解析几何尤承业前四章部分习题答案

合集下载

H:解析几何(理科2014年) Word版含答案

H:解析几何(理科2014年) Word版含答案

数 学H 单元 解析几何 H1 直线的倾斜角与斜率、直线的方程14.B14、H1 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数; (2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b. (以上两空各只需写出一个符合要求的函数即可)14.(1)x (2)x (或填(1)k 1x ;(2)k 2x ,其中k 1,k 2为正常数) 设A (a ,f (a )),B (b ,-f (b )),C (c ,0),则此三点共线: (1)依题意,c =ab ,则0-f (a )c -a =0+f (b )c -b ,即0-f (a )ab -a =0+f (b )ab -b.因为a >0,b >0,所以化简得 f (a )a =f (b )b,故可以选择f (x )=x (x >0);(2)依题意,c =2ab a +b ,则0-f (a )2ab a +b -a =0+f (b )2ab a +b-b ,因为a >0,b >0,所以化简得 f (a )a=f (b )b,故可以选择f (x )=x (x >0). 20.H1 H6 H8 如图1­7所示,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F ,点A ,B分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1­7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0xa 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值. 20.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),所以B ⎝ ⎛⎭⎪⎫c2,-c 2a .又直线OA 的方程为y =1ax ,则A ⎝ ⎛⎭⎪⎫c ,c a ,所以k AB =c a -⎝ ⎛⎭⎪⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ·⎝ ⎛⎭⎪⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0). 因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝ ⎛⎭⎪⎫2,2x 0-33y 0,直线l 与直线x=32的交点为N 32,32x 0-33y 0, 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝ ⎛⎭⎪⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2= 43·(2x 0-3)23y 20+3(x 0-2)2. 又P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值.20.HI ,H5,H8 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m.直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3. 所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上, 因此OT 平分线段PQ . ②由①可得, |TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2] =(m 2+1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝ ⎛⎭⎪⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).H2 两直线的位置关系与点到直线的距离21.H7、H8、H2 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1my +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4my -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m 2+2m 2+3,-2m ,|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m4, 化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0.H3 圆的方程9.H3、H5 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 29.D 设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20,∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎪⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52, 则P ,Q 两点间的最大距离为5 2+r =62.H4 直线与圆、圆与圆的位置关系10.H4、H9 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R10.A 由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),|OQ |=2.曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π}, 即C :x 2+y 2=1.区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示.要使C ∩Ω为两段分离的曲线,则有1<r <R <3. 19.H4、H5、H8 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =± 2.圆心O 到直线AB 的距离d =2, 此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t(x -t ), 即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0,故d =⎪⎪⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x20+4=⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x20= 2.此时直线AB 与圆x 2+y 2=2相切.6.A2、H4 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.A 由直线l 与圆O 相交,得圆心O 到直线l 的距离d =1k 2+1<1,解得k ≠0.当k =1时,d =12,|AB |=2r 2-d 2=2,则△OAB 的面积为12×2×12=12;当k =-1时,同理可得△OAB 的面积为12,则“k =1”是“△OAB 的面积为12”的充分不必要条件.12.H4 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.12.2 依题意得,圆心O 到两直线l 1:y =x +a ,l 2:y =x +b 的距离相等,且每段弧长等于圆周的14,即|a |2=|b |2=1×sin 45°,得 |a |=|b |=1.故a 2+b 2=2.15.H4、C6 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43如图所示,根据题意,OA ⊥PA ,OA =2,OP =10,所以PA =OP 2-OA 2=2 2,所以tan ∠OPA =OA PA =22 2=12,故tan ∠APB =2tan ∠OPA 1-tan 2∠OPA =43, 即l 1与l 2的夹角的正切值等于43.15.H4 已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.15.(210,+∞) g (x )的图像表示圆的一部分,即x 2+y 2=4(y ≥0).当直线y =3x +b 与半圆相切时,满足h (x )>g (x ),根据圆心(0,0)到直线y =3x +b 的距离是圆的半径求得|b |9+1=2,解得b =210或b =-210(舍去),要使h (x )>g (x )恒成立,则b >210,即实数b 的取值范围是(210,+∞).12.H4 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.12.x 2+(y -1)2=1 由圆C 的圆心与点(1,0)关于直线y =x 对称,得圆C 的圆心为(0,1).又因为圆C 的半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.14.E6,H4 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.14.5 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|PA |2+|PB |2=|AB |2=10. ∴|PA ||PB |≤|PA |2+|PB |22=5,当且仅当|PA |=|PB |时等号成立.13.H4 已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.13.4±15 由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax +y -2=0的距离d =|a +a -2|a 2+1=|2a -2|a 2+1.∵△ABC 为等边三角形,∴|AB |=r =2.又|AB |=2r 2-d 2,∴222-⎝ ⎛⎭⎪⎫|2a -2|a 2+12=2,即a 2-8a +1=0,解得a =4±15. 21.H4,H5 如图1­4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.图1­421.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322, 所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1→=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.H5 椭圆及其几何性质20.HI ,H5,H8 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .①证明:OT 平分线段PQ (其中O 为坐标原点); ②当|TF ||PQ |最小时,求点T 的坐标.20.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m.直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3. 所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上, 因此OT 平分线段PQ . ②由①可得, |TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2] =(m 2+1)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1= 124⎝ ⎛⎭⎪⎫m 2+1+4m 2+1+4≥124(4+4)=33.当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).14.H5 设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.14.x 2+32y 2=1设F 1(-c ,0),F 2(c ,0),其中c =1-b 2, 则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3x 0+3c ,-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y22=1.19.H4、H5、H8 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.19.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. (2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t ,2), 其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =± 2.圆心O 到直线AB 的距离d =2, 此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t(x -t ), 即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0,故d =⎪⎪⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x20+4=⎪⎪⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x20= 2.此时直线AB 与圆x 2+y 2=2相切.9.H3、H5 设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 29.D 设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20,∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎪⎫y 0+232+50, 当y 0=-23时,|CQ |有最大值52, 则P ,Q 两点间的最大距离为52+r =62.20.H5、H8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.9.H5、H6 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C .3D .2 9.A 设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝ ⎛⎭⎪⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13×3e 22≤⎝ ⎛⎭⎪⎫1e 21+3e 22⎝ ⎛⎭⎪⎫1+13=163. 所以1e 1+1e 2≤433.故选A.21.H5、H6、H8、H10 如图1­7,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1. (1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.图1­721.解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎪⎨⎪⎧y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m2,从而|PQ |=2x 2+y 2=2m 2+42-m2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4. 故四边形APBQ 的面积S =12|PQ |·2d =22·1+m22-m 2=22·-1+32-m2.而0<2-m 2≤2,故当m =0时,S 取最小值2. 综上所述,四边形APBQ 面积的最小值为2.15.H5 过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.15.22设点A (x 1,y 1),点B (x 2,y 2),点M 是线段AB 的中点,所以x 1+x 2=2,y 1+y 2=2,且⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式作差可得x 21-x22a 2=-(y 21-y 22)b 2,即(x 1+x 2)(x 1-x 2)a 2=-(y 1+y 2)(y 1-y 2)b 2,所以y 1-y 2x 1-x 2=-b2a2, 即k AB =-b 2a 2.由题意可知,直线AB 的斜率为-12,所以-b 2a 2=-12,即a =2b .又a 2=b2+c 2,所以c =b ,e =22. 15.H5 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=______.15.12 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.20.H5、H8 圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图1­6所示).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.图1­6(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝ ⎛⎭⎪⎫4x 0,0,⎝ ⎛⎭⎪⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1,解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0.又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-2 3m m 2+2, ①y 1y 2=-3m 2+2,②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m (y 1+y 2)+2 3=4 3m 2+2, ③x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m2m 2+2. ④ 因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0, 所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤将①②③④代入⑤式整理得 2m 2-2 6m +4 6-11=0, 解得m =3 62-1或m =-62+1.因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0. 6.H5 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1 6.A 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =ca =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.20.H5、H8、H10 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 20.解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故可设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1,从而|PQ |=k 2+1|x 1-x 2| =4k 2+1·4k 2-34k 2+1. 又点O 到直线l 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,满足Δ>0,所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2. 20.H5、H8、H10 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |= 5|F 1N |,求a ,b .20.解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1, 解得a =7,b 2=4a =28,故a =7,b =27.10.H5,H6 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A. x ±2y =0 B. 2x ±y =0 C. x ±2y =0 D. 2x ±y =010.A 椭圆C 1的离心率e 1=a 2-b 2a ,双曲线C 2的离心率e 2=a 2+b 2a .由e 1e 2=a 2-b 2a ·a 2+b 2a=1-⎝ ⎛⎭⎪⎫b a 2×1+⎝ ⎛⎭⎪⎫b a 2=32, 解得⎝ ⎛⎭⎪⎫b a 2=12,所以b a =22,所以双曲线C 2的渐近线方程是y =±22x .故选A.20.H5,H7,H8 如图1­5所示,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.图1­520.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2, ∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得 (k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0),得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k2k 2+4=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.20.H5,H7,H8 如图1­5所示,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.图1­520.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2, ∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得 (k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0), 得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k2k 2+4=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.18.H5、H8 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切,求直线l 的斜率.18.解:(1)设椭圆右焦点F 2的坐标为(c ,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22. (2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ), 有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 又因为点P 在椭圆上,所以x 202c 2+y 20c2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c .代入①得y 0=c 3,即点P 的坐标为⎝ ⎛⎭⎪⎫-4c 3,c 3.设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 设直线l 的斜率为k ,依题意,直线l 的方程为y =kx .由l 与圆相切,可得|kx 1-y 1|k 2+1=r ,即⎪⎪⎪⎪⎪⎪k ⎝ ⎛⎭⎪⎫-2c 3-2c 3k 2+1=53c ,整理得k 2-8k +1=0,解得k =4±15, 所以直线l 的斜率为4+15或4-15.21.H5、H8 如图1­6,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b.图1­621.解:(1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b2=1,消去y 得(b 2+a 2k 2)x2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝ ⎛⎭⎪⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2.又点P 在第一象限,故点P 的坐标为P ⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k2,b 2m b 2+a 2k 2. (2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b 2k2.因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b , 当且仅当k 2=b a时等号成立.所以,点P 到直线l 1的距离的最大值为a -b .21.H4,H5 如图1­4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.图1­421.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322, 所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1→=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.H6 双曲线及其几何性质9.H5、H6 已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C .3D .2 9.A 设|PF 1|=r 1,|PF 2|=r 2,r 1>r 2,椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2.则由椭圆、双曲线的定义,得r 1+r 2=2a 1,r 1-r 2=2a 2,平方得4a 21=r 21+r 22+2r 1r 2,4a 22=r 21-2r 1r 2+r 22.又由余弦定理得4c 2=r 21+r 22-r 1r 2,消去r 1r 2,得a 21+3a 22=4c 2,即1e 21+3e 22=4.所以由柯西不等式得⎝ ⎛⎭⎪⎫1e 1+1e 22=⎝ ⎛⎭⎪⎫1e 1+13×3e 22≤⎝ ⎛⎭⎪⎫1e 21+3e 22⎝ ⎛⎭⎪⎫1+13=163. 所以1e 1+1e 2≤433.故选A.11.H6 设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.11.x 23-y 212=1 y =±2x 设双曲线C 的方程为y 24-x 2=λ,将(2,2)代入得224-22=-3=λ,∴双曲线C 的方程为x 23-y 212=1.令y 24-x 2=0得渐近线方程为y =±2x .9.H6 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A 根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca=2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a =14.19.H6、H8 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1­6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1­619.解:方法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x , 所以b a=2,所以c 2-a 2a=2,故c =5a ,从而双曲线E 的离心率e =ca= 5. (2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB 的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝⎛⎭⎪⎫-mk,0.记A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k .由S △OAB =12|OC |·|y 1-y 2|,得12⎪⎪⎪⎪⎪⎪-m k ·⎪⎪⎪⎪⎪⎪2m2-k -2m 2+k =8, 即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16). 又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x得y 1=2t 1-2m , 同理得y 2=-2t1+2m. 设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0. 因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0,即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0,所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0, 因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin ∠AOB =8,又易知sin ∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0. 因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m2。

【推荐下载】解析几何第四版答案-推荐word版 (17页)

【推荐下载】解析几何第四版答案-推荐word版 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==解析几何第四版答案篇一:解析几何第四版吕林根课后习题答案第三章第三章平面与空间直线3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点M1(3,1,?1)和点M2(1,?1,0)且平行于矢量{?1,0,2}的平面(2)通过点M1(1,?5,1)和M2(3,2,?2)且垂直于xoy坐标面的平面;(3)已知四点A(5,1,3),B(1,6,2),C(5,0,4)D(4,0,6)。

求通过直线AB且平行于直线CD的平面,并求通过直线AB且与?ABC平面垂直的平面。

解:(1)? M1M2?{?2,?2,1},又矢量{?1,0,2}平行于所求平面,故所求的平面方程为:?x?3?2u?v??y?1?2u?z??1?u?2v?一般方程为:4x?3y?2z?7?0(2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又M1M2?{2,7,?3},平行于所求的平面,所以要求的平面的参数方程为:?x?1?2u??y??5?7u ?z?1?3u?v?一般方程为:7(x?1)?2(y?5)?0,即7x?2y?17?0。

(3)(ⅰ)设平面?通过直线AB,且平行于直线CD: ?{?4,5,?1},?{?1,0,2} 从而?的参数方程为:?x?5?4u?v??y?1?5u?z?3?u?2v?一般方程为:10x?9y?5z?74?0。

(ⅱ)设平面??通过直线AB,且垂直于?ABC所在的平面? ?{?4,5,?1}, ??{?4,5,?1}?{0,?1,1}?{4,4,4}?4{1,1,1}均与??平行,所以??的参数式方程为:?x?5?4u?v??y?1?5u?v ?z?3?u?v?一般方程为:2x?y?3z?2?0.2.化一般方程为截距式与参数式: ?:x?2y?z?4?0. 解:?与三个坐标轴的交点为:(?4,0,0),(0?2,0),(0,0,4),xyz???1. ?4?24所以,它的截距式方程为:又与所给平面方程平行的矢量为:{4,?2,0},{4,0,4},? 所求平面的参数式方程为:?x??4?2u?v??y??u?z?v?3.证明矢量v?{X,Y,Z}平行与平面Ax?By?Cz?D?0的充要条件为:AX?BY?CZ?0. 证明:不妨设A?0,则平面Ax?By?Cz?D?0的参数式方程为:DBC?x???u?v?AAA??y?u?z?v??BC故其方位矢量为:{?,1,0},{?,0,1},AA从而平行于平面Ax?By?Cz?D?0的充要条件为:v,{?BC,1,0},{?,0,1}共面? AAXYB?1AC?0A? AX?BY?CZ?0.Z0?0 14. 已知连接两点A(3,10,?5),B(0,12,z)的线段平行于平面7x?4y?z?1?0,求B 点的z坐标.解: ??{?3,2,5?z} 而AB平行于7x?4y?z?1?0 由题3知:(?3)?7?2?4?(z?5)?0 从而z?18.5. 求下列平面的一般方程.⑴通过点?1?2,?1,1?和?2?3,?2,1?且分别平行于三坐标轴的三个平面; ⑵过点??3,2,?4?且在x轴和y轴上截距分别为?2和?3的平面; ⑶与平面5x?y?2z?3?0垂直且分别通过三个坐标轴的三个平面; ⑷已知两点?1?3,?1,2?,?2?4,?2,?1?,求通过?1且垂直于?1,?2的平面; ⑸原点?在所求平面上的正射影为??2,9,?6?;⑹求过点?1?3,?5,1?和?2?4,1,2?且垂直于平面x?8y?3z?1?0的平面.x?2解:平行于x轴的平面方程为y?1z?1?1000?0.即z?1?0.11同理可知平行于y轴,z轴的平面的方程分别为z?1?0,x?y?1?0. ⑵设该平面的截距式方程为xyz24???1,把点??3,2,?4?代入得c?? ?2?3c19故一般方程为12x?8y?19z?24?0.⑶若所求平面经过x轴,则?0,0,0?为平面内一个点,?5,1,?2?和?1,0,0?为所求平面的方位矢量,x?0∴点法式方程为y?0z?010?2?0 051∴一般方程为2y?z?0.同理经过y轴,z轴的平面的一般方程分别为2x?5z?0,x?5y?0.1,?1,?3?.?1?2垂直于平面?, ⑷?1?2??1,?1,?3?,平面?通过点?1?3,?1,2?, ∴该平面的法向量n??因此平面?的点位式方程为?x?3???y?1??3?z?2??0. 化简得x?y?3z?2?0.??. (5) op??2,9,?6?p?op????4?81?36?11.op?p?n0?11?cos?,cos?,cos????2,9,?6?. 296,cos??,cos???. 111111296y?z?11?0. 则该平面的法式方程为:x?111111∴ cos??既 2x?9y?6z?121?0.1,?8,3?,M1M2??(6)平面x?8y?3z?1?0的法向量为n??1,6,1?,点从?4,1,2? ?x?4写出平面的点位式方程为y?1z?2?863111?83?0,则A???26,61B?313?2,C??14,D??26?4?2?28??74, 111则一般方程Ax?By?Cz?D?0,即:13x?y?7z?37?0. 6.将下列平面的一般方程化为法式方程。

解析几何J答案

解析几何J答案

《解析几何》试题(J )答案一、填空题:(每空2分,共30分)1、13252=;2、)18,14,12(--;3、5-;4、k j i 11205++;5、3π; 6、1-; 7、01012+==-z y x ; 8、⎩⎨⎧-=-=36910997z x y x ,即⎪⎪⎩⎪⎪⎨⎧-=-=1049719z x y x ; 9、02767273=--+-z y x ; 10、1222222=--cz c x b y ,双叶旋转双曲面。

11、222)1(y x z +=-,⎩⎨⎧=-=01y z x ,⎩⎨⎧=-=01y zx ;12、⎪⎩⎪⎨⎧==+012222z b y a x ,⎪⎩⎪⎨⎧==+012222y c z a x ,⎪⎩⎪⎨⎧==+012222x cz b y 。

二、解下列各题:(每题7分,共42分)1、解: 三角形的另一边为n m n m n m b a 3)2()2(-=--+=-,……………………………………….3 因为矢量m 和n 是相互垂直的单位矢量,所以,三角形另一边的长的平方为。

109)3()3()()(222=+=-⋅-=-⋅-=-n m n m n m b a b a ba , (3)10=-∴b a 。

..............................................................................1 2、解:j i +=+=2 ,.........................................................2 k j 3+=+=, (2)∴三角形的面积为310012kj is ==…………………………………..2 72)6(3222=+-+=。

(1)3、解:从曲线⎪⎩⎪⎨⎧=-+=++zx z y zx z y 12834422222中,消去未知数z 、y 、x 后可得三个坐标面上的射影柱面方程。

解析几何复习题及参考答案

解析几何复习题及参考答案

解析几何复习题(部分参考解答)一.选择题)45.3(,:.3.;2.;1.;0.).(cos cos cos ,,,,,.1222-=++再利用弦函数先将余弦函数转化为正提示则时的夹角分别为与三坐标平面设向量D C B A C zox yoz xoy a γβαγβα2.||||b a b a -=+的充要条件是( C ).A. 或;B. ;C. ;D. 。

提示:向量和的三角形法则与向量减法几何意义等。

向量a+b ,a-b 是长方形图形的对角线. 3. 若向量满足条件,则必有关系( D )。

A .; B .; C .或; D .。

提示:定理1.7.1和定理1.7.2的(1.7-5).3,2,21.;10101.;04044.;233211.:)(.4=+=+==-=+⎩⎨⎧=--=--+=+=-z t y t x D zy x C z x y x B z y x A D xoy 平面的是下列直线中平行于提示;利用(3.5-5)5.向量a 在上的射影是( B ) 。

提示利用(1.7-2) A.||.||||.||b D a C b B a2.7.3.2.;3.;4.;6.).(,326:182511:.62121提示利用定理的夹角为与则与设直线ππππD C B A C L L z y y x L z y x L ⎩⎨⎧=+=-+=--=-7.过点(1,0,1)平行于直线⎩⎨⎧=++-=+01201--2z y x z y x 的直线方程是( D )。

提示: 利用(3.4-3)A.; B.;C. ;D. 。

8.在空间直角坐标系下,方程表示(A ).提示:可参考§2.2节曲面概念A.圆柱面;B.圆;C.球面;D.两相交直线.9.设直线,031020123:⎩⎨⎧=+--=+++z y x z y x L 平面:2x+13y+18z+7=0,则直线与平面的关系为( A )。

提示: §3.5中的定理3.5.1等A.; B.; C.; D. 斜交。

解析几何答案

解析几何答案

【答案与解析】 1.21 2.设圆方程为:13)()(22=-+-b y a x ,则⎪⎩⎪⎨⎧=-+=-+-1313103213)2()2(22b a b a解得 ⎩⎨⎧==54b a 或⎩⎨⎧-==10b a所求圆的方程是:13)5()4(22=-+-y x 或13)1(22=++y x 。

3.[。

4.由题意1(0,0(,0)O O m 2),m <<又⊙1O 与⊙2O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴12O A AO ⊥所以有22225,5m m =+=∴=±,∴24AB ==。

5.(1)O C 过原点圆 ,2224tt OC +=∴. 设圆C 的方程是 22224)2()(tt ty t x +=-+- 令0=x ,得ty y 4,021==;令0=y ,得t x x 2,021== 4|2||4|2121=⨯⨯=⨯=∴∆t tOB OA S OAB ,即:OAB ∆的面积为定值. (2),,CN CM ON OM == OC ∴垂直平分线段MN . 21,2=∴-=oc MN k k ,∴直线OC 的方程是x y 21=. t t 212=∴,解得:22-==t t 或 当2=t 时,圆心C 的坐标为)1,2(,5=OC ,此时C 到直线42+-=x y 的559<=d ,圆C 与直线42+-=x y 相交于两点.当2-=t 时,圆心C 的坐标为)1,2(--,5=OC ,此时C 到直线42+-=x y 的距离559>=d ,圆C 与直线42+-=x y 不相交,2-=∴t 不符合题意舍去.∴圆C 的方程为5)1()2(22=-+-y x .6.(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立. 所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)方法一:不能.由(Ⅰ)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧.方法二:设直线l 与圆C 相交于A 、B 两点,若直线l 能否将圆C 分割成弧长的比值为12的两段圆弧,则圆心角120ACB ∠=, 则圆心到直线的距离12rd ===,化简得423530m m ++=,20m ≥ ,故m 无解。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0






PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2






(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2








专题06 解析几何(解析版)

专题06 解析几何(解析版)

一、单选题1.过点(1,0)-,且与直线1153x y ++=-有相同方向向量的直线的方程为 A .3530x y +-= B .3530x y ++= C .3510x y +-= D .5350x y -+=【答案】B【解析】由1153x y ++=-可得,3x +5y +8=0,即直线的斜率35-, 由题意可知所求直线的斜率k 35=-,故所求的直线方程为y 35=-即3x +5y +3=0.故选:B .2.以抛物线24y x =的焦点为右焦点,且长轴为4的椭圆的标准方程为A .2211615x y +=B .221164x y +=C .22143x y +=D .2214x y +=【答案】C【解析】有已知抛物线24y x =的焦点为(1,0),设椭圆方程为22221x y a b+=,则221a b -=,又由已知2a =,所以23b =,故椭圆方程为22143x y +=,故选:C.3.明代数学家程大位所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二。

试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度” . A .6丈 B .8丈 C .12丈D .16丈【答案】B【解析】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=, 取3π=则2256r =,16r =步,又1丈=10尺, 1步=5尺,故1丈=2步,故16r =步8=丈, 故选:B4.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是 A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为2+2=25+k , 则k >﹣25, 圆C 1:x 2+y 2=1的圆心坐标为,半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|1或|C 1C 2|1, 即51或51,解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是∪.故选:D .5.已知22(2)9x y -+=的圆心为C .过点(2,0)M -且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间.过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹为. A .圆的一部分 B .椭圆的一部分 C .双曲线的一部分 D .抛物线的一部分【答案】C【解析】可得圆2+y 2=9的圆心为C ,半径为R =3. 如图,∵CB =CA =R =3,∴∠CBA =∠CAB , ∵AC ∥MP ,∴,∴∠CBA =∠CAB =∠PMA , ∴PM =PB =PC +BC⇒PM ﹣PC =BC =3,且3<MC . ∴点P 的轨迹是双曲线的一部分,故选C .6.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-A .1-B .12-C .1D .2【答案】A 【解析】由题意得:因为21x y -=与圆222x y +=在第一象限的交点为1,1(),所以lim =1lim =1n n n n x y →∞→∞,,1limlim 1n n n n n n y y x x →∞→∞'-='∴-,又由222n n x y +=得220n n n nn n n ny xx x y y x y +=⇒=-''''lim 1lim lim lim() 1.1lim n n n nn n n n n nn n n x y y x x x y y →∞→∞→∞→∞→∞-∴='=-=-=--'选A. 7.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是A .12B.2C.2D.3【答案】B 【解析】由题意可知,抛物线的准线方程为x=﹣1,A , 过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,PF PA有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大,设在PA 的方程为:y=k ,所以214y k x y x ()=+⎧⎨=⎩,解得:k 2x 2+x+k 2=0,所以△=2﹣4k 4=0,解得k=±1,所以∠NPA=45°,PF PA=cos ∠NPA=2.故选B . 8.已知1x 、2x 是关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,则经过两点()211,A x x 、()222,B x x 的直线与双曲线2214x y -=的交点个数为A .0B .1C .2D .根据m 的值来确定【答案】B【解析】关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,所以44(21)8(2)0,2m m m ∆=--=->∴<,1212221212112,2AB x x x x k x x x x -+=∴===-+ 双曲线2214x y -=渐近线方程曲线12y x =±,∴直线AB 与双曲线的渐近线平行或重合,若()211,A x x 或()222,B x x 在直线12y x =得1x ,2x 的值为0或2,此时1210,2m m -==, m Z ∈Q ,不合题意,直线AB 不与双曲线重合,∴直线AB 与双曲线一定平行,所以有一个交点.故选:B9.如图,平面直角坐标系中,曲线的方程可以是.A .()()22110x y x y--⋅-+=B()2210x y -+=C .()10x y --= D0=【答案】C【解析】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩, 221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误. 故选C.10.已知双曲线22221(00)x y b a a b-=>>,的两条渐近线与抛物线y 2=2px 的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .3【答案】C 【解析】∵双曲线的方程为22221(00)x y b a a b-=>>,∴双曲线的渐近线的方程为b y x a =±∵抛物线22(0)y px p =>的准线方程是2px =-∴双曲线的渐近线与抛物线准线相交的A ,B 两点的纵坐标分别是2pby a=±∵双曲线的离心率为2∴2c a =∴b a ===∴A ,B 两点的纵坐标分别是2y p =±又∵AOB ∆x 轴是AOB ∠的平分线∴122p⨯=2p =故选C.11.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且4PF =,则椭圆C 的方程为A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得8==,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .12.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使||||MA MF +取得最小值的M 的坐标为A .()0,0B .1,12⎛⎫ ⎪⎝⎭C .(D .()2,2【答案】D【解析】如图所示,过M 作准线的垂线,垂足为B .MF MA MB MA +=+,当M 、B 、A 三点共线时,MB MA +最小,即M 运动到'M 时,即()2,2M ,故选D13.已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为A .3y x =±B .4y x =±C .10y x =±D .3y x =±【答案】C 【解析】 由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++.又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为10y x ==±故选:C 14.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为A B C .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点, 由正弦定理可得()2m n csin sin sin βααβ==+,即有()2m n csin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin αβαβ+=+. 在三角形21F PF 中,由m+n=2a,cos222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠=8,∴3sin sin 82αβ+≤=,故选:D . 15.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-uuu r uuu u r uuu r 的最小值为 A.B .4C.D .以上都不对【答案】B【解析】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r的最小值为4.故选:B.16.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π;;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为5. A .1个 B .2个C .3个D .4个【答案】B 【解析】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确,故选B .17.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B【解析】根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和y =联立,求得3(,2M N ,所以3MN ==,故选B. 18.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一.给出下列三个结论:①曲线C 恰好经过6个整点;②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过,,,, ,六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.19.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个【答案】D【解析】如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形, 故选:D 。

解析几何第四章习题及解答

解析几何第四章习题及解答

解析几何第四章习题及解答第4章二次曲线和二次曲面习题 1.在直角坐标系xOy中,以直线l:4x?3y?12?0为新坐标系的x?轴,取通过A(1,?3)且垂直于l的直线为y?轴,写出点的坐标变换公式,并且求直线l1:3x?2y?5?在新坐标系中的方程。

0解:直线l:4x?3y?12?0的方向是(3,4),与它垂直的方向是?(?4,3),新坐标系的x?轴的坐标向量取为(3443,),y?轴坐标向量取为(?,),与直线5555l:4x?3y?12?0垂直且的直线方程可设为3x?4y?c?0,于过点A(1,?3),得到直线方程是3x?4y?9?0,两直线的交点(?3,0)是新坐标原点,所以点的坐标变换公式:?3?x??5y??4??5?4?5??x? 3?. ?3??y??0?5??直线l1:3x?2y?5?0在新坐标系中的方程:l1:3(35x??45y??3)?2(45x??35y?)?5?0,化简有l1:x??18y??20?0. 2.作直角坐标变换,已知点A(6,?5),B(1,?4)的新坐标分别为(1,?3),(0,2),求点的坐标变换公式。

解:设同定向的点的坐标变换公式是:?x??cosy??sin??sin???x? a?. cosyb?它的向量的坐标变换公式是:?u??cosv??sin??sin???u? . cosv??题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5??cos1??sin??sin????1? 125得到于是点的坐标变换公.sin??,cos??.1313cos5?式是:?5?x??13y??12??13?12?1 3??xa?,.将点B(1??5??y??b?13??4及)它的像点(0,2)代入得到?37??a??13??,所以点的坐标变换公式是:b??62????13???5?x??13y 121312?135?13?37x?13. ? y??62????13???设反定向的点的坐标变换公式是:?xcosy??sin?sinx?a. cosy??b?它的向量的坐标变换公式是:?ucosv??sin?sinco su??. ?v题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5cos??1sin?sincos 1?于是点的坐标变换公式s?0.??.得到sin1,co??5?是:?x??0y???1?1??x???a???? .将点B(1?,0??yb?及它的像点(0,2)代入得到4?a??3,所以点的坐标变换公式是:b?4x??0y???1?1??x???3? . 0y?4?3.设新旧坐标系都是右手直角坐标系,点的坐标变换公式为?22x??y??5,?x?22(1)??22x??y??3 ;?y22?xy?3, (2)??y?x?2.?其中,(x,y)与(x?,y?)分别表示同一点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何(尤承业)前四章部分习题答

第一章:平面几何基础
1.证明:若两条直线的斜率相等,则它们平行。

证明:设直线l1的斜率为k1,直线l2的斜率为k2。

若k1=k2,则有
k1x+b1=k2x+b2,即(k1-k2)x=b2-b1。

由于k1-k2=0,所以方程化简为0x=b2-b1。

由于任何实数乘以0都等于0,所以此方程有解,即二者平行。

2.已知直线l1的斜率为k1,直线l2经过点A(a,b)且与l1垂直,求直线l2
的方程。

解:由直线l1的斜率为k1,可知l1的斜率为k1的直线上任意一点(x1,y1)与原点(0,0)的斜率为k1,即有y1/x1=k1,即y1=k1x1。

由于直线l2经过点A(a,b)且与l1垂直,所以直线l2的斜率为-1/k1。

设直线l2的方程为y=-1/k1 x + c,代入点A(a,b)可得b=-1/k1*a+c,即c=b+a/k1。

所以直线l2的方程为y=-1/k1 x + b+a/k1。

3.已知直线l1过点A(a,b)和点B(c,d),求直线l1的方程。

解:由于直线l1过点A(a,b)和点B(c,d),所以直线l1的斜率为直线AB的斜率。

设直线l1的方程为y=kx+m,代入点A(a,b)和点B(c,d)可得方程组: b=ka+m d=kc+m
将第一个方程乘以k,得到bk=ka^2+km,再用第二个方程减去这个等式,可得d-b = kc-ka^2+km-km,即d-b=k(c-a)。

所以直线l1的方程为y=(d-b)/(c-a)x + (ad-bc)/(c-a)。

第二章:直线与圆
1.已知直线l的方程为y=ax+b,圆C的圆心为O(h,k),半径为r,求直线l
与圆C的交点坐标。

解:设直线l与圆C的交点为点P(x,y),代入直线l的方程可得y=ax+b。

将这个方程代入圆C的方程(x-h)^2+(y-k)^2=r^2中,得到(x-h)^2+(ax+b-
k)^2=r^2。

展开后整理得到一个二次方程,即x^2+(a^2+1)x-2ah+(b-k)^2-r^2=0。

这是一个关于x的二次方程,解这个方程可以得到两个根,即x1和x2。

再将x1和x2分别代入直线l的方程y=ax+b,可得到两个交点的坐标分别为P1(x1,ax1+b)和P2(x2,ax2+b)。

2.已知直线l与圆C相切于点P,直线l的方程为y=ax+b,圆C的圆心为
O(h,k),半径为r,求直线l的斜率a。

解:设直线l与圆C的斜率为a1,由于直线l与圆C相切于点P,所以直线l 的斜率与点P到圆C圆心O的连线的斜率相等。

设点P的坐标为(x1,y1),则直线l的斜率为(a1=(y1-k)/(x1-h))。

由于直线l的方程为y=ax+b,所以a=(y1-b)/(x1)。

将这两个斜率相等,即有(y1-k)/(x1-h)=(y1-b)/(x1)。

解这个方程可以得到直线l的斜率a。

3.已知直线l1的方程为y=ax+b,直线l2过点P(x0,y0)且与直线l1垂直,求
直线l2的方程。

解:由于直线l2过点P(x0,y0)且与直线l1垂直,所以直线l2的斜率为-
1/a。

设直线l2的方程为y=(-1/a)x+c,代入点P(x0,y0)可得y0=(-1/a)x0+c,即c=y0+(1/a)x0。

所以直线l2的方程为y=(-1/a)x+y0+(1/a)x0。

第三章:圆锥曲线
1.求椭圆的标准方程。

解:设椭圆的长半轴为a,短半轴为b,圆心为O(h,k)。

椭圆的标准方程为(x-h)^2/a^2+(y-k)^2/b^2=1。

2.求椭圆的离心率。

解:椭圆的离心率为e=c/a,其中c为椭圆的焦点到圆心的距离,a为椭圆的长半轴。

3.求抛物线的标准方程。

解:设抛物线的焦点为F,准线为l,焦距为p,直线l的方程为y=k。

抛物线的标准方程为y^2=2px。

4.求双曲线的标准方程。

解:设双曲线的焦点为F,准线为l,焦距为c,直线l的方程为y=k。

双曲线的标准方程为(x-h)^2/a^2-(y-k)^2/b^2=1。

第四章:空间几何基础
1.求平面的法向量。

解:设平面的方程为Ax+By+Cz+D=0,其中A、B、C为平面的法向量的坐标。

平面的法向量为N=(A,B,C)。

2.求两个平面的夹角。

解:设两个平面的法向量分别为N1=(A1,B1,C1)和N2=(A2,B2,C2)。

两个平面的夹角为θ,满足N1·N2=|N1||N2|cosθ,其中·表示点乘。

所以两个平面的夹角为θ=arccos((A1A2+B1B2+C1C2)/(|N1||N2|))。

3.求直线的方向向量。

解:设直线的方程为x=x0+ta,y=y0+tb,z=z0+tc,其中a、b、c为直线的方向向量的坐标。

直线的方向向量为V=(a,b,c)。

4.求两条直线的夹角。

解:设两条直线的方向向量分别为V1=(a1,b1,c1)和V2=(a2,b2,c2)。

两条直线的夹角为θ,满足cosθ=|V1·V2|/(|V1||V2|),其中·表示点乘。

所以两条直线的夹角为θ=arccos(|a1a2+b1b2+c1c2|/(|V1||V2|))。

相关文档
最新文档