五年级奥数—环形路上的行程问题
五年级奥数行程环形跑道教师版

五年级奥数行程环形跑道教师版The document was prepared on January 2, 2021本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端同向:路程差 nS nS +相对(反向):路程和nS【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】☆☆【题型】解答例题精讲知识框架环形跑道【解析】黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
五年级下册奥数行程问题

两车第二次相遇时,它们共行了三倍全程。 两车第二次相遇时,它们共行了三倍全程。 小明每分钟走100米,小红每分钟走80米,两人同时同地向相反方向走去。 李比赵也早出发2小时,先走了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是中午12点。 答:从出发时开始到返回再次相遇共花了10小时 从出发时开始到返回再次相遇一共花 了多少小时?
在行程问题中,有时要讨论两个或几个运动物体行进的关系。 答:从出发时开始到返回再次相遇共花了10小时 两车第二次相遇时,它们共行了三倍全程。
小明转向追小红,当小明追上小红时,两 5分钟后小明转向追小红,当小明追上小红时,两人各走了多少米?
小明和小红分别行的时间: 45+5=50 (分钟) 答:至少经过10分钟两人才能相遇。
李比赵也早出发2小时,先走了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是中午12点。 小明跑的圈数: 5-1 =4 (圈) 两人同时同地同向出发,至少要经过几分钟两人才能相遇?相遇时各跑了几圈?
果同时到达一个地点,就是相遇; 从出发时开始到返回再次相遇一共花 了多少小时?
甲、乙二人练习跑步,若甲让乙先跑14米,则 甲跑7秒钟可追上乙;若甲让乙先跑4秒钟,则 甲跑8秒钟就能追上乙。甲、乙二人的速度各 0小时 小明跑的圈数: 5-1 =4 (圈)
五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C 从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52 千米/时和40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
五年级奥数环形行程问题

典型例题1甲、乙两人同时从同一地点出发,同向绕一环形跑道赛跑,甲每秒跑4米,乙每秒跑6米,过了4分钟,乙追上了甲,问跑道一周长多少米?举一反三11、小玲和小兰绕一环形跑道赛跑,她们同时同地同向起跑,小玲每分钟跑80米,小兰每分钟跑50米,过了20分钟小玲追上了小兰,问跑道一周的长是多少米?2、王叔叔和李叔叔同时从运动场的同一地点出发,同向绕运动场跑道赛跑,王叔叔每分钟跑300米,李叔叔每分钟跑280米,过了20分钟,王叔叔追上了李叔叔,问跑道一周长多少米?3、两名运动员同时同地出发,同向绕周长为1000米的环形广场竞走,已知第一位运动员每分钟走125米,第二位运动员的速度是第一位运动员的2倍。
第二位运动员追上第一位运动员需要多少分钟?典型例题2兄妹二人在周长60米的圆形水池边玩,从同一地点同时背向绕水池行走,兄每秒走1.3米,妹每秒走1.2米。
他们第10次相遇时需要多长时间?举一反三21、姐弟二人在周长420米的圆形花圃边玩,从同一地点同时背向绕水池行走,姐姐每分钟走60米,弟弟每分钟走40米。
他们第五次相遇时需要多长时间?2、小红和小玲绕一环形跑道骑自行车。
她们从同一地点背向绕水池行进。
小红每分钟行200米,小玲每分钟行160米。
已知环形跑道一周的长为1080米。
他们第8次相遇小红走了多少米?3、甲、乙二人绕圆形场地跑步。
场地一周的长是300米,他们从同一地点出发背向而行。
甲每分钟行80米,乙每分钟行70米,他们第6次相遇时甲比乙一共多走多少米?典型例题3一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步。
甲每分钟跑250,乙每分钟跑200米,现在甲在以后面50米,甲第二次追上乙需要多少分钟?举一反三31、甲、乙二人绕一环形跑道顺时针跑步,圆形跑道的长是600米,甲每分钟跑300米,乙每分钟跑280米,现在甲在乙后面40米,甲第二次追上乙需要多少分钟?2、绕湖一周的长是500米,小许和小张顺时针绕湖竞走。
高斯小学奥数五年级上册含答案_环形路线

第四讲环形路线为什么会出现最后一名超过第一名的现象呢?同学们可能已经想清楚了,这是因为跑道是一个圆.今天我们就来学习一下环形路线问题.顾名思义,环形路线的运动路径是一个封闭的曲线,这就意味着从一个点出发,跑完一圈之后会回到出发点,这是完全不同于直线运动的.同样的,环形中的相遇问题与直线形问题也是略有不同的.如图所示,从一个点出发,背向而行的两人,会在圆周上的一点相遇.这时他们走过的路程和为一个圆周.而如果他们从同一个点出发同向而行,慢的那个人会在圆周上的一点被快的那人追上.这时他们走过的路程之差是一个圆周.这里要特别说明,在圆周上两点之间的距离是这样定义:两点间较短一段圆弧的长度.如右图,AB 两点间的距离就是AB 间粗实线的长度.起点路程和是跑道的周长 相遇时间=周长 ÷(甲速+乙速)相向而行起点路程差是跑道的周长追及时间=周长 ÷(乙速-甲速) A从例题1可以看出,两只小猫从出发到第一次相遇需要25秒.第一次相遇时两只小猫在一起,继续出发的话,到下一次相遇仍然需要25秒.由此可见,环形路线上的相遇问题也具有周期性.同样的,环形路线上的追及问题也具有周期性.若甲、乙两人同地同向出发,甲快乙慢,那么甲第一次追上乙时,恰好比乙多跑一整圈;从此刻开始,甲想要再次追上乙,就必须再多跑一整圈.如此反复不断地追下去,甲每次追上乙都恰好要多跑一整圈,所以每次追及的路程差是一样的.如果两人的速度差保持不变,那每次追上的时间也就相同了.在环形路线问题中,善用周期性会使一些问题变得简单,特别是一些多次相遇和多次追及的问题.如果不是同地出发,这样的环形路线问题还具有周期性吗?总的来说,环形上的行程问题比直线上的情况变化更多,更繁琐.在运动过程较复杂的题目中,我们必须认真画图,仔细分析每一段运动过程.练习4. 如图,有一个环形跑道,甲、乙二人分别从A 、B 两地出发相向而行,第一次相遇在距离A 点100米处的C 点,第二次相遇在距离B 点200米处的D 点.已知AB 长是跑道总长的四分之一,请问跑道周长为多少米?例题5. 小鹿和小山羊在某个环形跑道上练习跑步,小鹿比小山羊稍快.如果从同一起点出发背向而行,1小时后正好第5次相遇;如果从同一起点出发同向而行,那么经过1小时才第一次追上.请问,小鹿和小山羊跑一圈各需要多长时间?【分析】题目中并没有告诉环形跑道的周长是多少.想一想,跑道的周长是一个确定的数吗?如果不是,如果周长的取值不同,对于结果有没有影响?【分析】阿呆第一次看见阿瓜的时候,一定是刚到达某个墙角的时候.应该是哪个墙角呢?如图,一个正方形房屋的边长为12米.阿呆、阿瓜两人分别从房屋的两个墙角出发,阿呆每秒钟行5米,阿瓜每秒钟行3米.问:阿呆第一次看见阿瓜时,阿瓜距离出发点多少米?B DC A华罗庚爷爷的故事温室里难开出鲜艳芬芳耐寒傲雪的花儿。
五年级奥数之《环形道路上的行程问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快

五年级奥数
环形道路上的行程问题
在环形道路上的行程问题,本质上讲就是追及问题或相遇问题。
当两人(或物)同向运动时就是追及问题,追及距离就是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇距离是两人从出发到相遇所行路程和。
例1:
如图,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同向同地出发,45分钟后甲追上了乙.如果两人同时同地反向而跑,经过多少分钟后两人相遇?
例2:
如图,是一个圆形的中央花园,A、B是直径的两端.小军在A点,小勇在B点,同时出发相向而行.他俩第1次在C点相遇,C点离A点有50米;第2次在D点相遇,D点离B点有30米.这个花园一周长多少米?
随堂练习1
1、甲、乙两名运动员在周长400米的环形跑道上同向竞走.已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.几分钟后,甲第一次追上乙?
2、如图,A、B是圆直径的两端点,亮亮在点A,明明在点B,相向而行.他们在C点第一次相。
五年级奥数-环形道路上的行程问题

第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。
五年级奥数上第4讲环形路线

练习四: 有一个环形跑道,甲、乙两人分别从A、B两地出发,相向而行,乙的速度快于甲,第一次相遇在距离A点 次相遇在距离B点200米处的地点,已知A、B长是跑道总长的四分之一,请问跑道周长为多少米?
B
挑战极限
例题五: 小鹿和小山羊在某个环形跑道上练习跑步项目,小鹿比小山羊稍快,如果从同一起点出发背向而行,1小 如果从同一起点出发,同向而行,那么经过1小时才第1次追上,请问小鹿和小山羊跑一圈各需要多长时间 【分析】题目中并没有告诉环形跑道的周长是多少,想一想跑道的周长是一个确定的数吗?如果不是,那 对于结果有没有影响?
例题四: 如图甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形路线运动。当乙走了1 相遇,在甲走完一周前60米处第二次相遇,求此圆形场地的周长? 【分析】题目中的已知条件很少,知道两个与路程有关的量,我们很难直接计算周长,先画图分析一下运 出的示意图,题目给出的100米和60米是图中的哪一段?如何利用这两段长度?
练习三: 周长为400米的圆形跑道上有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,速度分别 多少秒后两人第一次相遇,如果相遇后,两人的速度保持不变,再过多少秒两人第10次相遇?
总的来说,环形上的行程问题比直线上的情况变 化更多更繁琐,在运动过程较复杂的题目中,我们必须 认真画图,仔细分析每一段运动过程。
练习二: 一环形跑道,周长为400米,甲、乙两名运动员,同时顺时针自起点出发,甲每分钟跑300米,乙每分钟跑 乙时距离起点多少米?
如果不是同地出发,环形路线问题还具有周期性 吗?
例题三: 甲、乙两人在400米长的环形跑道上跑步,甲以每分钟300米的速度从起点跑出,一分钟后,乙以每分钟2 跑出,请问甲出发后多少分钟第一次追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才 【分析】从乙出发到甲第一次追上乙。与从甲第一次追上乙到第二次追上乙间隔的时间一样吗?从第几次 性了?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.在 300 米的环形跑道上,甲,乙两从同时从起跑线出发反向而跑,甲每秒跑 4 米,乙每 秒跑 6 米,当他们第一次相遇在起跑点时,他们已在途中想遇多少次?
3
12.甲,乙两人绕周长为 1000 米的环形广场竞走,已知甲分钟走 125 米,乙的速度是甲的 2 倍。现在甲在乙的后面 250 米,乙追上甲需要多少分钟?
13.小红和小月两人骑车从同一地点出发,沿着长 4000 米环行湖堤行驶。如果小红,小月 同向行驶,小红每隔 20 分钟追上小月,如果反向行驶,两人经过 4 分钟相遇。问:小红, 小月两人的速度各是多少?
4
5
2
4.在一个长 800 米的环行湖边上,小明,小张两人同时从同一点出发,反向跑步,5 分钟两 人第一次相遇,小明每分钟跑 100 米,张静每分钟跑多少米?如果两人同时从同一点出发, 同向跑步,多少分钟后小明能追上张静?
5.有一条长 400 米的环形跑道,甲乙二人同时同地出发,反向而行,1 分钟后第一次相遇, 若二人同时同地出发,同向而行,则 10 钟后第一次相遇,若甲比乙快,那第甲乙二人的速 度分别是多少米?
19.小明在 330 米长的环形跑道上跑了一圈,已知他前一半的时间每秒跑 6 米,后一半的时 间每秒跑 5 米,那么后一半路程小明跑了( )秒
20.甲乙两人分别从圆的直径两端同时出发,沿圆周行进。若逆向行行走则 50 秒相遇,若 同向行走则甲追上乙需 300 秒。甲的速度是乙的速度的多少倍?(把圆的半周长看作 300 个单位)
五年级奥数——环形路上的行程问题 1、环形运动问题:
环形周长=(大速度+小速度)×相遇的时间 环形周长=(大速度-小速度)×相遇的时间 环形运动的追及问题和相遇问题:同时同向起点动,第一次相遇,速度快的比速度慢的 多跑一圈。在环形跑道上同时同向,速度快的在前,慢的在后。 不是封闭的跑道追及问题,速度慢的在前,快的在后。
8.小张和小王各以一定速度,在周长为 500 米的环形跑道上跑步.小王的速度是 180 米/分。 ①小张和小王同时从同一地点出发,反向跑步,75 秒后两人第一次相遇,小张的速度是多 少米/分②小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上 小王?
9.甲村、乙村相距 6 千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走 (到达另一村后就马上返回)。在出发后 40 分钟两人第一次相遇。小王到达甲村后返回, 在离甲村 2 千米的地方两人第二次相遇。问小张和小王的速度各是多少?
21. 甲,乙两人在 400 米环形跑道上,都从 O 点同时向相反方向跑去,甲每分钟 200 米, 乙每分钟 300 米,甲跑到 A 点后立即回到 o 点,然后又跑到 A 点,这时刚好用了 1 分钟, 问这时两人能否相遇?
22.甲乙两人在一个周长为 160 米正方形水塘边散步,甲在 B 点,乙在 D 点,两人沿着顺时 针方向行走,甲每分钟走 50 米,乙每分钟走 40 米,请你算一算甲在哪里第一次追上乙?
例题 1.在 400 米的环形跑道上,A、B 两点相距 100 米,。甲、乙两人分别从 A、B 两点同时 出发,按照逆时针方向跑步,甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停 10 秒钟。那么,甲追上乙需要的时间是多少秒? 答案:假设没有休息 那么 100/(5—4)=100 秒钟 在 100/5=20 秒 100/20-1=4(次) 100+4*10=140 秒
4.小君在 360 米长的环形跑道上跑一圈。已知他前一半时间每秒跑 5 米,后一半时间 每秒跑 4 米。那么小君后一半路程用了多少秒? 答案:设时间 X 秒 5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160 米 后一半路程 =360/2=180 米 后一半路程用每秒跑 5 米路程=180-160=20 米 后一半路程用每秒跑 5 米时间 =20/5=4 秒 后一半路程时间=4+40=44 秒 答:后一半路程用了 44 秒
5.小明在 420 米长的环形跑道上跑了一圈,已知他前一半时间每秒跑 8 米,后一半时 间每秒跑 6 米.求他后一半路程用了多少时间? 答案:设总用时 X 秒。前一半时间和后一半时间都是 X/2。然后前一半跑 8*(X/2)米,后一半 跑 6*(X/2)米,总共加起来等于 420 米。所以列下方程 8*(X/2)+6*(X/2)=420.解得 X=60。所以 后一半跑了 30 秒。又因为后一半为 6M/S,所以后一半跑了 6*30=180M。
2.小明在 360 米的环形跑道上跑一圈,已知他前半时间每秒跑 5 米,后半时间每秒跑 4 米,为他后半路程用了多少时间?
答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44 分
3.林琳在 450 吗长的环形跑道上跑一圈,已知她前一半时间每秒跑 5 米,后一半时间 每秒跑 4 米,那么她的后一半路程跑了多少秒
时击掌 一次,然后 2 人共一圈击掌 1 次 耗时 (4+2/7)/(1/4+1/7)=30/7*(11/28)=165/98; 甲共总走了 40+165/98 H 已走了 (40+165/98)*(400/7) M
练习 1.两名运动员在沿湖的环形跑道上练习长跑,甲分钟跑 250 米,乙每分钟跑 200 米,两人 人同时同地同向出发,45 分钟后甲追上了乙,如果两人同时同地反向而跑,经过多少钟后 两人相遇?
23.在一个周长为 400 米的环形跑道上,小鸣和小青两名运动员同时从同一地点背向而行, 小鸣每分钟走 48 米,小青每分钟走 52 米,他们第六次相遇时离出发点有多少米?
24.甲,乙两人匀速绕圆形跑道按相反方向跑步,出发点在直径的两个端点,如果他们同时 出发,并在乙跑完 100 米时第一次相遇,甲跑一圈还差 60 米时第二次相遇,那么跑道长是 多少米?
2.甲,乙两运动员在周长为 400 米的环形跑道上同向竞走,已知乙的平均速度是每分钟 80 米,甲的平均速度是乙的 1.25 倍,甲在乙前面 100 米处,问几分钟后,甲第 1 次追上乙?
3. 如图,A、B 是圆的直径的两端,小军在 A 点,小勇在 B 点,同时出发相向而行,他俩 第 1 次在 C 点相遇,C 离 A 点 50 米;第 2 次在 D 点相遇,D 点离 B 点 3O 米.求这个圆的周 长是多少米?
答案:设总时间为 X,则前一半的时间为 X/2,后一半时间同样为 X/2 X/2*5+X/2*4=360 X=80 总共跑了 80 秒 前 40 秒每秒跑 5 米,40 秒后跑了 200 米 后 40 秒每秒跑 4 米,40 秒后跑了 160 米 后一半的路程为 360/2=180 米 后一半的路程用的时间为(200-180)/5+40=44 秒
6.二人沿一周长 400 米的环形跑道均速前进,甲行一圈 4 分钟,乙行一圈 7 分钟,他 们同时同地同向出发,甲走 10 圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
1
问第十五次击掌时,甲走多长时间乙走多少路程? 答案:前 10 圈甲跑一圈击掌一次,即 10 下 此时已跑了 5+5/7 圈;后面 2 人跑了 2/7
10.甲和乙在环湖路上晨跑,环湖路一周是 1800 米,甲分钟跑 160 米,乙分钟跑的路程是 甲的 1.25 倍,如果两人同时同地同向出发,需要多少分钟两人第一次相遇?如果两人同时 同地反向出发,需要多少分钟两人第一次相遇?
11.甲,乙两名自行车运动员在周长为 6000 米的湖边道路上进行训练,甲每分钟行 400 米, 如果两人同时同地反向而行,6 分钟相遇,问乙的速度是每分钟多少米?