液相反应平衡常数的测定(华南师范大学物化实验)

合集下载

液相平衡常数的测定

液相平衡常数的测定

液相平衡常数的测定液相平衡常数的测定是化学热力学研究中的重要方面之一。

它指的是一种化学反应中产物和反应物之间在液相中达到平衡时它们之间的浓度或活度比值。

液相平衡常数(Kc)是描述一定温度和压力下化学反应平衡时反应物和生成物浓度比值的一种评价指标。

在化学反应中,反应物与生成物在平衡状态下的浓度比值恒定,这个比值就是液相平衡常数。

在本文中,我们将介绍液相平衡常数的测量方法和其实验过程。

1. 理论基础液相平衡常数(Kc)是一种描述反应在液相中的平衡程度的物理量。

它表示反应中各表观浓度之比值的积,即:Kc=[C]c[D]d/[A]a[B]b其中,a、b、c和d分别表示各反应物和生成物在化学平衡时的摩尔数,[A]、[B]、[C]和[D]表示各反应物和生成物的实际浓度。

反应物和生成物之间的化学反应达到平衡时,Kc的值不随时间而改变。

换句话说,反应物和生成物的浓度比例是一个求定比例的平衡状态而非一种实时反应,这些下回再详细述。

Kc的值与反应热力学函数(ΔG、ΔH、ΔS)有关,它们之间的关系式如下:ΔG=-RTlnKc其中ΔG表示反应的自由能变化,ΔH表示反应的焓变化,ΔS表示反应的熵变化。

R为气体常数,T为温度,Kc为液相平衡常数。

2. 实验设计本实验中,我们将选取一种酸(H+)和碱(OH)反应制备水。

反应式为:H+(aq)+OH-(aq)=H2O反应平衡常数可以由反应物和生成物之间的摩尔比例关系得出。

首先,我们准备一定量的酸和碱,再用洗净的滴定管逐滴加入水中,用酸碱滴定法测定其浓度。

我们可以在不同温度下进行实验来测定液相平衡常数的值。

在本实验中,我们使用两种方法来测定液相平衡常数:酸碱滴定法和光度法。

3. 实验步骤3.1 酸碱滴定法(1)准备一定浓度的盐酸和氢氧化钠溶液。

(2)取紫色试剂(酚酞)标定溶液,将其中的一滴滴入pH为7的背景溶液中,转变为红色显示溶液中的氢离子浓度。

(3)取盛有一定量水的容器将氢氧化钠溶液滴入其中,逐渐加入盐酸,直到滴加的氢氧化钠计算所得浓度与钠盐酸标准溶液相等。

大学化学实验-液相反应平衡常数

大学化学实验-液相反应平衡常数

大学化学实验-液相反应平衡常数【目的要求】1.用分光光度法测定弱电解质的电离常数。

2.掌握分光光度法测定甲基红电离常数的基本原理。

3.掌握分光光度计及pH 计的正确使用方法。

【实验原理】弱电解质的电离常数测定方法很多,如电导法、电位法、分光光度法等。

本实验测定电解质(甲基红)的电离常数,是根据甲基红在电离前后具有不同颜色和对单色光的吸收特性,借助于分光光度法的原理,测定其电离常数,甲基红在溶液中的电离可表示为:简写为:HMR H ++MR -酸式碱式则其电离平衡常数K 表示为:(1) 或(2)[HMR]]][MR [H -+=C K [HMR]][MR log pH p --=K由(2)式可知,通过测定甲基红溶液的pH值,再根据分光光度法(多组分测定方法)测得[MR-]和[HMR]值,即可求得p K值。

根据朗伯-比耳(Lanbert-Bear)定律,溶液对单色光的吸收遵守下列关系式:(3) 式中,A为吸光度;I/I0为透光率T;C为溶液浓度;l为溶液的厚度;k为消光系数。

溶液中如含有一种组分,其对不同波长的单色光的吸收程度,如以波长(λ)为横坐标,吸光度(A)为纵坐标可得一条曲线,如图2-12-1中单组分a和单组分b的曲线均称为吸收曲线,亦称吸收光谱曲线。

根据公式(3),当吸收槽长度一定时,则:A a=k a C a(4)A b=k b C b(5) 如在该波长时,溶液遵守朗伯-比耳定律,可选用此波长进行单组分的测定。

溶液中如含有两种组分(或两种组分以上)的溶液,又具有特征的光图2-12-1部分重合的光吸收曲线kClTIIA==-=1lglg吸收曲线,并在各组分的吸收曲线互不干扰时,可在不同波长下,对各组分进行吸光度测定。

当溶液中两种组分a 、b 各具有特征的光吸收曲线,且均遵守朗伯-比耳定律,但吸收曲线部分重合,如图2-12-1所示,则两组分(a+b)溶液的吸光度应等于各组分吸光度之和,即吸光度具有加和性。

液相反应平衡常数的测定(华南师范大学物化实验)

液相反应平衡常数的测定(华南师范大学物化实验)

华南师范大学实验报告液相反映平衡常数旳测定一、实验目旳(1)运用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁络离子液相反映旳平衡常数。

(2)通过实验理解热力学平衡常数与反映物旳起始浓度无关。

二、实验原理Fe3+与SCN-在溶液中可生成一系列络离子,并共存于同一种平衡体系中。

当SCN-旳浓度增长时,Fe3+与SCN-生成旳络合物旳构成发生如下旳变化,而这些不同旳络离子旳溶液颜色也不同。

Fe3++SCN-→Fe(SCN)2+→Fe(SCN)2+→Fe(SCN)3→Fe(SCN)-→Fe(SCN)52-4由图1可知,Fe3+与浓度很低旳SCN-(一般应不不小于5×10-3mol/L)只进行如下反映。

Fe3++CNS-===Fe[CNS]2+即反映被控制在仅仅生成最简朴旳FeSCN3+。

其平衡常数为①图1.SCN-浓度对络合物构成旳影响由于Fe(SCN)2+是带颜色旳,根据朗伯-比尔定律,消光值与溶液浓度成正比,实验时,只要在一定温度下,借助分光光度计测定平衡体系旳消光值,从而计算出平衡时Fe[CNS]2+旳浓度[FeCNS2+]e,进而再推算出平衡时Fe3+和CNS-旳浓度[Fe3+]e和[CNS-]e。

根据式①一定温度反映旳平衡常数K c可求知。

实验时配备若干组(共4组)不同Fe3+起始浓度旳反映溶液,其中第一组溶液旳Fe3+是大量旳,当用分光光度计测定反映也在定温下消光值E i时(i为组数),根据朗伯-比尔定理E1=K[FeCNS2+]1,(K为晓光系数) ②e由于1号溶液中Fe3+大量过量,平衡时CNS-所有与Fe3+络合(下标0表达起始浓度),对1号溶液可觉得[FeCNS2+]1,e=[CNS-]0。

则E1=K[CNS-]0③对其他组溶液Ei=K[FeCNS2+]I,e④两式相除并整顿得⑤达到平衡时,在体系中[Fe3+]i,e=[Fe3+]i,e=[Fe3+]0-[FeCNS2+]i.e⑥[CNS-]i,e=[CNS-]0-[FeC NS2+]i.e⑦将式⑥、⑦代入①,可以计算出除第1组外各组(不同Fe3+起始浓度)反映溶液旳在定温下旳平衡常数Ki,e=值。

液相平衡[硫氰酸铁(III)体系

液相平衡[硫氰酸铁(III)体系

液相平衡[硫氰酸铁(I I I)体系-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII华南师范大学实验报告学生姓名招婉文学号 075专业化学师范年级、班级 17化教二班课程名称物理化学实验实验项目液相平衡[硫氰酸铁(III)体系] 实验类型□验证□设计□综合试验时间 2019/4/23实验指导老师林晓明老师实验评分液相平衡常数的测定【实验目的】1.利用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁络离子液相反应的平衡常数。

2.通过实验了解热力学平衡常数的数值与反应物起始浓度无关。

【实验原理】Fe3+与SCN-在溶液中可生成一系列的络离子,并共存于同一个平衡体系中。

当SCN-离子的浓度增加时,Fe3+离子与SCN-离子生成的络合物的组成发生如下的改变,而这些不同的络合物的溶液颜色也不同:Fe3++SCN-→Fe(SCN)2+→Fe(SCN)2+→Fe(SCN)3→Fe(SCN)4-→Fe(SCN)52-而这些不同的络离子色调也不同。

由下图可知,当Fe3+离子与浓度很低的SCN-离子(一般应小于5×10-3mol·L)时,只进行如下反应:Fe3+ + SCN-≒ Fe[SCN]2+即反应被控制在仅仅生成最简单的FeSCN3+络离子。

其平衡常数表示为:(3-14)由于Fe[SCN]2+是带有颜色的,根据朗伯-比尔定律,消光值与溶液浓度成正比。

实验时,只要在一定温度下,借助于分光光度计测定平衡体系的消光值,从而计算出平衡时Fe3+和SCN-的浓度 [Fe]3+的浓度[SCN-]e,根据式3-14一定温度下反应的平衡常数K C 可求之。

实验配置4组不同Fe3+起始浓度的反应溶液,其中第一组的Fe3+浓度是大量的,使用分光光度计时,根据朗伯-比尔定律:E1=K[FeCNS2+]1,e(K为消光系数)由于1号溶液中Fe3+大量过量,平衡时CNS-与Fe3+完全络合,对于一号溶液可认为:[FeCNS2+]1,e=[CNS-]0则:E1=K[CNS-]0 (3-15)对于其它溶液,则:E i=K[FeCNS2+]i,e (3-16)两式相除并整理得[FeCNS2+]i,e=E i/E1[CNS-]始达到平衡时,在体系中:[Fe3+]i,e=[Fe3+]0-[FeSCN2+]i,e (3-17)[CNS-]i,e =[CNS-]0-[FeSCN2+]i,e (3-18)将以上两式带入式3-14,可以计算出除第一组外各组(不同Fe3+起始浓度)反应溶液的在定问下的平衡常数K i,e值。

液相反应平衡常数的测定(华南师范大学物化实验)

液相反应平衡常数的测定(华南师范大学物化实验)

当达到平衡时,整理得到 [FeSCN 2 ]平 [Fe3 ]平[SCN ]平
=
k1
K2k3 [H ]平
kБайду номын сангаас1
k 3 K 4[H ]平
= K平
由上式可见,平衡常数受氢离子的影响。因此,实验只能在同一 pH 值下进
行。本实验为离子平衡反应,离子强度必然对平衡常数有很大影响。所以,在各
被测溶液中离子强度 I = 1 2
则 E1=K[CNS-]0

对其余组溶液 Ei=K[FeCNS2+]I,e

两式相除并整理得

达到平衡时,在体系中 [Fe3+]i,e=[Fe3+]i,e=[Fe3+]0-[FeCNS2+]

[CNS-]i,e=[CNS-]0-[FeCNS2+]


将式⑥、⑦代入①,可以计算出除第 1 组外各组(不同 Fe3+起始浓度)反应
由于 Fe3++SCN-在水溶液中存在水解平衡,所以 Fe3+与 SCN-的实际反应很复杂, 其机理为
k1
Fe3 SCN FeSCN 2 k1
K2
Fe3 H 2O FeOH 2 H (快)
k3
FeOH 2 SCN FeOHSCN k3
K4
FeOHSCN H FeSCN 2 H 2O(快)
'

图浓度对络合物组成的影响 由于 Fe(SCN)2+是带颜色的,根据朗伯-比尔定律,消光值与溶液浓度成正比, 试验时,只要在一定温度下,借助分光光度计测定平衡体系的消光值,从而计算 出平衡时 Fe[CNS]2+的浓度[FeCNS2+]e,进而再推算出平衡时 Fe3+和 CNS-的浓度 [Fe3+]e 和[CNS-]e。根据式①一定温度反应的平衡常数 Kc 可求知。 实验时配置若干组(共 4 组)不同 Fe3+起始浓度的反应溶液,其中第一组溶 液的 Fe3+是大量的,当用分光光度计测定反应也在定温下消光值 Ei 时(i 为组数), 根据朗伯-比尔定理 E1=K[FeCNS2+]1,e(K 为晓光系数) ② 由于 1 号溶液中 Fe3+大量过量,平衡时 CNS-全部与 Fe3+络合(下标 0 表示起 始浓度),对 1 号溶液可认为[FeCNS2+]1,e=[CNS-]0。

液相反应平衡常数的测定实验报告

液相反应平衡常数的测定实验报告

液相反应平衡常数的测定实验报告摘要本文针对液相反应平衡常数的测定实验研究进行了详细的说明,结合实验室实验方法,实验数据、实验结果和计算结果,以及实验错误的原因等,研究结果表明,本课题中的液相反应平衡常数的测定实验可以获得准确的数据。

关键词:平衡反应,液相反应,平衡常数1、实验目的本实验旨在通过实验,测定液相反应平衡常数,并研究其变化律和其对反应机理的影响。

2、实验原理液相反应的平衡常数是描述反应的激活能量的量度。

当在不同温度下测量液相反应的平衡常数K,可以得出液相反应的反应机理和活化能。

3、实验设备a) 使用经常性清洁的玻璃滴定道;b) 使用良好的塑料物理搅拌器;c) 使用精密滴定管;d) 使用精密滴定瓶;e) 使用精准量筒;f) 使用标准溶液;4、实验步骤a) 测定溶液PH;b) 测定清洁玻璃滴定道的滴速;c) 测定搅拌器的转速;d) 测定溶液的比重;e) 测定溶液的浓度;f) 继续滴定直到平衡定值。

5、实验结果a) 测定溶液pH:PH=7.3b) 测定清洁玻璃滴定道的滴速:14.7毫升/分钟c) 测定搅拌器的转速:4000转/分钟d) 测定溶液的比重:1.000 g/mLe) 测定溶液的浓度:1.00 mol/Lf) 测定溶液的平衡定值:K = 0.0726、实验错误a) 实验中搅拌器的转速较慢,因而影响了实验结果的准确性;b) 实验室温度的波动,对实验结果也有一定影响;c) 实验中反应液的浓度和pH不准确,也会影响实验结果。

7、结论本液相反应平衡常数的测定实验通过实验数据、实验结果和计算,实验结果表明,本实验中测定的液相反应平衡常数k为0.072。

物化实验的思考题答案

物化实验的思考题答案

实验一燃烧热的测定1. 在本实验中,哪些是系统哪些是环境系统和环境间有无热交换这些热交换对实验结果有何影响如何校正提示:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

2. 固体样品为什么要压成片状萘和苯甲酸的用量是如何确定的提示:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。

3. 试分析样品燃不着、燃不尽的原因有哪些提示:压片太紧、燃烧丝陷入药片内会造成燃不着;压片太松、氧气不足会造成燃不尽。

4. 试分析测量中影响实验结果的主要因素有哪些本实验成功的关键因素是什么提示:能否保证样品充分燃烧、系统和环境间的热交换是影响本实验结果的主要因素。

本实验成功的关键:药品的量合适,压片松紧合适,雷诺温度校正。

5. 使用氧气钢瓶和氧气减压器时要注意哪些事项提示:阅读《物理化学实验》教材P217-2206.什么是燃烧热它在化学计算中有何应用答:燃烧热是指在一定压力、温度下,某物质完全氧化成相同温度的指定产物时的焓变。

在化学计算中,它可以用来求算化学反应的焓变以及生成焓。

7.什么是卡计和水的热当量如何测得答:即量热计及水每升高1K所需吸收的热量。

利用标准物质(如苯甲酸)进行标定。

8.通过燃烧热测定实验,能否自己设计实验,利用数据来判断煤、柴油、天然气哪个热值最大答:液体样品燃烧热的测定方法:取一只预先称好重量的玻璃小球直径约, 用注射器将样品装进小球, 再在煤气灯上把小球的玻璃管口封死。

玻璃小球在装样前后重量之差就是液体样品的重量。

再取一片预先压好的带有点火丝的标准样品如苯甲酸, 称重后系在氧弹的点火电极上, 将装好样品的玻璃小球放在此样品片下面如图所示, 充氧气后,点火, 标准样品先燃烧, 放出的热使玻璃小球裂开, 此才液体样品被点燃, 并在氧气中完全燃烧。

4、利用分光光度计测定液相平衡常数

4、利用分光光度计测定液相平衡常数
以1号溶液的吸光度为基准,则对应于2、3、4号溶液的吸光度可求出各吸光度比,而2、3、4号各溶液中[FeSCN2+]平、[Fe3+]平、[SCN-]平可分别按下式求得:
[FeSCN2+]平=吸光度比×[FeSCN2+]平1=吸光度比×[SCN#43;]平、[SCN-]平=[SCN-]始-[FeSCN2+]平
学校教案
(首页)
课程名称
物理化学
审阅签名
授课班级
授课形式
实验
授课内容
液相平衡常数的测定
授课时间
20年月日∕第周星期∕第1~4节(4学时)
实验目的
1、熟练操作分光光度计
2、掌握利用分光光度计测定液相平衡常数的方法
教学重点
利用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁络离子的液相反应的平衡常数
3、比色皿中溶液不要装得太满,低于皿口0.5—1cm(约为80%)即可
巡回指导
1、取4个50mL容量瓶编号,配制离子强度为0.7(用KNO3调节)的四种溶液:
离子浓度分别为:5×10-2mol·L-1、1×10-2mol·L-1、5×10-3mol·L-1、2×10-3mol·L-1, 离子浓度为2×10-4mol·L-1, 离子浓度为0.15 mol·L-1
→Fe(SCN)3→Fe(SCN)4 →Fe(SCN)52
当 离子浓度很低(一般应小于5×10 mol·L-1)时, 离子与 离子只进行如下反应: + → Fe (SCN)2+
即反应被控制在仅仅生成最简单的Fe(SCN)2+络离子
其平衡常数表示为:KC=
二、讲授实验步骤(见巡回指导)
三、数据记录和处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除此之外,实验操作也是影响实验结果的一个重要因素。本实验涉及到移液 管、酸碱滴定管、容量瓶等量器的使用,每一步的操作都会引入误差。而且由于 本实验是合作性实验,由 2-3 位同学合作完成。每位同学的操作习惯不相同,由 于个体操作不同从而引入误差。
假若我们忽略原理上的误差,我们只能从实验操作上来保证本实验的准确 性。每一个步骤,如定容,必须要由同一位同学来完成。另外,移液管、滴定管 的使用必须规范,才能在最大程度上保证数据的准确。
高。因此必须使用除被测物质外其它组分完全一致的溶液作为空白对比液,在分
光光度计中进行背景校正。
九、参考文献
[1]何广平,南俊民等.物理化学实验[M].北京:化学工业出版社,2008,89-92. [2] 陈龙武,陆嘉星等. 教材通讯[J]. 华东师范大学,1990(1):35-36.
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分 来自网络,供参考。可复制、编制,期待你的好评与关注)
k3
FeOH 2 SCN FeOHSCN k3
K4
FeOHSCN H FeSCN 2 H 2O(快)
当达到平衡时,整理得到 [FeSCN 2 ]平 [Fe3 ]平[SCN ]平
=
k1
K2k3 [H ]平
k 1
ቤተ መጻሕፍቲ ባይዱ
k 3 K 4[H ]平
= K平
由上式可见,平衡常数受氢离子的影响。因此,实验只能在同一 pH 值下进
分析误差产生的原因,首先从实验原理上分析,实验中[FeSCN]2+标准溶液是 以较浓的 Fe3+和较稀的 SCN-溶液反应而获得,当 Fe3+的浓度为 SCN-的浓度 250 倍
时,则
可认为 SCN-全部消耗,反应体系的[FeSCN]2+离子浓度即为反应开始时 SCN的浓度。这种计算方法给实验的数据处理带来了极大的方便,但是这种情况是不 可能存在的,SCN-不可能完全消耗,在该种情况下反应也应该满足平衡常数的理 论值。
0
10-5
10-4
mol/L mol/L
4 0.148 0.240 4.80× 10-5 mol/L 1.95× 10-3 mol/L 1.52× 10-4 mol/L
184.08 167.01 161.94
Kc
六、实验结果分析
171.01
本次实验测得三个样品溶液的平衡常数分别为 184.08、167.01、161.94, 可见编号为 3、4 的样品液所得的数据较为接近,而编号 2 的样品相差较大。在 条件许可的情况下,应进行二次实验以获取较为准确的数据。根据化学数据手册, 在 298K 温度下,Fe3+与 SCN-反应的平衡常数为 140。本次实验值与其相比较,相 对误差高达 22.15%。
始浓度),对 1 号溶液可认为[FeCNS2+]1,e=[CNS-]0。
则 E1=K[CNS-]0

对其余组溶液 Ei=K[FeCNS2+]I,e

两式相除并整理得

达到平衡时,在体系中 [Fe3+]i,e=[Fe3+]i,e=[Fe3+]0-[FeCNS2+]i.e

[CNS-]i,e=[CNS-]0-[FeCNS2+]i.e
平衡常数是与温度有关的常数,与反应物起始浓度并无关系。 (3)测定 Kc 时,为什么要控制酸度和离子强度?
由于 Fe3++SCN-在水溶液中存在水解平衡,所以 Fe3+与 SCN-的实际反应很复杂, 其机理为
k1
Fe3 SCN FeSCN 2 k1
K2
Fe3 H 2O FeOH 2 H (快)
Fe3++CNS-===Fe[CNS]2+ 即反应被控制在仅仅生成最简单的 FeSCN3+。其平衡常数为

图 1.SCN-浓度对络合物组成的影响 由于 Fe(SCN)2+是带颜色的,根据朗伯-比尔定律,消光值与溶液浓度成正比, 试验时,只要在一定温度下,借助分光光度计测定平衡体系的消光值,从而计算 出平衡时 Fe[CNS]2+的浓度[FeCNS2+]e,进而再推算出平衡时 Fe3+和 CNS-的浓度 [Fe3+]e 和[CNS-]e。根据式①一定温度反应的平衡常数 Kc 可求知。 实验时配置若干组(共 4 组)不同 Fe3+起始浓度的反应溶液,其中第一组溶 液的 Fe3+是大量的,当用分光光度计测定反应也在定温下消光值 Ei 时(i 为组数), 根据朗伯-比尔定理 E1=K[FeCNS2+]1,e(K 为晓光系数) ② 由于 1 号溶液中 Fe3+大量过量,平衡时 CNS-全部与 Fe3+络合(下标 0 表示起
50mL 酸式滴定管 1 支
洗瓶
1个
3.2 实验试剂
1×10-3mol/L KCNS:由 A.R 级 KCNS 配成,用 AgNO3 容量法准确标定。
0.1mol/L Fe(NH4)(SO4)2:由 A.R 级 Fe(NH4)(SO4)2·12H2O 配成,并加入 HNO3 使溶 液中的 H+浓度达到 0.1mol/L,Fe3+的浓度用 EDTA 容量法准确标定。

将式⑥、⑦代入①,可以计算出除第 1 组外各组(不同 Fe3+起始浓度)反应
溶液的在定温下的平衡常数 Ki,e=值。
三、仪器与试剂
3.1 实验仪器
721 型分光光度计 100mL 烧杯 25mL 移液管 洗耳球
1台 4个 1支 1个
50mL 容量瓶 8 个
刻度移液管 10mL(2 支)、5mL(1 支)
二、实验原理
Fe3+与 SCN-在溶液中可生成一系列络离子,并共存于同一个平衡体系中。当 SCN-的浓度增加时,Fe3+与 SCN-生成的络合物的组成发生如下的改变,而这些不 同的络离子的溶液颜色也不同。
Fe3++SCN-→Fe(SCN)2+→Fe(SCN)2+→Fe(SCN)3→Fe(SCN)4-→Fe(SCN)52由图 1 可知,Fe3+与浓度很低的 SCN-(一般应小于 5×10-3mol/L)只进行如 下反应。
的 SCN-(一般应小于 5×10-3mol/L)只进行 Fe3++CNS-===Fe[CNS]2+的反应,但当 Fe3+、SCN-浓度较大时,就不只是生成一配位的络离子,[FeCNS2+]1,e≠[CNS-],则 E1≠K[CNS-]0 故不能用式④计算。 (2)平衡常数与反应物起始浓度有无关系?
表 1.所需用 4 种溶液的用量
项目
容量瓶编号
1
2
3
4
KCNS 溶液(1× 10-3mol/L)
取体积数/mL
10
10
10
10
实际浓度 /(mol/L)
取体积数/mL
Fe(NH4)(SO4)2 (0.1mol/L,其中 含 HNO30.1mol/L)
实际浓度 /(mol/L) 含 H+量/
(mol/L)
HNO3 溶液(1mol/L)
使反应体系 [H+]=0.15mol/
KNO3 溶液(1mol/L)
使反应体系 I=0.7
2×10-4
25
5×10-2 2.5× 10-3
5
5
2×10-4 5
1×10-2 5×10-4
7 23
2×10-4
2.5
5×10-3 2.5× 10-4 7.25
25.3
2×10-4 1
行。本实验为离子平衡反应,离子强度必然对平衡常数有很大影响。所以,在各
被测溶液中离子强度 I = 1 2
mi
Z
2 i
应保持一致。
(4)测定消光度时,为什么需空白对比液?怎么选择空白对比液?
除了 Fe[CNS]2+在溶液中显色具有一定的吸光度外,其他试剂也是具有一定
的吸光度的,因此在没有设置空白对比液的情况下,所得的吸光度会比准确值偏
当达到平衡时,整理得到
[FeSCN 2 ]平 [Fe3 ]平[SCN ]平
=
k1
K2k3 [H ]平
k 1
k 3 K 4[H ]平
= K平
由上式可见,平衡常数受氢离子的影响。因此,实验只能在同一 pH 值下进
行。本实验为离子平衡反应,离子强度必然对平衡常数有很大影响。所以,在各
被测溶液中离子强度 I = 1 2
七、实验评注与拓展
由于 Fe3++SCN-在水溶液中存在水解平衡,所以 Fe3+与 SCN-的实际反应很复杂, 其机理为
k1
Fe3 SCN FeSCN 2 k1 K2
Fe3 H 2O FeOH 2 H (快)
k3
FeOH 2 SCN FeOHSCN k3 K4
FeOHSCN H FeSCN 2 H 2O(快)
2×10-3 1×10-4
7.4 26.6
五、数据处理
室温:22.0℃
大气压:102.31KPa
[H+]=0.15mol/L
总离子强度 I=0.7
波长 λ=450nm
表 2.实验数据记录表
项目
溶液编号
1
2
3
消光值 Ei Ei/E1
0.616 1
2.00×
0.397 0.644 1.29×
0.278 0.451 9.02×
1mol/L HNO3 (A.R)
1mol/L KNO3 (A.R)
四、实验步骤
(1)取 8 个 50mL 容量瓶,编好号,按表 1 的内容,配制好溶液。在这 4 个容量 瓶中,溶液的氢离子均为 0.15mol/L,用 HNO3 来调节;溶液的离子强度均为 0.7, 用 KNO3 来调节。 (2)取 4 个标记好的 50mL 容量瓶,按表 1 中计算结果,将除 KSCN 溶液外的三 种溶液分别取所需的体积按编号加入,并用蒸馏水冲制刻度。该溶液为测消光值 时的对比液。 (3)再取另外 4 个标记好的 50mL 容量瓶,按表 1 的结果,将 4 种溶液分别去 所需的体积按编号加入(KCNS 溶液最后加),并用蒸馏水冲至刻度。该溶液为液 相反应体系。 (4)调整分光光度计,将波长调至 450nm,分别测定 4 组反应溶液的消光值。 每组溶液要重复测 3 次(更换溶液),取其平均值。
相关文档
最新文档