第4讲环形行程问题1

合集下载

行程专题(学而思)第1-4讲

行程专题(学而思)第1-4讲

学习目标本讲主要通过例题加深对行程问题的三个基本数量关系的理解。

在历年小升初与各类小学竞赛试卷中,行程问题的试题占的比值是相当大的,所以学好行程问题不但对于应对小升初考试和各类数学竞赛有着举足轻重的关键性作用,而且也为初中阶段的学习打下良好的基础。

我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题. 行程问题主要涉及时间 (t)、速度 (v)和路程 (.s)这三个基本量,它们之间的关系如下:路程 = 速度×时间 可简记为:s vt =速度 = 路程÷时间 可简记为:/v s t =时间 = 路程÷速度 可简记为:/t s v =路程一定,速度与时间成反比速度一定,路程与时间成正比时间一定,路程与速度成正比显然,知道其中的两个量就可以求出第三个量.【例 1】 一段路程分为上坡、平路、下坡三段,各段路程的长度之比是 1:2:3,某人走这三段路所用的时间之比是 4:5:6,已知他上坡时每小时行2.5千米,路程全长为 20千米,此人走完全程需多少时间?【例2】甲、乙两地相距60千米,自行车队8点整从甲地出发到乙地去,前一半时间每分钟行1千米,后一半时间每分钟行0.8千米。

自行车队到达乙地的时间是几点几分几秒?【例3】某人上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟,已知下山的速度是上山速度的1.5倍,如果上山用了3 时50分钟,那么下山用多少时间?【例4】汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地,求该车的平均速度。

【例5】甲、乙两车往返于A、B两地之间,甲车去时的速度为60千米/时,返回时的速度为40千米/时,乙车往返的速度都是50千米/时,求甲、乙两车往返一次所用的时间比.【例6】从甲地到乙地全部是山路,其中上山路程是下山路程的23,一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时,这辆汽车从乙地返回甲地需要多少时间?【例7】一辆车从甲地行往乙地,如果把车速提高20%,那么可以比原定时间提前1 小时到达;如果以原速度行驶100千米后再将车速提高30%,那么也比原定时间提前 1 小时到达,求甲、乙两地的距离。

行程应用题举一反三:第4讲 环形行程问题1

行程应用题举一反三:第4讲 环形行程问题1
3、如图:A、B是半圆的直径的断点,林林和丽丽分别从A、B两点出发沿圆弧路线相向行走,第一次相遇在离A点80米的C点处,相遇后各自以原速前进,各自到达对方出发点后都立即返回,结果又在离A点60米处的D点相遇,求圆弧A、B路线的长。
典型例题9
在400米的环形跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒,那么甲追上乙需要多少秒?
3、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。现在甲在乙的后面250米,乙追上甲需要多少分钟?
典型例题4
甲、乙两人同时从A点背向出发沿400米的环形跑道行走,甲每分钟走80米,乙每分钟走50米,这两人最少用多少分钟在A点相遇?
举一反三4
1、甲、乙两人同时从同一出发点出发,绕周长为990米的圆形跑道跑步,甲每分钟跑90米,乙每分钟跑110米,这两人最少用多少分钟在原来的出发点相遇?
典型例题15
甲、乙两只蚂蚁同时从A点出发,沿长方形的边爬去,结果在距B点2厘米的C点相遇,已知乙蚂蚁的速度是甲的1.2倍,求这个长方形的周长。
举一反三15
1、两只小虫同时从A点出发,沿长方形的边爬去,结果在距B点4厘米的C点相遇,已知甲虫的速度是乙虫的1.1倍,求这个长方形的周长。
2、甲、乙两人沿一长方形水池周围行走,他们同时从A点出发,相背而行,结果在距B点5米的C点相遇,已知甲的行走速度是乙的,求这个长方形的周长。
3、两名运动员同时同地出发,同向绕周长为1000米的环形广场竞走,已知第一位运动员每分钟走125米,第二位运动员的速度是第一位运动员的2倍。第二位运动员追上第一位运动员需要多少分钟?

第四讲 行程问题(一)

第四讲  行程问题(一)

对方出发点后立即返回,又在距离 A 地 40 千米处第二次相遇。A、B 两地相距多少千米?
3 例 9. 甲、乙两车同时从 A、B 两地同时出发相向而行,速度比是 5:3.甲车行了全程的7 后又行了 66 千米,正好与乙车相遇。A、B 两地相距多少千米?
例 10. 一辆速度为 72 千米/小时的汽车,向正前方一个回音壁驶去。鸣笛后 4.5 秒才 听到回声。已知声音在空气中传播的速度为 340 米/秒。听到回声时汽车离回音壁还有多 远?
例 4. 一辆汽车从 A 地到 B 地,如果把车速减少 10%,那么要比原定时间迟 1 小时到 达,如果以原速行驶 180 千米后,再把车速提高 20%,那么可比原定时间提早 1 小时 到达。AB 两地相距多少千米?
相遇问题:
-22014 年 第四讲
解题方法使新招
峨眉名师新方法学校
2014 年
名师让你上名校
- 12 2014 年 第四讲
解题方法使新招
峨眉名师新方法学校
2014 年
名师让你上名校
教育专线:0833——5524343
8. 甲、乙两车同时从 A、B 两地相向开出,甲车每小时行 50 千米,乙车每小时比甲车 少行 20%,两车相遇后,甲车继续行驶了 3.2 小时就到达了 B 地。A、B 两地相距多少 千米?
2014 年
名师让你上名校
教育专线:0833——5524343
13. 甲、乙两人分别从 A、B 两地同时出发,相向而行。出发时,甲、乙的速度比是 3:2. 第一次相遇后甲的速度提高 20%,乙的速度提高 30%。这样,当甲到达 B 地时,乙离 A 地还有 16 千米。那么 A、B 两地相距多少千米?
5. 一辆汽车从甲地去乙地,若速度提高 20%,则可以提前一小时到达,若前 100 千米 按原速行驶,然后再把速度提高 30%,则仍可以提前 1 小时到达,甲乙两地相距多少千 - 11 -

六年级数学行程问题四种类型专讲完整版讲解

六年级数学行程问题四种类型专讲完整版讲解

六年级行程问题专讲第一部分:相遇问题知识概述:行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个以上物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题叫做相遇问题。

数量关系:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度注:(1)在处理相遇问题时,一定要注意公式的使用时二者开始运动那一刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

解题秘诀:(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

典型例题:例1.东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。

已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?习题:一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,相向而行,汽车每小时行50千米,摩托车每小时行40千米,8小时两车相距多少千米?例2.甲港和乙港相距662千米,上午9点一艘“名士”号快艇从甲港开往乙港,中午12点另一艘“日立”号快艇从乙港开往甲港,到16点两艇相遇,“名士”号每小时行54千米,“日立”号的速度比“名士”号快多少千米?习题:甲乙两地的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。

货车以平均每小时50千米的速度从乙地开往甲地。

要使两车在全程的中点相遇,货车必须在上午几点出发?例3.甲骑摩托车,乙骑自行车,同时从相距126千米的A 、B 两城出发相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

五年级奥数专题第四讲 火车行程问题

五年级奥数专题第四讲 火车行程问题

五年级奥数专题第四讲火车行程问题【一】一列火车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?练习1、一列火车长200米,每秒行20米,这列火车通过400米长的大桥,需要多少时间?2、一列火车车长360米,每秒行15米,全车通过一个山洞需40秒。

这个山洞长多少米?【二】一列火车通过一座长456米的桥需要80秒,用同样的速度通过一条长399米的隧道要77秒。

求这列火车的速度。

练习1、一列火车通过一座长446米的桥需要57秒,用同样的速度通过一条长1654米隧道要208秒。

求这列火车的速度。

2、一列火车以同一速度通过两座大桥,第一座桥长360米,用了24秒,第二座桥长480米,用了28秒,这列火车长多少米?【三】甲火车长210米,每秒行18米,乙火车长140米,每秒行13米。

乙火车在前,两火车在双轨车道上行驶。

求甲火车从后面追上到完全超过乙火车要用多少秒?练习1、一列快车长150米,每秒行22米,一列慢车长100米,每秒行14米。

快车从后面追上慢车到超过慢车,共需多少秒钟?2、小红以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长144米的火车,火车每秒行18米,问:火车追上小红到完全超过小红共用了多少秒钟?【四】一列火车长180米,每秒钟行25米。

全车通过一条长120米的山洞,需要多少时间?练习1、一列火车长360米,每秒行18米。

全车通过一座长90米的大桥,需要多长时间?2、一座大桥长2100米。

一列火车以每分钟800米的速度通过这座大桥,从车上桥到车尾离开共用3.1分钟,这列火车长多少米?【五】有两列火车,一车长130米,每秒行23米,另一车长250米,每秒行15米,现在两车相向而行,问从相遇到离开需要几秒钟?练习1、有两列火车,一车长360米,每秒行18米,另一车长216米,每秒行30米,现在两车相向而行,问从相遇到离开一共需要几秒钟?2、有两列火车,一列长220米,每秒行22米,另一列长200米迎面开来,两车从相遇到离开共用了10秒钟,求另一列火车的速度?【六】一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟。

行程问题(1)

行程问题(1)

行程问题(1)行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇距离=相遇时间×速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离×速度差 解决行程问题的主要方法:行程图;将复杂行程问题分解成我们熟悉的类型。

一、过中点相遇例1 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行11千米,两人在距中点4千米处相遇,求两地的距离。

练习:(1)甲乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米,已知甲的速度是乙的速度的65,甲每分钟行800米。

求AB 的距离。

(2)快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?二、追及问题例2 甲乙两人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早五分钟到达西村。

东村到西村的路程是多少米?练习:(1)甲乙两人上午甲乙两人上午8时同时从东村去西村,甲每小时比乙快6千米,中午12时甲到西村后立即返回东村,在距西村15千米处和乙相遇。

求东西两村相距多少千米?(2)汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?例3一辆汽车从甲地开往乙地,要行360千米。

开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

汽车是在离甲地多远处修车的?练习:(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。

五年级奥数-环形道路上的行程问题

五年级奥数-环形道路上的行程问题

第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。

五年级奥数上第4讲环形路线

五年级奥数上第4讲环形路线

课堂检测
(4)有一个周长是80米的圆形水池,甲沿着水池散步,速度为1米每秒,乙沿着水池跑步,速 度为2.2米每秒,并且与甲的方向相反,如果他俩从同一地点同时出发,那么当乙第8次遇到甲时 还要跑多少米才能回到出发点?
(5)甲、乙两人分别从一圆形场地的直径两端点A、B开始,同时匀速反向绕此圆形路线运动。 当甲走了160米后,他们第一次相遇。在乙走过A后20米的D处又第二次相遇,求此圆形场地的周 长?
A
B
练习四:
有一个环形跑道,甲、乙两人分别从A、B两地出发,相向而行,乙的速度快于甲, 第一次相遇在距离A点100米处的C点,第二次相遇在距离B点200米处的地点,已知 A、B长是跑道总长的四分之一,请问跑道周长为多少米?
A C
B
D
挑战极限
例题五:
小鹿和小山羊在某个环形跑道上练习跑步项目,小鹿比小山羊稍快,如果从同一起 点出发背向而行,1小时后正好第5次相遇,如果从同一起点出发,同向而行,那么 经过1小时才第1次追上,请问小鹿和小山羊跑一圈各需要多长时间? 【分析】题目中并没有告诉环形跑道的周长是多少,想一想跑道的周长是一个确定 的数吗?如果不是,那么周长的取值不同,对于结果有没有影响?
练习二:
一环形跑道,周长为400米,甲、乙两名运动员,同时顺时针自起点出发,甲每分 钟跑300米,乙每分钟跑275米,甲第四次追上乙时距离起点多少米?
如果不是同地出发,环形 路线问题还具有周期性吗?
例题三:
甲、乙两人在400米长的环形跑道上跑步,甲以每分钟300米的速度从起点跑出,一 分钟后,乙以每分钟280米的速度从起点同向跑出,请问甲出发后多少分钟第一次 追上乙?如果追上后他们的速度保持不变,甲还需要再过多少分钟才能第10次追上 乙? 【分析】从乙出发到甲第一次追上乙。与从甲第一次追上乙到第二次追上乙间隔的 时间一样吗?从第几次追上开始就具有周期性了?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题 1甲、乙两人同时从同一地点出发,同向绕一环形跑道赛跑,甲每秒跑4米,乙每秒跑6米,过了4分钟,乙追上了甲,问跑道一周长多少米?举一反三 11、小玲和小兰绕一环形跑道赛跑,她们同时同地同向起跑,小玲每分钟跑80米,小兰每分钟跑50米,过了20分钟小玲追上了小兰,问跑道一周的长是多少米?2、王叔叔和李叔叔同时从运动场的同一地点出发,同向绕运动场跑道赛跑,王叔叔每分钟跑300米,李叔叔每分钟跑280米,过了20分钟,王叔叔追上了李叔叔,问跑道一周长多少米?3、两名运动员同时同地出发,同向绕周长为1000米的环形广场竞走,已知第一位运动员每分钟走125米,第二位运动员的速度是第一位运动员的2倍。

第二位运动员追上第一位运动员需要多少分钟?典型例题 2兄妹二人在周长60米的圆形水池边玩,从同一地点同时背向绕水池行走,兄每秒走1.3米,妹每秒走 1.2米。

他们第10次相遇时需要多长时间?举一反三 21、姐弟二人在周长420米的圆形花圃边玩,从同一地点同时背向绕水池行走,姐姐每分钟走60米,弟弟每分钟走40米。

他们第五次相遇时需要多长时间?2、小红和小玲绕一环形跑道骑自行车。

她们从同一地点背向绕水池行进。

小红每分钟行200米,小玲每分钟行160米。

已知环形跑道一周的长为1080米。

他们第8次相遇小红走了多少米?3、甲、乙二人绕圆形场地跑步。

场地一周的长是300米,他们从同一地点出发背向而行。

甲每分钟行80米,乙每分钟行70米,他们第6次相遇时甲比乙一共多走多少米?典型例题 3一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步。

甲每分钟跑250,乙每分钟跑200米,现在甲在以后面50米,甲第二次追上乙需要多少分钟?举一反三 31、甲、乙二人绕一环形跑道顺时针跑步,圆形跑道的长是600米,甲每分钟跑300米,乙每分钟跑280米,现在甲在乙后面40米,甲第二次追上乙需要多少分钟?2、绕湖一周的长是500米,小许和小张顺时针绕湖竞走。

小许每分钟走180米,小张每分钟走160米,现在小许在小张前面100米,小许第一次追上小张需要多少分钟?3、甲、乙两人绕周长为1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。

现在甲在乙的后面250米,乙追上甲需要多少分钟?典型例题 4甲、乙两人同时从A点背向出发沿400米的环形跑道行走,甲每分钟走80米,乙每分钟走50米,这两人最少用多少分钟在A点相遇?举一反三 41、甲、乙两人同时从同一出发点出发,绕周长为990米的圆形跑道跑步,甲每分钟跑90米,乙每分钟跑110米,这两人最少用多少分钟在原来的出发点相遇?2、小明和小亮同时绕周长为720米的环形跑道行走,小明每分钟行90米,小亮每分钟行80米,他们同时从A点绕跑道顺时针行走。

他们最少要用多少分钟在A点相遇?3、在480米的环形跑道上,甲、乙两人同时从起点线出发,反向跑步。

甲每秒跑4米,乙每秒跑6米。

当他们第一次相遇在起跑点时,他们已经在途中相遇了几次?典型例题 5甲、乙两人骑自行车从环形公路上的同一地点出发,背向而行,现在已知甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟?举一反三 51、甲、乙两人从操场的同一地点出发,背向而行,4分钟后两人相遇,现在已知甲跑一圈的时间为6分钟,那么乙跑一圈的时间是多少分钟?2、王平和李军绕一圆形花坛游戏,他们从同一地点出发,背向而行,3分钟后两人相遇,现在已知王平绕花坛走一圈需要5分钟,问李军绕花坛走一周需要多少分钟?3、亮亮和晶晶绕湖边散步,他们从同一地点出发,背向而行,12分钟后两人相遇。

已知亮亮绕湖走一周需要20分钟,问晶晶绕湖走一周需要多少分钟?典型例题 6在周长为200米的圆形跑道一条直径的两端,甲、乙两人分别以每秒6米、5米的骑车速度同时同向出发,沿跑道行驶。

问:16分钟内甲追上乙多少次?举一反三 61、在周长为400米的圆形场地的一条直径的两端,甲、乙二人分别以每分钟行走92米和68的速度同时同向出发,沿圆形场地竞走,问:100分钟内,甲追上乙多少次?2、一个圆的周长是 1.2米,两只小虫分别从圆直径的两端同时出发,同向沿圆周爬行。

一只小虫每秒爬 2.8厘米,另一只小虫每秒爬 1.6厘米,5分钟内,第一只小虫追上另一只小虫多少次?3、小王和小许分别从圆形花圃直径的两端同时出发,绕周长为200米的花圃同向跑步,小王每分钟跑120米,小许每分钟跑80米,在半小时内,小王追上小许多少次?典型例题7有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙二人相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

甲和乙相遇后3分钟和丙相遇。

这个花圃的周长是多少米?举一反三71、甲、乙、丙三人绕一段环形公路行走,三人的步行速度分别是每分钟100米、90米、75米。

乙与丙同方向行走,甲与乙、丙背向而行。

甲和乙相遇3分钟后,甲和丙又相遇。

求这段环形公路的长。

2、甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。

他们三人环湖跑步,甲、乙二人同向行走,丙与甲、乙同时反向而行。

丙与乙相遇后,2分钟后又和甲相遇。

求环湖一周的长。

3、环湖一周长1800米,甲、乙二人同时同向出发,丙同时从同地与甲、乙二人反向而行,已知甲、乙、丙三人速度分别是每分钟60米、80米和100米,当乙和丙相遇时,甲落后于乙几米?典型例题8如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向爬行。

它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问:这个圆周的长是多少?举一反三81、如图:甲、乙两只小虫在直径A、B上同时相向爬行,第一次在距A点10厘米的C点相遇,第二次在距B点7.5厘米的D点相遇。

这个圆的周长是多少?2、如图:A、B是圆的直径的两端,小张在A点,小王在B点同时出发相向行走,他们在C点第一次相遇,C点离A点80米;在D点第二次相遇,D点离B点60米,求这个圆的周长。

3、如图:A、B是半圆的直径的断点,林林和丽丽分别从A、B两点出发沿圆弧路线相向行走,第一次相遇在离A点80米的C点处,相遇后各自以原速前进,各自到达对方出发点后都立即返回,结果又在离A点60米处的D点相遇,求圆弧A、B路线的长。

典型例题9在400米的环形跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。

甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒,那么甲追上乙需要多少秒?举一反三91、在300米的环形跑道上,两个起跑点相距50米,甲、乙二人分别在这两个起跑点按逆时针方向竞走,甲每秒走3米,乙每秒走2米,每人每走50米都要停2秒,那么甲追上乙要多少秒?2、在800米的圆形花圃边缘,A、B两点相距500米,可可和天天分别从A、B两点出发,同向玩滑板车,可可在前,天天在后,每人每滑500米都要停20秒,已知天天每秒滑8米,可可每秒滑10米,那么可可追上天天要多少秒?3、甲、乙两人在一环形跑道上,同时从某地出发沿相反方向跑步,甲的速度是乙的3倍,他们第一次与第二次相遇点之间的路程是100米,环形跑道有多少米?典型例题10甲骑车,乙跑步,二人同时从一点出发沿着长4000米的环形跑道同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙,已知二人的速度和是每分钟行700米。

求甲、乙二人的速度各是多少?举一反三101、小明和小虎绕一厂500米的环形跑道跑步。

他们同时从同地沿同方向前进,出发25分钟,小明追上了小虎。

已知二人的速度和是每分钟260米。

求小明和小虎的速度各是多少?2、小强和小刚绕一条长2400米的环形公路跑步,他们同时从同一地点反向而行,经过10分钟两个人相遇。

已知小强每分钟比小刚多跑20米,求他们的速度各是多少?3、环湖一周共400米,甲、乙二人同时从同一点同方向出发,甲没过10分钟第一次从乙身后追上乙,若二人同时从同一地点反向而行,只要2分钟二人就相遇。

求甲、乙的速度。

典型例题11一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米。

求他后一半路程用了多少时间?举一反三111、小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米。

求他后一半路程用了多少时间?2、小华在240米长的跑道上跑了一个来回,已知他前一半时间每秒都跑6米,后一半时间每秒都跑4米。

求他返回时用了多少秒?3、甲、乙两地相距205千米,小王开汽车从甲地出发,计划5小时到达乙地。

他前一半时间每小时行36千米,为了按时到达乙地,后一半时间必须每秒行多少千米?典型例题12兄妹二人在周长30米的圆形水池边从同一地点同时背向绕水池而行,兄每秒走 1.3米,妹每秒走 1.2米,他们第10次相遇时,妹妹还需走多少米才能回到出发点?举一反三121、兄弟俩骑自行车绕环形跑道玩。

哥哥每分钟行130米,弟弟每分钟行120米,他们同时从同一地点背向行驶,环形跑道的周长是600米。

他们第5次相遇时,哥哥还要走多少米才能回到出发点?2、姐妹二人绕周长为840米的圆形花圃边玩,她们从同一地带你同时背向而行。

姐姐每分钟走60米,妹妹每分钟走40米。

她们地9次相遇时,妹妹还要走多少米才能回到出发点?3、小王和小徐绕环形场地跑步。

环形场地的周长为900米。

他们同时从同一地点出发背向而行,小王每分钟走80米,小徐每分钟走70米。

他们第7次相遇时,谁先回到出发点?典型例题13甲、乙两个同学在长方形围墙外的两角。

如果他们同时开始绕着围墙逆时针方向跑。

甲每秒跑5米,乙每秒跑4米,那么甲最少要跑多少秒才能看到乙?举一反三131、李奶奶家的院子是个长方形(如图),王强和李明分别站在围墙外的两角准备捉迷藏。

如果他们同时开始绕着围墙逆时针方向跑,王强每秒跑6米,李明每秒跑4米,那么,王强至少跑多少秒才能看到李明?2、如图,一个边长为100米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发,已知甲每秒走5米,乙每秒走3米,至少经过多长时间甲才能看到乙?3、已知等边三角形A、BC的周长为360米,甲从A点出发,按逆时针方向前进,每分钟走55米,乙从BC边上D点(距C点30米)出发,按顺时针方向前进,每分钟走50米,两人同时出发,几分钟相遇?当乙到达A点时,甲在哪条边上?离C点多远?典型例题14甲、乙两辆电动车在周长为360米的圆形跑道上不断行驶,甲车每分钟行20米。

甲、乙两车同时分别从相距90米的A、B两点相背而行,在C点相遇后乙车立即返回,当它到达B点时,甲车过B点,又回到A点,此时甲车立即返回。

相关文档
最新文档