五年级下趣味数学行程问题

合集下载

五年级行程问题奥数题

五年级行程问题奥数题

五年级行程问题奥数题一、行程问题基础概念1. 路程、速度、时间的关系路程 = 速度×时间,通常用字母表示为公式。

速度 = 路程÷时间,即公式。

时间 = 路程÷速度,公式。

2. 单位换算在行程问题中,常用的长度单位有千米(公式)、米(公式)、分米(公式)、厘米(公式)、毫米(公式),其中公式,公式,公式,公式。

常用的时间单位有小时(公式)、分钟(公式)、秒(公式),且公式,公式。

速度单位则根据路程和时间单位而定,如米/秒(公式)、千米/小时(公式)等。

1. 相遇问题题目:甲、乙两车分别从A、B两地同时相向开出,甲车的速度是每小时50千米,乙车的速度是每小时40千米。

经过3小时两车相遇,求A、B两地的距离。

解析:这是一个相遇问题,根据相遇问题的公式:路程 = 速度和×相遇时间。

甲、乙两车的速度和为公式(千米/小时)。

相遇时间是3小时,所以A、B两地的距离为公式(千米)。

2. 追及问题题目:甲、乙两人在环形跑道上跑步,甲的速度是每分钟250米,乙的速度是每分钟200米。

跑道一圈长400米,甲在乙前面50米,多少分钟后甲第一次追上乙?解析:这是追及问题,追及路程为公式米(因为甲在乙前面50米,甲要追上乙需要多跑一圈少50米的距离)。

甲、乙的速度差为公式米/分钟。

根据追及时间 = 追及路程÷速度差,可得追及时间为公式分钟。

3. 行船问题(拓展)题目:一艘轮船在静水中的速度是每小时15千米,它从上游甲地开往乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少小时?解析:从甲地到乙地是顺水行驶,顺水速度 = 静水速度+水速,所以顺水速度为公式千米/小时。

根据路程 = 速度×时间,甲乙两地的距离为公式千米。

从乙地返回甲地是逆水行驶,逆水速度 = 静水速度水速,即公式千米/小时。

那么返回所需时间为公式小时。

奥数行程问题讲解及训练(讲义)- 数学五年级下册

奥数行程问题讲解及训练(讲义)- 数学五年级下册

小学高部奥数行程问题讲解及训练一、弄清思路行程问题是小学奥数题的重要组成部分,那么如何学好行程问题?下面由多年从教经验的老师来回答这个问题:因为行程的复杂,所以很多同学一开始就会有畏难心理。

因此,学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。

我们要知道,学习奥数有四种境界:第一种:课堂理解。

就是说能够听懂老师讲解的题目;第二种:能够解题。

就是说同学听懂了还能做出作业。

第三种:能够讲题。

就是不仅自己会做,还要能够讲给家长或同学听。

第四种:能够编题。

就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。

这也是解决向数题的最高境界了。

其实大部分同学学习奥数都只停留在第一种境界,有的甚至还达不到,能够达到第三种境界的同学考取重点中学实验班基本上没有什么问题了。

而要想在行程上一点问题没有,则要求同学达到第四种境界。

即系统学习,还要能深刻理解,刻苦钻研。

而这四种境界则是学习行程的四个阶段或者说好的方法。

二、基本公式1、一般行程问题公式平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

2、列车过桥问题公式(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

3、同向行程问题公式追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

4、反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

5、行船问题公式(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

小学数学巧解12个经典的行程问题(干货)

小学数学巧解12个经典的行程问题(干货)

小学数学巧解12个经典的行程问题(干货)无论是小学奥数,还是公务员考试,还是公司的笔试面试题,似乎都少不了行程问题——题目门槛低,人人都能看懂;但思路奇巧,的确会难住不少人。

平时看书上网与人聊天和最近与小学奥数打交道的过程中,我收集到很多简单有趣而又颇具启发性的行程问题,在这里整理成一篇文章,和大家一同分享。

这些题目都已经非常经典了,绝大多数可能大家都见过;希望这里能有至少一个你没见过的题目,也欢迎大家留言提供更多类似的问题。

让我们先从一些最经典最经典的问题说起吧。

1甲、乙两人分别从相距 100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。

一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。

问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。

不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要 20 秒,在这 20 秒的时间里小狗一直在跑,因此它跑过的路程就是 120 米。

说到这个经典问题,故事可就多了。

下面引用某个经典的数学家八卦帖子:John von Neumann (冯·诺依曼)曾被问起一个中国小学生都很熟的问题:两个人相向而行,中间一只狗跑来跑去,问两个人相遇后狗走了多少路。

诀窍无非是先求出相遇的时间再乘以狗的速度。

Neumann 当然瞬间给出了答案。

提问的人失望地说你以前一定听说过这个诀窍吧。

Neumann 惊讶道:“什么诀窍?我就是把狗每次跑的都算出来,然后计算无穷级数⋯⋯”2某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。

不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。

第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。

试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。

五年级下册数学专项练习简单的行程问题全国通用

五年级下册数学专项练习简单的行程问题全国通用

简单的行程问题【知识重点与基本方法】解答此类题应作一条线段图来全面考虑运动物体的个数、运动的方向、出发的地址以及运动的路线形式等。

下边的关系式一定切记:(1)速度和×相遇时间=相遇行程(2)速度差×追实时间 =追及行程【例题精讲】【例 1】两车同时从两地相对开出,甲车每小时行86 千米,乙车每小时行102 千米,经过 5 小时两车在途中相遇,求两地相距多少千米?讲堂练习题:甲、乙两人同时从相距90 千米的两地相向而行。

甲每小时行8 千米,乙每小时比甲多行 2 千米。

几小时后他们在途中相遇?【例 2】甲、乙两人分别从相距20 千米的两地同时出发相向而行,甲每小时走6千米,经过 2 小时后两人相遇,问乙每小时行多少千米?【例 3】王明和妹妹两人从相距2019 米的两地相向而行,王明每分钟行110 米,妹妹每分钟行 90 米,假如一只狗与王明同时同向而行,每分钟行500 米,碰到妹妹后,立刻回头向王明跑去,碰到王明再向妹妹跑去,这样不停往返,直到王明和妹妹相遇为止。

狗共行了多少米?【例4】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16 千米,小红步行每小时行5 千米,2 小时后小明追上小红,求东西村相距多少千米?【例5】甲乙两人分别从相距 18 千米的西城和东城向东而行,甲骑自行车每小时行 14 千米,乙步行每小时行 5 千米,几小时后甲能够追上乙?【例 6】小云以每分钟 40 米的速度从家去商铺买东西, 5 分钟后,小英去追小云,结果在离家 600 米的地方追上小云,小英的速度是多少?【课后练习题】1、从甲地开车到乙地,客车要用24 小时才能抵达,货车要用40 小时才能抵达,假如客、货两车分别从两地同时相向开出,已知客车每小时行80 千米,则多少小时后两车相遇?2、甲每小时行 7 千米,乙每小时行 5 千米,两人由相隔18 千米的两地相背而行,几小时后两人相隔54 千米?3、甲、乙两人从相距99 千米的两地相对开出, 3 小时后相遇,已知甲每小时行15千米,乙每小时行多少千米?要练说,得练看。

五年级下册复杂行程问题

五年级下册复杂行程问题

五年级下册复杂行程问题在我们五年级下册的数学学习中,行程问题可是一个相当重要的部分。

它不仅考验着我们对数学知识的掌握,还锻炼着我们的逻辑思维和解决实际问题的能力。

今天,就让我们一起来深入探讨一下那些复杂的行程问题。

首先,我们要明确行程问题中几个关键的概念。

速度,就是单位时间内所走的路程;时间,就是行走所花费的时长;路程,则是在一定速度下经过一定时间所走过的距离。

这三者之间有着紧密的联系,速度×时间=路程。

比如说,有一辆汽车以每小时 60 千米的速度行驶了 3 小时,那么它行驶的路程就是 60×3 = 180 千米。

理解了这些基本概念,我们才能更好地解决复杂的行程问题。

接下来,让我们看一些具体的复杂行程问题类型。

相遇问题是常见的一种。

假设甲、乙两人分别从 A、B 两地同时出发,相向而行,经过一段时间后相遇。

这时候,我们要知道,他们走过的路程之和等于 A、B 两地之间的距离。

比如,甲的速度是每小时 40 千米,乙的速度是每小时 50 千米,他们同时出发,经过 2 小时相遇。

那么 A、B 两地的距离就是(40 + 50)×2 = 180 千米。

追及问题也很有趣。

比如甲在乙前面一定距离,乙的速度比甲快,经过一段时间乙追上了甲。

这时候,乙走过的路程减去甲走过的路程就等于他们最初的距离差。

假设甲的速度是每小时 30 千米,乙的速度是每小时 45 千米,甲先走 1 小时,然后乙出发去追甲,经过 3 小时追上。

那么最初甲先走的路程是 30×1 = 30 千米,在这 3 小时里,甲走的路程是 30×3 = 90 千米,乙走的路程是 45×3 = 135 千米,所以最初他们的距离差就是 135 90 = 45 千米,正好等于甲先走的 30 千米。

还有环形跑道问题。

如果两人在环形跑道上同时同地同向出发,跑得快的人会不断追上跑得慢的人,每次追上就多跑一圈;如果是同时同地反向出发,两人相遇时走过的路程之和就是跑道的一圈。

小学五年级数学行程问题典型练习题

小学五年级数学行程问题典型练习题

行程问题(一)【知识分析】相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。

【例题解读】例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米,两地相距多少千米?【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。

那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。

(1)两车经过几小时相遇?8×2÷(90-85)=3.2小时(2)两地相距多少千米?(90+85)×3.2=560(千米)例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地相距多少千米?【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离1.5×2×8÷(10-8)×=120千米【经典题型练习】1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车每小时都比原来多行10千米,则2小时就相遇,求两地的距离?2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?【知识分析】两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题【例题解读】例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米?【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离95×3—55=230千米【经典题型练习】1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?【知识分析】在行程问题中,有时候两车同时出发,但中途因意外可能需要停车,有时候不一定同时出发,也可能同一车在不同的时间段的速度不一样,今天我们学习这种变化的问题。

(完整)五年级奥数行程问题五大专题

(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。

此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。

五年级数学行程问题

五年级数学行程问题

五年级数学行程问题一、行程问题题目。

1. 甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?- 解析:这是一个相遇问题,相遇时间 = 总路程÷速度和。

甲、乙的速度和为6 + 4=10千米/小时,总路程是20千米,所以相遇时间为20÷10 = 2小时。

2. 一辆汽车从甲地开往乙地,速度是85千米/小时,用了6小时,返回时只用了5小时,返回时的速度是多少?- 解析:根据路程 = 速度×时间,从甲地到乙地的路程为85×6 = 510千米。

返回的路程也为510千米,返回时间是5小时,所以返回速度为510÷5 = 102千米/小时。

3. 小明和小红在周长为400米的环形跑道上跑步,小明每秒跑5米,小红每秒跑3米,他们从同一地点同时出发,同向而行,多少秒后小明第一次追上小红?- 解析:这是一个追及问题,追及时间 = 追及路程÷速度差。

在环形跑道上同向而行,追及路程就是跑道的周长400米,速度差为5 - 3 = 2米/秒,所以追及时间为400÷2 = 200秒。

4. 两列火车从相距720千米的两地同时相对开出,甲车每小时行80千米,乙车每小时行70千米,经过几小时两车相遇?- 解析:相遇时间 = 总路程÷速度和,两车速度和为80+70 = 150千米/小时,总路程720千米,相遇时间为720÷150 = 4.8小时。

5. 一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,客车的速度是75千米/小时,货车的速度是65千米/小时,经过3小时两车还相距40千米,甲、乙两地相距多少千米?- 解析:两车3小时行驶的路程之和为(75 + 65)×3=420千米,再加上相距的40千米,甲、乙两地相距420+40 = 460千米。

6. 甲、乙两人在一条长300米的直路上来回跑步,甲的速度是每秒4米,乙的速度是每秒3米,如果他们同时从路的两端出发,当他们跑了10分钟后,共相遇了几次?- 解析:10分钟=10×60 = 600秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下趣味数学
第六讲行程问题(讲卷)
☆快乐启航,走进生活
1.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?
2.甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

经过5小时相遇,东、西两地相距多少千米?
3.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。

摩托车多长时间能够追上卡车?
☆☆趣味冲浪,发展思维
4.王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回跑,直到王欣和陆亮相遇为止,狗共行了多少米?
5.甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
☆☆☆扬帆远航,提升能力
6.甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距112.5千米。

两车继续行驶到下午1时,两车还是相距112.5千米。

A、B两地间的距离是多少千米?
第六讲行程问题(练卷)
☆快乐启航,走进生活
1.甲乙两人分别从相距36千米的两地同时出发相向而行,甲每小时走5千米,乙每小时走4千米。

两人几小时后相遇?
2.中巴车每小时行60千米,小轿车每小时行84千米。

两车同时从相距60千米的两地同方向开出,且中巴在前。

几小时后小轿车追上中巴车?
3.甲、乙两队学生从相距18千米的两地同时出发,相向而行。

一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?
☆☆趣味冲浪,发展思维
4.甲每小时行7千米,乙每小时行5千米,两人于相隔17千米的两地同时相背而行,几小时后两人相隔77千米?
5.两支队伍从相距55千米的两地相向而行。

通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。

已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通讯员共行多少千米?
☆☆☆扬帆远航,提升能力
6.甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米。

又行3小时,两车又相距120千米。

A、B两地相距多少千米?。

相关文档
最新文档