特殊三角形知识点及例题
中考数学专题复习27特殊三角形(解析版)

特殊三角形考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在Rt ABC △中.90C ∠=︒.AF EF =.若72CFE ∠=︒.则B ∠=______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF .再根据三角形的外角和定理得出∠A +∠AEF =∠CFE .求出∠A 的度数.最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∠ AF =EF .∠ ∠A =∠AEF .∠∠A +∠AEF =∠CFE=72°.∠ ∠A =36°.∠ ∠C =90°.∠A +∠B +∠C =180°.∠ ∠B =180°-∠A -∠C =54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图.在四边形ABCD 中.AB BC BD ==.设ABC α∠=.则ADC ∠=______(用含α的代数式表示).【答案】11802α︒-【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠.∠BDC =1902CBD ︒-∠.两角相加即可得到结论.【详解】解:在∠ABD 中.AB =BD∠∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在∠BCD 中.BC =BD∠∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∠ABC ABD CBD α∠=∠+∠=∠ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠ =11802ABC ︒-∠ =11802α︒- 故答案为:11802α︒-.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后.按图1分成六等份折叠得到图2.将图2沿虚线AB 剪开.再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒.则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质.根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC.EO由折叠性质可得:∠EOC=3603012︒=︒.EC=DC.OC平分∠ECD∠∠ECO=11(180275)15 22ECD∠=︒-⨯︒=︒∠∠OEC=180°-∠ECO-∠EOC=135°即OBA∠的度数为135°故答案为:135°4.(2021·山东中考真题)如图.在ABC中.ABC∠的平分线交AC于点D.过点D作//DE BC;交AB于点E.(1)求证:BE DE =;(2)若80,40A C ∠=︒∠=︒.求BDE ∠的度数.【答案】(1)见详解;(2)30BDE ∠=︒【分析】(1)由题意易得,ABD CBD CBD EDB ∠=∠∠=∠.则有ABD EDB ∠=∠.然后问题可求证; (2)由题意易得60ABC ∠=︒.则有30ABD CBD ∠=∠=︒.然后由(1)可求解.【详解】(1)证明:∠BD 平分ABC ∠.∠ABD CBD ∠=∠.∠//DE BC .∠CBD EDB ∠=∠.∠ABD EDB ∠=∠.∠BE DE =;(2)解:∠80,40A C ∠=︒∠=︒.∠18060ABC A C ∠=︒-∠-∠=︒.由(1)可得30ABD CBD BDE ∠=∠=∠=︒.5.(2020•台州)如图.已知AB =AC .AD =AE .BD 和CE 相交于点O .(1)求证:∠ABD ∠∠ACE ;(2)判断∠BOC 的形状.并说明理由.【分析】(1)由“SAS ”可证∠ABD ∠∠ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE .由等腰三角形的性质可得∠ABC =∠ACB .可求∠OBC =∠OCB .可得BO =CO .即可得结论.【解答】证明:(1)∠AB =AC .∠BAD =∠CAE .AD =AE .∠∠ABD∠∠ACE(SAS);(2)∠BOC是等腰三角形.理由如下:∠∠ABD∠∠ACE.∠∠ABD=∠ACE.∠AB=AC.∠∠ABC=∠ACB.∠∠ABC﹣∠ABD=∠ACB﹣∠ACE.∠∠OBC=∠OCB.∠BO=CO.∠∠BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图.等边三角形ABC的边长为4.C的半3P为AB边上一动点.过点P作C的切线PQ.切点为Q.则PQ的最小值为________.【答案】3【分析】连接OC和PC.利用切线的性质得到CQ∠PQ.可得当CP最小时.PQ最小.此时CP∠AB.再求出CP.利用勾股定理求出PQ即可.【详解】解:连接QC和PC.∠PQ和圆C相切.∠CQ∠PQ.即∠CPQ始终为直角三角形.CQ为定值.∠当CP最小时.PQ最小.∠∠ABC是等边三角形.∠当CP∠AB时.CP最小.此时CP∠AB.∠AB=BC=AC=4.∠AP=BP=2.∠CP22-3AC AP∠圆C的半径CQ3∠PQ22-=3.CP CQ故答案为:3.7.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的∠DEF的周长是.【分析】根据三等分点的定义可求EF的长.再根据等边三角形的判定与性质即可求解.【解析】∠等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∠EF=2.∠DE∠AB.DF∠AC.∠∠DEF是等边三角形.∠剪下的∠DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图.点P、Q分别是等边∠ABC边AB、BC上的动点(端点除外).点P、点Q以相同的速度.同时从点A、点B出发.(1)如图1.连接AQ、CP.求证:∠ABQ∠∠CAP;(2)如图1.当点P、Q分别在AB、BC边上运动时.AQ、CP相交于点M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数;(3)如图2.当点P、Q在AB、BC的延长线上运动时.直线AQ、CP相交于M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数.【分析】(1)根据等边三角形的性质.利用SAS 证明∠ABQ ∠∠CAP 即可;(2)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =60°;(3)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =120°.【解析】(1)证明:如图1.∠∠ABC 是等边三角形∠∠ABQ =∠CAP =60°.AB =CA .又∠点P 、Q 运动速度相同.∠AP =BQ .在∠ABQ 与∠CAP 中.{AB =CA∠ABQ =∠CPA AP =BQ. ∠∠ABQ ∠∠CAP (SAS );(2)点P 、Q 在AB 、BC 边上运动的过程中.∠QMC 不变.理由:∠∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠ACM 的外角.∠∠QMC =∠ACP +∠MAC =∠BAQ +∠MAC =∠BAC∠∠BAC =60°.∠∠QMC =60°;(3)如图2.点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时.∠QMC 不变 理由:同理可得.∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠APM 的外角.∠∠QMC =∠BAQ +∠APM .∠∠QMC =∠ACP +∠APM =180°﹣∠P AC =180°﹣60°=120°.即若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动.∠QMC 的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图.在∠ABC 中.∠B =∠C .过BC 的中点D 作DE ∠AB .DF ∠AC .垂足分别为点E 、F .(1)求证:DE =DF ;(2)若∠BDE =40°.求∠BAC 的度数.【分析】(1)根据DE ∠AB .DF ∠AC 可得∠BED =∠CFD =90°.由于∠B =∠C .D 是BC 的中点.AAS 求证∠BED ∠∠CFD 即可得出结论.(2)根据直角三角形的性质求出∠B =50°.根据等腰三角形的性质即可求解.【解答】(1)证明:∠DE ∠AB .DF ∠AC .∠∠BED =∠CFD =90°.∠D 是BC 的中点.∠BD =CD .在∠BED 与∠CFD 中.{∠BED =∠CFD∠B =∠CBD =CD. ∠∠BED ∠∠CFD (AAS ).∠DE =DF ;(2)解:∠∠BDE =40°.∠∠B=50°.∠∠C=50°.∠∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上.抽象出如图(2)的平面图形.∠ACB与∠ECD恰好为对顶角.∠ABC=∠CDE=90°.连接BD.AB =BD.点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时.连接DF(如图(2)).小明经过探究.得到结论:BD∠DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换.即:BD∠DF.则点F为线段CE的中点.请判断此结论是否成立.若成立.请写出证明过程;若不成立.请说明理由.问题解决:(3)若AB=6.CE=9.求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF.推出EF=FD.再证明FD=FC 即可解决问题.(3)如图3中.取EC的中点G.连接GD.则GD∠BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中.∠∠EDC=90°.EF=CF.∠DF=CF.∠∠FCD=∠FDC.∠∠ABC=90°.∠∠A+∠ACB=90°.∠BA=BD.∠∠A=∠ADB.∠∠ACB=∠FCD=∠FDC.∠∠ADB+∠FDC=90°.∠∠FDB=90°.∠BD∠DF.故答案为是.(2)结论成立:理由:∠BD∠DF.ED∠AD.∠∠BDC+∠CDF=90°.∠EDF+∠CDF=90°.∠∠BDC=∠EDF.∠AB=BD.∠∠A=∠BDC.∠∠A=∠EDF.∠∠A+∠ACB=90°.∠E+∠ECD=90°.∠ACB=∠ECD.∠∠A=∠E.∠∠E=∠EDF.∠EF=FD.∠∠E+∠ECD=90°.∠EDF+∠FDC=90°.∠FD =FC .∠EF =FC .∠点F 是EC 的中点.(3)如图3中.取EC 的中点G .连接GD .则GD ∠BD .∠DG =12EC =92. ∠BD =AB =6.在Rt∠BDG 中.BG =√DG 2+BD 2=√(92)2+62=152. ∠CB =152−92=3.在Rt∠ABC 中.AC =√AB 2+BC 2=√62+32=3√5.∠∠ACB =∠ECD .∠ABC =∠EDC .∠∠ABC ∠∠EDC .∠AC EC =BC CD. ∠3√59=3CD. ∠CD =9√55. ∠AD =AC +CD =3√5+9√55=24√55. 11.(2020•常德)已知D 是Rt∠ABC 斜边AB 的中点.∠ACB =90°.∠ABC =30°.过点D 作Rt∠DEF 使∠DEF =90°.∠DFE =30°.连接CE 并延长CE 到P .使EP =CE .连接BE .FP .BP .设BC 与DE 交于M .PB 与EF 交于N .(1)如图1.当D .B .F 共线时.求证:∠EB =EP ;(2)如图2.当D .B .F 不共线时.连接BF .求证:∠BFD +∠EFP =30°.【分析】(1)∠证明∠CBP 是直角三角形.根据直角三角形斜边中线可得结论; ∠根据同位角相等可得BC ∠EF .由平行线的性质得BP ∠EF .可得EF 是线段BP 的垂直平分线.根据等腰三角形三线合一的性质可得∠PFE =∠BFE =30°;(2)如图2.延长DE 到Q .使EQ =DE .连接CD .PQ .FQ .证明∠QEP ∠∠DEC (SAS ).则PQ =DC =DB .由QE =DE .∠DEF =90°.知EF 是DQ 的垂直平分线.证明∠FQP ∠∠FDB (SAS ).再由EF 是DQ 的垂直平分线.可得结论.【解答】证明(1)∠∠∠ACB =90°.∠ABC =30°.∠∠A =90°﹣30°=60°.同理∠EDF =60°.∠∠A =∠EDF =60°.∠AC ∠DE .∠∠DMB =∠ACB =90°.∠D 是Rt∠ABC 斜边AB 的中点.AC ∠DM .∠BM BC =BD AB =12. 即M 是BC 的中点.∠EP =CE .即E 是PC 的中点.∠ED ∠BP .∠∠CBP =∠DMB =90°.∠∠CBP 是直角三角形.∠BE =12PC =EP ; ∠∠∠ABC =∠DFE =30°.∠BC ∠EF .由∠知:∠CBP =90°.∠BP ∠EF .∠EB=EP.∠EF是线段BP的垂直平分线.∠PF=BF.∠∠PFE=∠BFE=30°;(2)如图2.延长DE到Q.使EQ=DE.连接CD.PQ.FQ.∠EC=EP.∠DEC=∠QEP.∠∠QEP∠∠DEC(SAS).则PQ=DC=DB.∠QE=DE.∠DEF=90°∠EF是DQ的垂直平分线.∠QF=DF.∠CD=AD.∠∠CDA=∠A=60°.∠∠CDB=120°.∠∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP.∠∠FQP∠∠FDB(SAS).∠∠QFP=∠BFD.∠EF是DQ的垂直平分线.∠∠QFE=∠EFD=30°.∠∠QFP+∠EFP=30°.∠∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图.ABC中.∠=︒==.将ADE沿DE翻折.使点A与点B重合.则CE的长为90,8,6ACB AC BC()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10.再利用折叠的性质得到AE=BE.AD=BD=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中根据勾股定理可得到x2=62+(8-x)2.解得x.可得CE.【详解】解:∠∠ACB=90°.AC=8.BC=6.∠AB22AC BC+∠∠ADE沿DE翻折.使点A与点B重合.∠AE=BE.AD=BD=12AB=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中∠BE2=BC2+CE2.∠x2=62+(8-x)2.解得x=25 4.∠CE=2584-=74.故选:D.。
直角三角形知识点

直角三角形知识点直角三角形是一种特殊的三角形,其内部包含一个90度的直角。
本文将介绍直角三角形的定义、性质、勾股定理以及一些相关的例题。
一、直角三角形的定义直角三角形是指一个三角形内部有一个角度是90度的三角形。
在直角三角形中,较长的边称为斜边,与直角相邻的边称为直角边。
直角三角形的性质与常规三角形有着显著的不同。
二、直角三角形的性质1. 直角三角形中,直角边的长度相等。
2. 根据勾股定理,直角三角形中的斜边长度等于直角边长度的平方和的平方根。
3. 直角三角形的三个角度之和等于180度。
三、勾股定理勾股定理是直角三角形中最重要的定理之一,也是直角三角形应用最为广泛的原理。
勾股定理表述如下:直角三角形中,斜边的平方等于直角边的平方和。
公式表示为:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角三角形的两个直角边的长度。
勾股定理在日常生活中有许多应用,例如测量直角三角形的边长,计算三角形的角度等。
四、直角三角形的应用举例1. 求斜边长度:根据已知直角边的长度,可以利用勾股定理求出斜边的长度。
2. 求角度大小:已知两个直角边的长度,可以利用三角函数中的正弦、余弦和正切等函数求出各个角度的大小。
3. 判断三角形是否为直角三角形:通过测量三个角度的大小,如果发现其中一个角度为90度,则可以判断为直角三角形。
五、例题解析1. 已知一个直角三角形的直角边长为3cm和4cm,求斜边的长度。
根据勾股定理,斜边的长度c = √(3² + 4²) = √(9 + 16) = √25 = 5cm。
2. 已知一个直角三角形的斜边长为10cm,直角边的长度为6cm,求另一个直角边的长度。
根据勾股定理,直角边的长度a或b = √(c² - 直角边的长度²) = √(10² - 6²) = √(100 - 36) = √64 = 8cm。
【北师大版2020中考数学专项复习】:特殊三角形

【2020中考数学专项复习】:特殊三角形【考纲要求】【高清课堂:等腰三角形与直角三角形考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形中,S Rt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.六边形ABCDEF的每个内角都为120°,且AB=1,BC=9,CD=6,DE=8.求六边形ABCDEF的周长.【思路点拨】考虑到每个内角为120°,则每个外角均为60°,可通过构造等边三角形来求边长及面积.【答案与解析】延长BC、ED交于M,DE、AF交于N,FA、CB交于P.∵∠EDC=∠DCB=120°∴∠DCM=∠CDM=60°,∴△MDC为等边三角形∠M=60°,同理△BAP,△EFN均为等边三角形.∠M=∠N=60°∴△MNP为等边三角形,MD=MC=6,PB=PA=1,NE=NF=EF,MP=6+9+1=16=MN=NP,EF=NF=NE=MN-ME=16-(6+8)=2.FA=NP-NF-PA=16-1-2=13,∴周长为1+9+6+8+2+13=39.【总结升华】考点是多边形外角和内角的关系.举一反三:【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.【答案】.2.已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D ,又∵BE=DF,∴≌.∴AE=AF.(2)连接AC, ∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA ,∴△ABC和△ACD都是等边三角形.∴, .∴.又∵AE=AF ∴是等边三角形.【总结升华】此题涉及到三角形全等的判定与性质,等边三角形的判定与性质.举一反三:【高清课堂:等腰三角形与直角三角形例4】【变式】如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE.【答案】延长BD到F,使DF=BC,连接EF,∵等边△ABC,∴AB=BC=AC,∠B=60.∵BF=BD+DF,BE=AB+AE,AE=BD,BC=DF,∴BF=BE,∴等边△BEF,∴EF=BE,∠F=∠B,∴△BCE≌△FDE(SAS).∴CE=DE.类型二、直角三角形3.△ABC和△ECD都是等腰直角三角形,,D为AB边上一点.求证:(1)△ACE≌△BCD; (2).【思路点拨】判定两个三角形全等时,首先要根据条件判断运用哪个判定定理.【答案与解析】(1) ∵,∴,即.∵,∴△BCD≌△ACE.(2) ∵,∴.∵△BCD≌△ACE,∴,∴.∴.【总结升华】该题涉及到的知识点有全等三角形的判定及勾股定理.4.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.【思路点拨】△ACD和△BCE都是等腰直角三角形,为证明全等提供了等线段的条件.【答案与解析】猜测 AE=BD,AE⊥BD.理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB.∴△ACE≌△DCB(SAS).∴AE=BD,∠CAE=∠CDB.∵∠AFC=∠DFH,∴∠DHF=∠ACD=90°,∴AE⊥BD.【总结升华】两条线段的关系包括数量关系和位置关系两种.举一反三:【变式】 .以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.【答案】.类型三、综合运用5 .(2019•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH. 又∵ABP ACP ABC S S S +=△△△,∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH. (1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF=3时,则AB 边上的高CH=______.点P 到AB 边的距离PE=________.【思路点拨】运用面积证明可使问题简便,(2)中分情况讨论是解题的关键. 【答案与解析】(1)如图②,PE=PF+CH .证明如下: ∵PE⊥AB,PF⊥AC,CH⊥AB, ∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH, ∵ABP S △=ACP S △+ABC S △,∴12AB•PE=12AC•PF+12AB•CH, 又∵AB=AC, ∴PE=PF+CH;(2)∵在△ACH 中,∠A=30°,∴AC=2CH.∵ABC S △=12AB•CH,AB=AC , ∴12×2CH•CH=49, ∴CH=7. 分两种情况:①P 为底边BC 上一点,如图①. ∵PE+PF=CH, ∴PE=CH -PF=7-3=4;②P 为BC 延长线上的点时,如图②. ∵PE=PF+CH, ∴PE=3+7=10. 故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中.6.在△ABC中,AC=BC ,,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明.(2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【思路点拨】根据条件判断FH=FC,要证FH=FC 一般就要证三角形全等.【答案与解析】(1)FH与FC的数量关系是:.延长交于点G,由题意,知∠EDF=∠ACB=90°,DE=DF.∴DG∥CB.∵点D为AC的中点,∴点G为AB的中点,且.∴DG为的中位线.∴.∵AC=BC,∴DC=DG.∴DC- DE =DG- DF.即EC =FG.∵∠EDF =90°,,∴∠1+∠CFD =90°,∠2+∠CFD=90°.∴∠1 =∠2.∵与都是等腰直角三角形,∴∠DEF =∠DGA = 45°.∴∠CEF =∠FGH = 135°.∴△CEF ≌△FGH.∴ FH=FC.(2)FH 与FC 仍然相等.【总结升华】对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养.举一反三:【高清课堂:等腰三角形与直角三角形 例7】【变式】如图, △ABC 和△CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=; ②S ⊿ABC +S ⊿CDE ≥S ⊿ACE ; ③BM ⊥DM;④BM=DM.正确结论的个数是( )A.1个 B.2个 C.3个 D.4个【答案】D.中考总复习:全等三角形—巩固练习(提高)【巩固练习】一、选择题1. 已知等边△ABC 的边长为a ,则它的面积是( )A .a 2B .a 2C .a 2D .a 2CDBC M E DC B AA .(1)和(2)B .(2)和(3)C .(3)和(4)D .(1)和(4)3.如图,等腰三角形ABC 中,∠BAC=90°,在底边BC 上截取BD=AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是( ) A .1 B .2 C .3 D .44.如图,三角形纸片ABC 中,∠B=2∠C ,把三角形纸片沿直线AD 折叠,点B 落在AC 边上的E 处,那么下列等式成立的是( )A .AC=AD+BD B .AC=AB+BD C .AC=AD+CD D .AC=AB+ CD5.(2019•镇江)边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )A.511()32a ⨯ B .511()23a ⨯ C .611()32a ⨯ D. 611()23a ⨯ 6. 用含30°角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直角梯形,其中可以被拼成的图形是( )A .①②B .①③C .③④D .①②③二、填空题7.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:① AD=BE ;② PQ ∥AE ;③ AP=BQ ;④ DE=DP ; ⑤ ∠AOB=60°.恒成立的有______________(把你认为正确的序号都填上).8.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点在小量角器上对应的度数为,那么在大量角器上对应的度数为_____(只需写出~的角度).9.若直角三角形两直角边的和为3,斜边上的高为,则斜边的长为 .510.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是_________;△BPD 的面积是_________.11.如图,P是正三角形ABC 内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB ,则点P与点P′之间的距离为_________,∠APB=_________.12..以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.三、解答题13. 已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.14. (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.图1(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.图2(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).图3图415.①如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)②若将①中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.③若将①中的“正方形ABCD”改为“正边形ABCD…X”,请你做出猜想:当∠AMN=_____________°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)16.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为时,求正方形的边长.【答案与解析】一、选择题1.【答案】D.2.【答案】B.【解析】此题采取排除法做.(1)AB=AE,所以△ABE是等腰的,等腰三角形底角∠AEB不可能90°,所以AC⊥BD不成立.排除A,D;(2)∵AC平分∠DAB,AB=AE,AC=AD.∴△DAE≌△CAB,∴BC=DE成立,排除C.3.【答案】D.【解析】三角形ABC是等腰三角形,且∠BAC=90°,所以∠B=∠C=45°,又DE⊥BC,所以∠DEC=∠C= 45°,所以△EDC是等腰三角形,BD=AB,所以△ABD是等腰三角形,∠BAD=∠BDA,而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,所以∠EAD=∠EDA,所以△EAD是等腰三角形,因此图中等腰三角形共4个.4.【答案】B.【解析】根据题意证得AB=AE,BD=DE,DE=EC.据此可以对以下选项进行一一判定.选B.5.【答案】A.6.【答案】B.【解析】当把完全重合的含有30°角的两块三角板拼成的图形有三种情况:(1)当把60度角对的边重合,且两个直角的顶角也重合时,所成的图形是等边三角形;(2)当把30度角对的边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;(3)当斜边重合,且一个三角形的30度角的顶点与另一个三角形60度角的顶点重合时,所成的图形是矩形,矩形也是平行四边形.选B二、填空题7.【答案】①②③⑤.【解析】提示:证△ACD ≌△BCE, △ACP ≌△BCQ.8.【答案】50°.9【解析】设直角边为a,b,斜边为c ,则a +b =3,222a b c +=,1122ab c =⨯,代入即可. 10.【答案】1,.【解析】∵△BPC 是等边三角形,∴∠PCD=30°做PE ⊥CD,得PE=1,即△CDP 的面积是=12×2×1=1; 根据即可推得BCD BPD BPC PCDSS S S +=+. 11.【答案】6 ,150°.12.【答案】. 三、解答题13.【答案与解析】 (1)结论:BM=DM ,∠BMD=2∠BCD .理由:∵BM 、DM 分别是Rt △DEC 、Rt △EBC 的斜边上的中线,∴BM=DM=12 CE;又∵BM=MC,∴∠MCB=∠MBC,即∠BME=2∠BCM;同理可得∠DME=2∠DCM;∴∠BME+∠DME=2(∠BCM+∠DCM),即∠BMD=2∠BCD.(2)在(1)中得到的结论仍然成立.即BM=DM,∠BMD=2∠BCD 证法一:∵点M是Rt△BEC的斜边EC的中点,∴BM=12EC=MC,又点M是Rt△BEC的斜边EC的中点,∴DM=12EC=MC,∴BM=DM;∵BM=MC,DM=MC,∴∠CBM=∠BCM,∠DCM=∠CDM,∴∠BMD=∠EMB+∠EMD=2∠BCM+2∠DCM=2(∠BCM+∠DCM)=2∠BCD,即∠BMD=2∠BCD.证法二:∵点M是Rt△BEC的斜边EC的中点,∴BM=12EC=ME;又点M是Rt△DEC的斜边EC的中点,∴DM=12EC=MC,∴BM=DM;∵BM=ME,DM=MC,∴∠BEC=∠EBM,∠MCD=∠MDC,∴∠BEM+∠MCD=∠BAC=90°-∠BCD,∴∠BMD=180°-(∠BMC+∠DME),=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,即∠BMD=2∠BCD.(3)所画图形如图所示:图1中有BM=DM,∠BMD=2∠BCD;图2中∠BCD不存在,有BM=DM;图3中有BM=DM,∠BMD=360°-2∠BCD.解法同(2).14.【答案与解析】(1) 证明:如图1,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,∴△ABE≌△BCF,∴BE=CF.(2) 解:如图2,过点A作AM//GH交BC于M,过点B作BN//EF交CD于N,AM与BN交于点O/,则四边形AMHG和四边形BNFE均为平行四边形,∴EF=BN,GH=AM,∵∠FOH=90°, AM//GH,EF//BN, ∴∠NO/A=90°,故由(1)得, △ABM≌△BCN,∴AM=BN,∴GH=EF=4.(3) ①8.②4n.15.【答案与解析】(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°,∴∠AEM=1355°,∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°在△AEM和△MCN中:∵∴△AEM≌△MCN,∴AM=MN(2)仍然成立.在边AB上截取AE=MC,连接ME∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°,∴∠ACP=120°.∵AE=MC,∴BE=BM∴∠BEM=∠EMB=60°∴∠AEM=120°.∵CN平分∠ACP,∴∠PCN=60°,∴∠AEM=∠MCN=120°∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM∴△AEM≌△MCN,∴AM=MN(3)16.【答案与解析】⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠BMA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).⑵①当M点落在BD的中点时,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=. 解得,x=(舍去负值).∴正方形的边长为.。
特殊三角形章节必考点题型归纳

特殊三角形二十个考点归纳总结考点1轴对称图形的识别解决此类问题关键是掌握如果一个图形沿一条直线折丧,直线两旁的部分能够互相重合,这个图形叫做轴 对称图形.例题1 2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员 驰援武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是( )功盘 ⑥曲A.协和医院B.湘雅医院C.齐鲁医院D.华西医院【分析】利用轴对称图形的定义进行解答即可.【解析】工、不是轴对称图形,故此选项不合题意:不是轴对称图形,故此选项不符合题意:C 、是轴对称图形,故此选项符合题意;。
、不是轴对称图形,故此选项不合题意;故选:C.变式1 下列交通指示标识中,是轴对称图形的有( )【分析】根据轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合解答.【解析】第一、二、四个图形是轴对称图形,第三个图形不是轴对称图形,故选:C.【小结】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 变式2 下列与防疫有关的图案中不是轴对称图形的有( )A A ® A 当心辐射I I 当心感染I I 必须戴防护手套]I 小心腐蚀A. 1个B. 2个C. 3个D. 4个A.1个B. 2个C. 3个D. 4个【分析】根据轴对称图形定义进行分析即可.【解析】第一个图案和第二个图案是轴对称图形,第三个图案和第四个图案不是轴对称图形,则不是轴对称图形的有2个,故选:B.【小结】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.变式3 下列图形中,是轴对称图形的有()个.①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形A. 4个B. 5个C. 6个D. 7个【分析】直接利用轴对称图形的定义分析得出答案.【解析】①角②线段③等腰三角形④等边三角形⑤扇形⑥圆⑦平行四边形中只有平行四边形不是轴对称图形.故轴对称图形有6个.故选:C.【小结】此题主要考查了轴对称变换,正确把握轴对称图形的定义是解题关键.考点2轴对称的性质与运用轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.例题2 如图,尸为内一点,分别画出点尸关于。
特殊三角形

特殊三角形知识定位特殊三角形在初中几何或者竞赛中占据非常大的地位,不管三解形还是特殊三角形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。
特殊三角形的判定和性质是证明有关三角形问题的基础,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中特殊三角形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理三角形类型定义性质判定等腰三角形有两条边相等的三角形是等腰三角形,其中相等的两条边分别叫做腰,另一条边叫做底边,两腰的夹角叫顶角,腰和底边的夹角为底角1.等腰三角形是对称图形,顶角平分线所在直线为它的对称轴2.等腰三角形两底角相等,即在同一个等腰三角形中,等边对等角3.等腰三角形的顶角平分线,底边上的中线和高线互相重合,简称等腰三角形的三线合一1.(定义法)有两条边相等的三角形是等腰三角形2.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,即,在同一个三角形中,等角对等边等边三角形三条边都相等的三角形是等边三角形,它是特殊的等腰三角形,也叫正三角形1.等边三角形的内角都相等,且为60°2.等边三角形是轴对称图形,且有三条对称轴3.等边三角形每条边上的中线,高线和所对角的角平分线三线合一,他们所在的直线都是等边三角形的对称轴1.三条边都相等的三角形是等边三角形2.三个内角都等于60°的三角形是等边三角形3.有一个角是60°的等腰三角形是等边三角形直角三角形有一个角是直角的三角形是直角三角形,即“R t△”1.直角三角形的两锐角互余2.直角三角形斜边上的中线等于斜边的一半3.直角三角形中30°角所对的直角边等于斜边的一半4.直角三角形中两条直角边的平方和等于斜边的平方(勾股定理)1.有一个角是直角的三角形是直角三角形2.有两个角互余的三角形是直角三角形3.如果一个三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形(勾股定理逆定理)2、等腰三角形(1)有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。
浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点.[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.ﻭ[图形轴对称的性质]①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称.[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2。
2等腰三角形+2。
3等腰三角形性质定理+2。
4等腰三角形判定定理[等腰三角形]★1. 有两条边相等的三角形是等腰三角形。
★2。
在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形。
(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边").特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,•并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2。
特殊三角形(知识点汇总 冀教8上)

第17章 特殊三角形一、等腰三角形1.等腰三角形的性质(1)等腰三角形的两个底角相等。
(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一) (3)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°①等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
①等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ①等腰三角形的三角关系:设顶角为顶角为①A ,底角为①B 、①C ,则①A=180°—2①B ,①B=①C=2180A∠-︒ 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等 判定:SSS 、SAS 、ASA 、AAS 。
二、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边,简称:HL )1:勾股定理如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、弦——斜边。
要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b ,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
特殊三角形知识点(家教版)

特殊三角形三角形1、三角形的内角和是180°2、三角形的外角和是360°3、三角形的任意一个外角都等于和它不相邻的两个内角的和。
4、三角形的任意一个外角都大于和它不相邻的内角全等三角形●全等三角形的性质1、对应边相等2、对应角相等●三角形全等的判定1、三边对应相等的两个三角形全等(SSS或边边边)2、两边和它们的夹角对应相等的两个三角形全等(SAS或边角边)3、两角和它们的夹边对应相等的两个三角形全等。
(ASA或角边角)4、两个角和其中一个角的对边对应相等的两个三角形全等(AAS或角角边)5、斜边和一条直角边对应相等的两个直角三角形全等(HL或斜边、直角边)角平分线●角的平分线的性质1、角的平分线上的点到角的两边的距离相等。
2、角的内部到角的两边的距离相等的点在角的平分线上。
(在三角形内部,到三边相等的点是三角形角平分线的交点)等腰三角形●等腰三角形的性质1、等腰三角形的两个底角相等(等边对等角);2、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
●等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边相等。
(等角对等边)等边三角形●等边三角形的性质1、等边三角形的三个内角相等,并且每一个角都等于60°。
2、三个角都相等的三角形是等边三角形。
3、有一个角是60°的等腰三角形是等边三角形。
直角三角形●直角三角形的定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 ● 直角三角形斜边上的中线等于斜边的一半。
● 勾股定理勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2勾股定理逆定理:如果三角形三边长a,b,c 满足a^2+b^2=c^2,那么这个三角形是直角三角形。
● 中位线三角形的中位线平行于三角形的第三边,且等于第三边的一半。
1、直角三角形的性质:⑴、在直角三角形中,两锐角 ; ⑵、在直角三角形中, 上的中线等于 的一半.⑶、在直角三角形中,如果一个锐角等于 ,那么 .⑷、在直角三角形中,如果一条直角边等于斜边的一半,那么 .(定理⑵、⑶通常用于证明线段之间的倍分关系;定理⑷通常用于求三角形中角的度数) ⑸、勾股定理内容: . 2、直角三角形的判定:⑴、有一个角等于_________的三角形是直角三角形; ⑵、有两个角_____________的三角形是直角三角形;⑶、如果三角形一边上的中线等于这条边的________,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊三角形一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说这三线为同一条线段;等腰三角形是________图形,它的对称轴有_________条。
2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。
3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。
4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。
5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。
30°角所对的直角边等于斜边的________ 6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。
一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。
7.直角三角形全等的判定:斜边和___________ 对应相等的两个直角三角形全等。
8.角平分线的性质:在角内部到角两边___________在这个角的平分线上。
三、重点解读1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。
一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2.等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”;3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。
不要一看到直角三角形两边长为3和4,就认为另一边一定是5;5.“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”等判定一般三角形全等的方法对于直角三角形全等的判定同样有效。
本章解题时用到的主要数学思想方法:⑴分类讨论思想(特别是在语言模糊的等腰三角形中)⑵方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长⑶等面积法四、典型例题(一)、角平分线+平行线1、在△ABC 中,三内角互不相等,BO 平分∠ABC ,CO 平分∠ACB 。
过O 点作EF, BC 。
(1)图中有几个等腰三角形?(2)猜测线段BE 、CF 、EF2、在△ABC 中,∠ABC=∠ACB ,BO 平分∠ABC , CO 平分∠ACB,过O 点作EF , 使EF ∥BC ,且∠EBO=30°。
若BE=5,△ABC 的周长为_________。
(二)、角平分线+垂线3、如图:AB=AC ,∠1=∠2,AE ⊥CD 于F 交BC 于点E ,求证:AB=CE4、如图,△ABC 是等腰直角三角形,其中∠A=90°,BD 平分∠ABC 交AC 于点D ,CE ⊥BD 交BD 的延长线于点E ,求证:BD=2CE(三)、直角三角形的一个锐角平分线+斜边上的高线5、如图,在△ABC 中,∠ACB=90°,AE 平分∠CAB ,CD ⊥AB 于D ,它们交于点F ,△CFE 是等腰三角形吗?试说明理由.(四)、等边三角形的几个基本图形:6、等边三角形ABC 中,BD=CE ,连接AD 、BE 交于点F 。
∠AFE=_________。
7、如图点A 、C 、E 在同一直线上,△ABC 和△CDE 都是等边三角形,M 、N 分别是AD 、BE 的中点。
说明: △CMN 是等边三角形。
A B CD EM N 图1 A B C DE M N图2 A BC D M N 图38、已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC•的距离分别是h 1,h 2,h 3,△ABC 的高为h ,若点P 在一边BC 上(图1),此时h 3=0,可得结论h 1+h 2+h 3=h ,请你探索以下问题:当点P 在△ABC 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3与h•之间有怎样的关系,请写出你的猜想,并简要说明理由.BA D CEB A DCEP BADCF E(五)、等腰直角三角形的几个基本应用9、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥M 于E 。
(1)当直线MN 绕点C 旋转到图1位置时,说明△ADC ≌△CEB 的理由; (2)当直线MN 绕点C 旋转到图2位置时,说明DE=AD -BE 的理由;(3)当直线MN 绕点C 旋转到图3位置时,试问DE 、 AD 、BE 有怎样的等量关系?请写出这个等量关系,并说明理由.10、如图,在直角△ABC 中,∠C=90,AC=BC ,D ,E 分别在BC 和AC 上,且BD=CE ,M 是AB 的中点。
求证:△MDE 是等腰直角三角形。
(六)、勾股定理、勾股定理的逆定理、勾股定理与方程11、观察下面表格中所给出的三个数a ,b ,c ,其中a ,b ,c 为正整数,且a<b<c (1):试找出他们的共同点,并证明你的结论 (2):当a=21时,求b ,c 的值12、如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ 。
(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.14、矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
(七)、需要分类讨论的(主要是由语言的模糊造成要讨论)有一个角等于50°,另一个角等于__________的三角形是等腰三角形。
有一个直角三角形的两条直角边为3,4,则第三条边长为__________如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长。
(八)作图题如图,求作一点P,使PC=PD,并且使点P到∠AOB两边的距离相等,并说明你的理由.【考点精练】一、基础训练1.如图1,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.(1)(2)(3)2.如图2,是由9个等边三角形拼成的六边形,•若已知中间的小等边三角形的边长是a,则六边形的周长是_______.3.如图3,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=________度.4.如图4,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′等于________.(4)(5)5.如图5,沿AC方向开山修渠,为了加快施工进度,•要在小山的另一边同时施工.从AC上的一点B取∠ABD=135°,BD=520米,∠D=45°,如果要使A、C、E成一直线,那么开挖点E离D的距离约为_______米(精确到1米).6.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P•运动的时间应为________.7.如图7,在△ABC中,AB=AC ,∠BAD=20•°,且AE=•AD ,则∠CDE=________.(7) (8) (9)8.如图8,在等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( ) A .44° B .68° C .46° D .22°9.如图9,要在离地面5m 处引拉线固定电线杆,•使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2m ,L 2=6.2m ,L 3=7.8m ,L 4=10m 的四种备用拉线材料中,拉线AC 最好选用( )A .L 1B .L 2C .L 3D .L 410.如图10,在△ABC 中,AB=AC ,D 为AC 边上一点,且BD=BC=AD .•则∠A 等于( )A .30° B.36° C .45° D .72°(10) (11)11.同学们都玩过跷跷板的游戏.如图11所示,•是一跷跷板的示意图,立柱OC 与地面垂直,OA=OB .当跷跷板的一头A 着地时,∠OAC=25°,•则当跷跷板的另一头B 着地时,∠AOA ′等于( ) A .25° B .50° C .60° D .130°12、直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C.a 1+b 1=h1D.21a +21b =21h如图所示,在△ABC 中,AB=6,AC=9,AD ⊥BC 于点D ,M 为AD 上任一点,则MC 2-MB 2等于二、能力提升 13.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm 和15cm 两部分,求它的底边长.14.(计算型说理题)已知如图△ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E 使CE=CD .•试判断DB 与DE 之间的大小关系,并说明理由。