Self-Managed Cell architecture running a music sharing service has been implemented as a test platform for our automatic ontology mapping technique.The music sharing service utilises core SMC services such as the discovery and policy service.The SMC has been built to run on a PDA(HP iPAQ hx4700,with a624MHz XScale PXA270processor and64MB RAM,running Familiar Linux0.8.4or Windows Mobile5.0).The SMC is written in Java,and uses JamVM1.4.3[8]in a bid to cut down on memory usage.The policy service used is Ponder2written in Java1.4.The music player,built to run as a service on an SMC,is also written in Java1.4.The player enables a user to search the music collection of other discovered music players and stream music found from their search via wifito their music player.It uses the DAAP[2]which performs as an HTTP server for advertising and streaming requested songs to clients.At present the music player has been successfully tested and functions successfully under J2SE.Currently attempts are being made to run the player on a PDA under Windows Mobile 5.0using the Mysaifu JVM[14].The music player is approximately4Mb in size and has a memory footprint of around15-30mb depending on activity status i.e.idle,playing,streaming etc.The music service relies upon the mechanism documented in[17]for establishing the initial peer-to-peer binding between a pair of music players running as services on SMCs.The ontology mapping mechanism,as used to enhance collaboration between peer music libraries,has been fully tested and evaluated.Analysis of collabora-tions using the17peers documented in Section2revealed significant use of the mapping system,with song returns frequently running into the hundreds where initial collaboration had revealed few or no artists.Genre-to-Artist mapping re-sults from a peer-to-peer collaboration are shown in Table6.Only genre searches where no song results were initially returned are shown.Table6.Genre-Artist MappingPeer1Peer2Returns after MappingGenre Request Genres Artists SongsBlues23373594Classic Rock22822352Electronica1115587Folk22822352Rock/Pop23373594Soul111109Top401404674Related WorkAutomatic Ontology mapping has seen a surge of research interest in recent years.Formal ontology mapping approaches have modelled ontologies using graphs,logic and models with mappings being developed from viewing graph, logic and model convergence[11,13].Current software systems that automati-cally generate ontology mappings are ONION[13],MAFRA[4]and IFF[16]. ONION generates mappings using graph transformations.MAFRA combinesdifferent similarity measures,both lexical and structural,to establish the map-pings.IFF is based on convergence between logical theories[5].Such ontology mapping mechanisms are unlikely to be suitable for use in our ubiquitous environment.They have primarily been designed to provide auto-mated administrative assistance when mapping well defined but conflicting on-tologies in traditional conflicting environments.They require considerable user input and tend to focus on the use of a bridging ontology,a resource unlikely to be available in the ubiquitous world.Furthermore,the mapping mechanisms would likely struggle in the undefined and uncontrolled ubiquitous world.Most mechanisms are also not suitably lightweight so as to be deployable on resource limited devices.Online music based Information Retrieval mechanisms are also gaining st.fm[9],for example,leverages each user’s musical profile to make personalised recommendations and connect users who share similar tastes.The downside of such mechanisms is the need for a common software plug-in and a network connection.5Conclusions and Future WorkA novel automated ontology mapping mechanism has been described that sup-ports application-level integration within ubiquitous systems.The mechanism facilitates the successful collaboration of data collections by using meta-data contained within the collections to identify areas of commonality between them. The commonality identified is then used to automatically generate a common ontology and map between the areas of conflict.By using the meta-data informa-tion stored within music tracks,for example,we were able to successfully share music between peers despite there being no outwardly visible signs or common-ality for collaboration.The techniques establish the beginnings of a common ontology and enabled a reference regarding the mapping to be held for future sharing.The system is suitably lightweight and resource efficient that it is capa-ble of running in constrained environments such as PDAs and mobile telephones using our Self-Managed Cell architecture.The current prototype uses exact string match during the mapping protocol. Given the anarchy that exists within some distributed collections we will inves-tigate similarity matches between attribute values in an attempt to understand if this provides improved matching results.Likewise,future work will investigate enhancements to the quality of the mapping mechanism,particularly in relation to ranking results based on the probability a user will like them and will define how the mapping factors are regenerated over time.6AcknowledgementsThe authors wish to thank the UK Engineering and Physical Sciences Research Council for their support through grants GR/S68040/01,GR/S68033/01and GR/N15986/01.References1.Apple.ipod and itunes./itunes,2007.2. C.Boot.Digital audio access protocol.http://daap.source /,2007.3.N.Dulay,S.Heeps,E.Lupu,R.Mathur,O.Sharma,M.Sloman,and J.Sventek.Amuse:Autonomic management of ubiquitous e-health systems.In Proceedings of the UK e-Science Al l Hands Meeting,UK,2005.4.Y.Kalfoglou and M.Schorlemmer.IF-map:an ontology mapping method based oninformationflow theory.Journal on Data Semantics,pages98127,2003.5.Y.Kalfoglou and M.Schorlemmer.Ontology mapping:the state of the art.TheKnowledge Engineering Review,18(1):131,2003.6.S.L.Keoh,K.Twidle,N.Pryce,A.E.Schaeffer-Filho,E.Lupu,N.Dulay,M.Sloman,S.Heeps,S.Strowes,J.Sventek,and E.Katsiri.Forthcomming:Policy-based management for body-sensor networks.In4th International Work-shop on Wearable and Implantable Body Sensor Networks,2007.7.L.C.Y.Kong,C.L.Wang,and u.Ontology mapping in per-vasivecomputing environment.In International Conference on Embedded and Ubiquitous Computing,pages10141023,2004.8.R.Lougher.Jamvm./,2007.st.fm.st.fm,2007.10. E.Lupu,N.Dulay,M.Sloman,J.Sventek,S.Heeps,S.Strowes,K.Twidle,L.Keoh,and A.E.SchaefferFilho.Amuse:autonomic management of ubiquitous sys-tems for e-health.Special Issues of the Journal of Concurrency and Computation: Practice and Experience,2006.11. A.Maedche,B.Motik,N.Silva,and R.Volz.A mapping framework for dis-trib-uted ontologies.In13th International Conference on Knowledge Engineering and Knowledge Management,2002.12.Microsoft.Zune.,2007.13.P.Mitra,G.Wiederhold,and M.Kersten.A graph-oriented model for ar-ticula-tion of ontology interdependencies.In7th International Conference on Extending Database Technology,2000.14.Mysaifu.Mysaifu.http://sourceforge.jp/projects/mysaifuj vm/,2007.15.N.F.Nay and M.A.Musen.Prompt:Algorithm and tool for automated ontologymerging and alignment.In AAAI,2000.16.M.Romn,C.Hess,R.Cerqueira,A.Ranganathan,R.Campbell,and K.Nahrst-edt.Gaia:a middleware infrastructure to enable active spaces.IEEE Pervasive Com-puting,pages7483,2002.17. A.Schaeffer-Filho,E.Lupu,N.Dulay,S.Keoh,K.Twidle,M.Sloman,S.Heeps,S.Strowes,and J.Sventek.Supporting interactions between self-managed cells.Sub-mitted to International Conference on Self-Adaptive and Self-Organizing Systems, 2007.18.S.Heeps,N.Dulay, E.Lupu, A. E.Schaeffer-Filho,M.Sloman,S.Strowes,andJ.Sventek.The autonomic management of ubiquitous systems meets the seman-tic web.In The Second International Workshop on Semantic Web Technology For Ubiquitous and Mobile Applications,2006.19.S.Strowes,N.Badr,N.Dulay,S.Heeps,E.Lupu,M.Sloman,and J.Sventek.Anevent service supporting autonomic management of ubiquitous systems for e-health.In5th International Workshop on Distributed Event-Based Systems,2006.20.J.Sventek,N.Badr,N.Dulay,S.Heeps,E.Lupu,and M.Sloman.Self-managedcells and their federation.In CAiSE Workshops,volume2,pages97107,2005.。