剪力墙的分类
剪力墙的分类、特点及布置原则

剪力墙的分类、特点及布置原则剪力墙的分类、特点及布置原则一:剪力墙的分类1. 根据结构形式分类剪力墙可分为砌体剪力墙和钢筋混凝土剪力墙两种类型。
砌体剪力墙是采用砌体构建的墙体,主要用于住宅和小型建筑。
钢筋混凝土剪力墙则是使用钢筋混凝土建造的墙体,适用于大型建筑以及高层建筑。
2. 根据抗震性能分类剪力墙可分为传统剪力墙和抗震剪力墙两种类型。
传统剪力墙是指仅具有抗剪能力的墙体,其抗震性能相对较低。
而抗震剪力墙则是采用加强的结构形式,具有更好的抗震性能,能够有效地分担地震作用。
二:剪力墙的特点1. 承载能力强剪力墙由于采用了较多的钢筋和混凝土材料,具有较高的承载能力,能够有效地承担建筑物的重力荷载。
2. 抗震性能好剪力墙采用了抗震设计原则,具有较好的抗震性能。
在地震作用下,剪力墙能够吸收和分散地震力,减小建筑物的振动。
3. 布置灵活剪力墙的布置相对灵活,可以根据建筑物的结构和使用要求进行合理的布置。
例如,在高层建筑中,可以将剪力墙布置在建筑物的核心区域,以增强建筑物的抗震性能。
三:剪力墙的布置原则1. 等间距布置剪力墙应按一定的间距进行布置,一般间距不应大于建筑物的两倍高度。
这样可以使剪力墙均匀分布在建筑物中,保证整体的稳定性和抗震性能。
2. 交错布置建筑物中的剪力墙应交错布置,即将两面相邻的剪力墙错开布置,形成一定的连续性。
这样可以更好地分散和吸收地震力,增强建筑物的整体抗震性能。
3. 墙体屈曲长度剪力墙的墙体屈曲长度应满足抗震设计的要求,确保在地震作用下,剪力墙能够充分发挥其抗震性能,防止因墙体过大而导致的不利效应。
附件:本文档未涉及附件。
法律名词及注释:1. 抗震设计:指根据地震活动区的地震烈度和建筑物的使用要求,对建筑结构进行合理的设计,从而使建筑物在地震作用下具有较好的抗震性能。
剪力墙的分类、特点及布置原则一:剪力墙的分类1. 按构造材料分类剪力墙可以分为砌体剪力墙和钢筋混凝土剪力墙两种。
砌体剪力墙是由砌块构成的墙体,主要用于住宅建筑。
《剪力墙结构设计》

(6-10)
式中 A — 墙截面毛面积;
A O P — 墙面洞口面积; A f — 墙面总面积。
B
hn
hi H
h3 h2 h1
(2) 等效惯性矩 等效惯性矩取有洞口截面与无洞口截面的加权平均值。
Iw
Iihi 整h理i ppt
(6-11)
(3)顶点位移
11
6
0
V0H 3 EcIw
(1
3.67 E c I w H 2G Aw
● 剪力墙的混凝土强度等级不应低于C20,短肢墙—筒体结构的 混凝土强度等级不应低于C25。剪力墙厚度应满足:
一、二级抗震时:底部:1
16
Hi
,其他部位: 1 20
Hi
,160mm ;
无端柱或翼墙时:底部:1
12
H
i
,其他部位:
1 15
H
i
,180mm ;
三、四级抗震时:底部:1
20
H
i ,其他部位:
1 25
H
i
,160mm ;
可近似按每层10mm初估。剪力墙截面总面积与露面面积之比 大约为:
小开间(3~4m): Aw Af 6% ~8% 大开间(7~8m): Aw Af 4% ~6%
基本周期: T1(0.04~0.06)n(n为建筑物层数)
整理ppt
三、剪力墙有效翼缘宽度bf
1.计算剪力墙的内力与位移时,可以考虑纵、横墙的 共同工作。 有效翼缘的宽度按下表采用,取最小值。
为了计算上的方便,引入等效刚度 E c I e q 的概念,它把剪切变形 与弯曲变形综合成用弯曲变形的形式表达,将上式写成:
整理ppt
11
V 0H
钢板剪力墙的分类及性能

钢板剪力墙的分类及性能【模板一】钢板剪力墙的分类及性能导言:钢板剪力墙是一种常用于建筑结构中的承重元素,具有较强的抗剪能力和抗震性能。
本文旨在介绍钢板剪力墙的分类及其性能,详细解析各类钢板剪力墙的特点和适用范围,为工程实践提供参考。
一、钢板剪力墙的分类1. 直板式钢板剪力墙1.1 类型一:均布型直板式钢板剪力墙特点:均匀布置的钢板使得荷载得到均匀分担,具有良好的抗震性能。
适用范围:适用于需求较高的工程,如高层建筑、桥梁等。
1.2 类型二:集中型直板式钢板剪力墙特点:钢板分布不均匀,能够集中抵抗地震力,抗震能力较强。
适用范围:适用于对抗震能力要求较高的地区,如地震频发地区。
2. 缝板式钢板剪力墙2.1 类型一:单缝板式钢板剪力墙特点:采用单缝连接方式,利用单缝中的钢板阻止墙体的剪切破坏,抗剪能力较强。
适用范围:适用于一般工程,如住宅楼、商业建筑等。
2.2 类型二:多缝板式钢板剪力墙特点:采用多缝连接方式,能够提高钢板的利用率,经济性较好。
适用范围:适用于需求经济性较高的工程,如大型厂房、仓库建筑等。
二、钢板剪力墙的性能1. 抗震性能钢板剪力墙具有较好的抗震性能,能够有效吸收地震能量,阻止结构发生倒塌破坏。
2. 承载性能钢板剪力墙能够承受较大的水平荷载和垂直荷载,保证结构整体的稳定性和安全性。
3. 安装便利性钢板剪力墙的安装相对简便,施工周期短,可以提高工程进度。
4. 经济性钢板剪力墙的采用能够减少建筑结构的用钢量,提高材料利用率,降低工程造价。
5. 环保性钢板剪力墙的施工过程中不会产生大量废弃物,能够满足现代建筑对环保的要求。
【模板二】钢板剪力墙的分类及性能导言:本文主要介绍钢板剪力墙的分类及性能,通过对各类钢板剪力墙的细致分析与阐述,为工程设计和施工提供参考依据。
一、钢板剪力墙的分类1. 根据构造特点的分类1.1 直板式钢板剪力墙- 类型一:均布型直板式钢板剪力墙具有均匀分布的钢板,能够在地震作用下均匀分担荷载。
剪力墙四组PPT课件

CHAPTER剪力墙定义及作用剪力墙定义主要承受风荷载或地震作用引起的水平荷载的墙体,防止结构剪切破坏。
剪力墙作用承担建筑物的竖向荷载,同时抵抗水平荷载,保证建筑物的整体稳定性和安全性。
框支剪力墙当底层需要大空间时,采用框架结构支撑上部剪力墙,就形成框支剪力墙。
整体墙没有门窗洞口或只有少量很小的洞口时,可以忽略洞口的存在,这种剪力墙即为整体剪力墙,简称整体墙。
小开口整体墙门窗洞口尺寸比整体墙要大一些,此时墙肢中已出现局部弯矩,这种墙称为小开口整体墙。
联肢墙剪力墙上开有一列或多列洞口,且洞口尺寸相对较大,此时剪力墙的受力相当于通过洞口之间的连梁连在一起的一系列墙肢,故称连肢墙。
剪力墙结构类型与特点剪力墙设计要求及规范应遵循“强剪弱弯、强墙弱梁”的原则,保证剪力墙的承载力和延性。
剪力墙应具有足够的刚度,以减小地震作用下的层间位移和顶点位移。
应保证剪力墙的整体稳定性,避免出现失稳现象。
应满足现行国家规范《建筑抗震设计规范》等相关规定。
抗震设计刚度要求稳定性要求构造要求CHAPTER剪力墙构造组成及原理剪力墙基本构造包括墙身、边缘构件、连梁等部分,共同承受水平和竖向荷载。
剪力墙工作原理利用墙体自身的刚度和强度,通过弯曲、剪切和轴向变形来抵抗外部荷载,保持结构的稳定性和整体性。
剪力墙结构类型根据结构形式和受力特点,可分为整体式剪力墙、装配式剪力墙等类型。
施工准备基础施工墙体施工顶部施工剪力墙施工方法与流程01020304包括场地平整、材料准备、测量放线等前期工作。
按照设计要求进行基础开挖、垫层施工、钢筋绑扎等步骤。
包括模板安装、钢筋绑扎、混凝土浇筑与养护等关键工序。
完成墙体施工后,进行顶部结构的施工,如梁板安装等。
材料质量控制施工过程控制质量检查与验收常见问题与处理剪力墙施工质量控制要点确保使用合格的钢筋、混凝土等材料,并进行严格的验收和保管。
按照相关规范进行质量检查和验收,确保施工质量符合要求。
加强各道工序的过程控制,确保每道工序符合设计和规范要求。
剪力墙分类大全

剪力墙分类大全剪力墙结构是由一系列纵向、横向剪力墙及楼盖所组成的空间结构,承受竖向荷载和水平荷载,是高层建筑中常用的结构形式。
由于纵、横向剪力墙在其自身平面内的刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易满足,适宜于建造层数较多的高层建筑。
剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。
剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。
在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。
在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下的内力及位移计算。
一、剪力墙的分类及受力特点为满足使用要求,剪力墙常开有门窗洞口。
理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。
洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。
剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。
不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。
1.整体剪力墙无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。
整体剪力墙的受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算。
2.小开口整体剪力墙当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,通过洞口的正应力分布已不再成一直线,而是在洞口两侧的部分横截面上,其正应力分布各成一直线。
这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布的应力之上叠加局部弯矩应力。
剪力墙类型的判别方法

剪力墙类型的判别方法剪力墙是建筑结构中常见的一种结构形式,通过墙体的刚性和强度来承担水平荷载,保证建筑物的稳定性和安全性。
在建筑设计和施工中,如何判断剪力墙的类型是非常重要的,本文将介绍剪力墙类型的判别方法。
一、剪力墙的定义和分类剪力墙是指由混凝土或砖石等材料构成的墙体,在水平荷载作用下能够承担剪力和弯矩,保证建筑物的稳定和安全。
根据材料和结构形式的不同,剪力墙可分为以下几种类型:1. 常规剪力墙:由混凝土或砖石等坚固材料构成,具有较高的刚性和强度,能够承受大部分水平荷载。
2. 轻型剪力墙:由轻质混凝土、石膏板等轻质材料构成,具有较低的刚性和强度,适用于小型建筑物。
3. 钢板剪力墙:由钢板和钢框架等材料构成,具有较高的刚性和强度,适用于高层建筑。
4. 框架剪力墙:由框架结构和墙体构成,具有较高的刚性和强度,适用于大型建筑物。
1. 常规剪力墙:一般是指混凝土墙或砖石墙,其特点是墙体厚度较大,结构稳定,可以承受较大的水平荷载。
在建筑设计和施工中,常规剪力墙一般设置在建筑的两端或中心位置,以保证建筑物的稳定性。
2. 轻型剪力墙:轻型剪力墙一般由轻质混凝土或石膏板等材料构成,墙体厚度较薄,结构较为轻便,适用于小型建筑物。
在建筑设计和施工中,轻型剪力墙一般设置在建筑物的外墙位置或内部隔断墙位置。
3. 钢板剪力墙:钢板剪力墙是由钢板和钢框架等材料构成,具有较高的刚性和强度,适用于高层建筑。
钢板剪力墙一般设置在建筑物的外墙位置或内部隔断墙位置,以保证建筑物的稳定性。
4. 框架剪力墙:框架剪力墙是由框架结构和墙体构成,具有较高的刚性和强度,适用于大型建筑物。
在建筑设计和施工中,框架剪力墙一般设置在建筑物的两端或中心位置,以保证建筑物的稳定性。
三、结语剪力墙作为建筑结构中的一种重要形式,具有保证建筑物稳定和安全的重要作用。
在建筑设计和施工中,正确判别剪力墙的类型,选择合适的结构形式和材料,对于保证建筑物的稳定性和安全性具有重要意义。
预制剪力墙的类型

预制剪力墙的类型
预制剪力墙的类型主要有以下几种:
1.预制实心剪力墙:这种剪力墙是实心的,整体性好,但自重较大,运输和吊装较为困难。
2.预制叠合剪力墙:这种剪力墙由预制混凝土墙体和后浇混凝土层叠合而成。
预制混凝土墙体为空腹壁,其承载力在叠合后完成。
后浇混凝土层主要起连接作用,将各个预制混凝土墙体连接成一个整体。
3.拼缝剪力墙:这种剪力墙由多个预制混凝土墙体拼装而成,拼缝处采用特殊构造处理。
4.整体式剪力墙:这种剪力墙类似于装配式整体式框架结构,但其构造与框架结构不同。
整体式剪力墙的梁和柱均采用预制混凝土构件,通过预埋连接件和后浇混凝土将各个构件连接成一个整体。
此外,预制剪力墙还可分为全预制剪力墙和部分预制剪力墙。
全预制剪力墙的所有构件均采用预制混凝土构件拼装而成,而部分预制剪力墙则是在部分位置采用预制混凝土构件,其他位置采用现浇混凝土。
剪力墙技术标准

剪力墙技术标准剪力墙,作为建筑结构中重要的竖向承重和抗侧力构件,对于保障建筑物的稳定性和安全性起着至关重要的作用。
为了确保剪力墙在设计、施工和使用过程中能够达到预期的性能要求,制定一套科学合理的技术标准是必不可少的。
一、剪力墙的分类剪力墙根据其开洞情况和受力特点,可以分为整体墙、小开口整体墙、联肢墙、壁式框架等不同类型。
整体墙是指没有洞口或者洞口面积小于墙体面积 15%的剪力墙,其受力性能类似于一根竖向悬臂梁,整体工作性能良好。
小开口整体墙的洞口面积稍大,但仍能保持整体墙的受力特点,墙肢的局部弯矩不超过整体弯矩的 15%。
联肢墙是通过连梁将一系列墙肢连接起来形成的剪力墙,其受力性能较为复杂,墙肢和连梁会协同工作。
壁式框架则是洞口尺寸较大、连梁刚度较大的剪力墙,其受力性能接近于框架。
二、剪力墙的设计要求1、强度要求剪力墙应具备足够的强度来承受竖向荷载和水平荷载产生的内力。
在设计时,需要根据建筑物所在地区的抗震设防烈度、风荷载等因素,计算出剪力墙所承受的内力,并据此确定墙体的配筋和混凝土强度等级。
2、刚度要求剪力墙的刚度对于控制建筑物的水平位移至关重要。
过大的水平位移会影响建筑物的使用功能和安全性。
因此,在设计时需要合理确定剪力墙的布置和尺寸,以保证结构具有足够的抗侧刚度。
3、稳定性要求剪力墙应具有良好的稳定性,避免在受力过程中发生失稳现象。
这需要考虑墙体的高宽比、竖向配筋等因素。
4、延性要求在地震作用下,剪力墙需要具备一定的延性,以吸收地震能量,减轻地震破坏。
通过合理的配筋和构造措施,可以提高剪力墙的延性性能。
三、剪力墙的构造要求1、墙体厚度剪力墙的厚度应根据建筑物的高度、抗震设防烈度、墙体的类型等因素确定。
一般来说,底层墙体厚度较大,向上逐渐减小。
2、混凝土强度等级混凝土强度等级应根据设计要求选用,通常不宜低于 C20。
3、钢筋配置剪力墙的钢筋包括竖向分布钢筋和水平分布钢筋。
竖向分布钢筋主要承受竖向荷载产生的内力,水平分布钢筋主要承受水平荷载产生的内力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剪力墙结构是由一系列纵向、横向剪力墙及楼盖所组成的空间结构,承受竖向荷载和水平荷载,是高层建筑中常用的结构形式。
由于纵、横向剪力墙在其自身平面内的刚度都很大,在水平荷载作用下,侧移较小,因此这种结构抗震及抗风性能都较强,承载力要求也比较容易满足,适宜于建造层数较多的高层建筑。
剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。
剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。
在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。
在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本节着重讨论剪力墙在水平荷载作用下的内力及位移计算。
一、剪力墙的分类及受力特点为满足使用要求,剪力墙常开有门窗洞口。
理论分析和试验研究表明,剪力墙的受力特性与变形状态主要取决于剪力墙上的开洞情况。
洞口是否存在,洞口的大小、形状及位置的不同都将影响剪力墙的受力性能。
剪力墙按受力特性的不同主要可分为整体剪力墙、小开口整体剪力墙、双肢墙(多肢墙)和壁式框架等几种类型。
不同类型的剪力墙,其相应的受力特点、计算简图和计算方法也不相同,计算其内力和位移时则需采用相应的计算方法。
1.整体剪力墙无洞口的剪力墙或剪力墙上开有一定数量的洞口,但洞口的面积不超过墙体面积的15%,且洞口至墙边的净距及洞口之间的净距大于洞孔长边尺寸时,可以忽略洞口对墙体的影响,这种墙体称为整体剪力墙(或称为悬臂剪力墙)。
整体剪力墙的受力状态如同竖向悬臂梁,截面变形后仍符合平面假定,因而截面应力可按材料力学公式计算。
2.小开口整体剪力墙当剪力墙上所开洞口面积稍大且超过墙体面积的15%时,通过洞口的正应力分布已不再成一直线,而是在洞口两侧的部分横截面上,其正应力分布各成一直线。
这说明除了整个墙截面产生整体弯矩外,每个墙肢还出现局部弯矩,因为实际正应力分布,相当于在沿整个截面直线分布的应力之上叠加局部弯矩应力。
但由于洞口还不很大,局部弯矩不超过水平荷载的悬臂弯矩的15%。
因此,可以认为剪力墙截面变形大体上仍符合平面假定,且大部分楼层上墙肢没有反弯点。
内力和变形仍按材料力学计算,然后适当修正。
在水平荷载作用下,这类剪力墙截面上的正应力分布略偏离了直线分布的规律,变成了相当于在整体墙弯曲时的直线分布应力之上叠加了墙肢局部弯曲应力,当墙肢中的局部弯矩不超过墙体整体弯矩的15%时,其截面变形仍接近于整体截面剪力墙,这种剪力墙称之为小开口整体剪力墙。
3.联肢剪力墙洞口开得比较大,截面的整体性已经破坏,横截面上正应力的分布远不是遵循沿一根直线的规律。
但墙肢的线刚度比同列两孔间所形成的连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较为显著,但仅在个别或少数层内,墙肢出现反弯点。
这种剪力墙可视为由连梁把墙肢联结起来的结构体系,故称为联肢剪力墙。
其中,仅由一列连梁把两个墙肢联结起来的称为双肢剪力墙;由两列以上的连梁把三个以上的墙肢联结起来的称为多肢剪力墙。
当剪力墙沿竖向开有一列或多列较大的洞口时,由于洞口较大,剪力墙截面的整体性已被破坏,剪力墙的截面变形已不再符合平截面假设。
这时剪力墙成为由一系列连梁约束的墙肢所组成的联肢墙。
开有一列洞口的联肢墙称为双肢墙,当开有多列洞口时称之为多肢墙。
4.壁式框架洞口开得比联肢剪力墙更宽,墙肢宽度较小,墙肢与连梁刚度接近时,墙肢明显出现局部弯矩,在许多楼层内有反弯点。
剪力墙的内力分布接近框架,故称壁式框架。
壁式框架实质是介于剪力墙和框架之间的一种过渡形式,它的变形已很接近剪切型。
只不过壁柱和壁梁都较宽,因而在梁柱交接区形成不产生变形的刚域。
当剪力墙的洞口尺寸较大,墙肢宽度较小,连梁的线刚度接近于墙肢的线刚度时,剪力墙的受力性能已接近于框架,这种剪力墙称为壁式框架。
(1)基本假定a)将每一楼层处的连系梁简化为均匀连续分布的连杆;b)忽略连系梁的轴向变形,即假定两墙肢在同一标高处的水平位移相等;c)假定两墙肢在同一标高处的转角和曲率相等,即变形曲线相同;d)假定各连系梁的反弯点在该连系梁的中点;f)认为双肢墙的层高h、惯性矩、;截面积、;连系梁的截面积和惯性矩等参数,沿墙高度方向均为常数。
根据以上假定,可得双肢墙的计算简图。
二、各类剪力墙内力与位移计算要点剪力墙结构随着类型和开洞大小的不同,计算方法和计算简图也不同。
整体墙和小开口整体墙的计算简图基本上是单根竖向悬臂杆,计算方法按材料力学公式(对整体墙不修正,对小开口整体墙修正)计算。
其他类型剪力墙,其计算简图均无法用单根竖向悬臂杆代表,而应按能反映其性态的结构体系计算。
1.整体剪力墙对于整体剪力墙,在水平荷载作用下,根据其变形特征(截面变形后仍符合平面假定),可视为一整体的悬臂弯曲杆件,用材料力学中悬臂梁的内力和变形的基本公式进行计算。
(1)内力计算整体墙的内力可按上端自由,下端固定的悬臂构件,用材料力学公式,计算其任意截面的弯矩和剪力。
总水平荷载可以按各片剪力墙的等效抗弯刚度分配,然后进行单片剪力墙的计算。
剪力墙的等效抗弯刚度(或叫等效惯性矩)就是将墙的弯曲、剪切和轴向变形之后的顶点位移,按顶点位移相等的原则,折算成一个只考虑弯曲变形的等效竖向悬臂杆的刚度。
(2)位移计算整体墙的位移,如墙顶端处的侧向位移,同样可以用材料力学的公式计算,但由于剪力墙的截面高度较大,故应考虑剪切变形对位移的影响。
当开洞时,还应考虑洞口对位移增大的影响。
2.小开口整体剪力墙小开口墙是指门窗洞口沿竖向成列布置,洞口的总面积虽超过墙总面积的15%,但仍属于洞口很小的开孔剪力墙。
通过实验发现,小开口剪力墙在水平荷载作用下的受力性能接近整体剪力墙,其截面在受力后基本保持平面,正应力分布图形也大体保持直线分布,各墙肢中仅有少量的局部弯矩;沿墙肢高度方向,大部分楼层中的墙肢没有反弯点。
在整体上,剪力墙仍类似于竖向悬臂杆件。
就为利用材料力学公式计算内力和侧移提供了前提,再考虑局部弯曲应力的影响,进行修正,则可解决小开口剪力墙的内力和侧移计算。
首先将整个小开口剪力墙作为一个悬臂杆件,按材料力学公式算出标高z处的总弯矩、总剪力和基底剪力。
其次,将总弯矩分为两部分:1)产生整体弯曲的总弯矩(占总弯矩的85%),2)产生局部弯曲的总弯矩(占15%)。
(1)墙肢弯矩计算第i墙肢受到的整体弯曲的弯矩为:(1)式中——墙肢i的惯性矩;J——剪力墙整个截面的惯性矩(2)墙肢剪力计算墙肢剪力,底层按墙肢截面面积分配;其余各层墙肢剪力,可按材料力学公式计算截面面积和惯性矩比例的平均值分配剪力,第i墙肢分配到的剪力可近似地表达为:(2)式中,为墙肢截面面积。
(3)顶点位移计算考虑到开孔后刚度的削弱,应将整体墙的水平位移计算结果乘1.20。
3.双肢剪力墙联肢墙由于门窗洞口尺寸较大,墙截面上的正应力不再成直线分布,其受力和变形发生了变化,墙肢的线刚度比连梁的线刚度大得多,每根连梁中部有反弯点,各墙肢单独弯曲作用较显著,仅在少数层内墙肢出现反弯点,故需采用相应方法分析。
墙面上开有一排洞口的墙称双肢墙;当开有多排洞口时,称多肢墙。
双肢墙由于连系梁的连结,而使双肢墙结构在内力分析时成为一个高次超静定的问题。
为了简化计算,一般可用解微分方程的办法(连续连杆法)计算。
(1)基本假定a)将每一楼层处的连系梁简化为均匀连续分布的连杆,见图4;b)忽略连系梁的轴向变形,即假定两墙肢在同一标高处的水平位移相等;c)假定两墙肢在同一标高处的转角和曲率相等,即变形曲线相同;d)假定各连系梁的反弯点在该连系梁的中点;f)认为双肢墙的层高h、惯性矩、;截面积、;连系梁的截面积和惯性矩等参数,沿墙高度方向均为常数。
根据以上假定,可得双肢墙的计算简图,如图4(b)所示。
(2)内力及侧移计算将连续化后的连续梁沿中线切开,见图4(c),由于跨中为反弯点,故切开后在截面上只有剪力集度V(z)及轴力集度。
根据外荷载、V(z)及共同作用下,沿V(z)方向的相对位移等于零的变形协调条件,可建立一个二阶常系数非齐次线性微分方程,考虑边界条件后,可求得微分方程的解,进而可求得双肢剪力墙在水平荷载作用下的内力和侧移。
4.多肢剪力墙具有多于一排且排列整齐的洞口时,就成为多肢剪力墙。
多肢墙也可以采用连续连杆法求解,基本假定和基本体系取法都和双肢墙类似。
由于墙肢及洞口数目比双肢墙多,因此沿竖向切口的基本未知量将相应增多。
在每个连梁切口处建立一个变形协调方程,则可建立k 个微分方程。
要注意,在建立第i个切口处协调方程时,除了i跨连梁内力影响外,还要考虑第i-1跨连梁内力和第i+1跨连梁内力对i墙肢的影响,这是与双肢剪力墙的一个明显区别。
三、剪力墙的分类判别式以上讨论了按整体计算的剪力墙、小开口整体剪力墙、双肢墙、多肢墙等四种类型的剪力墙。
整体剪力墙如一根悬臂杆件,在墙肢整个高度方向上,弯矩图既不发生突变又不出现反弯点,变形曲线以弯曲型为主;小开口墙与双、多肢剪力墙,在连梁高度处的墙肢弯矩有突变,但在整个墙肢的高度方向上,它没有或仅仅在个别楼层才出现反弯点,剪力墙的变形曲线依然以弯曲型为主。
各类剪力墙因外形和洞口大小的不同,受力特点也不同,不但在墙肢截面上的正应力分布有区别,而且沿墙肢高度方向上弯矩的变化规律也不同。
这类剪力墙在连系梁处有弯矩突变。
其主要原因是因为连系梁对墙肢有约束作用,发生突变的弯矩值的大小,主要取决于连系梁刚度与墙肢刚度的比值。
当剪力墙上的门窗洞口很大,连系梁的刚度很小而墙肢的刚度又相对较大时,连系梁对墙肢的约束作用很小,连系梁犹如铰接于墙肢的一个连杆,每一个墙肢相当于一个单肢的剪力墙,水平荷载全部由这些单肢墙承担,墙肢截面中正应力呈线性分布,轴力为零。
反之,当剪力墙上的洞口很小,连系梁对墙肢的约束作用很强时,整个剪力墙的整体性很好,例如小开口整体墙,在整个剪力墙的截面中,正应力呈线性分布或接近于线性分布。
当连系梁对墙肢的约束介于上述两种情形之间时,则剪力墙的整体性也界于上述两种情形之间,在整个剪力墙上的正应力不再呈线性分布,表示墙肢中的局部弯矩已十分明显。
由于各类剪力墙的受力特点和内力分布均有所区别,因此,设计时应首先判断它属于哪一种类型,然后再用相应的计算方法求出它的内力及侧移。
划分剪力墙类别,主要考虑两个方面:一是各墙肢之间的整体性;二是是否出现反弯点,出现反弯点层数越多,就越接近框架。